Investigating the potential neurotoxicity of ecstasy (MDMA). An imaging approach
Reneman, L.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

Download date: 19 Dec 2018
Contents

Part I: Introduction 11

Chapter 1 Introduction

Part II: Biological markers of neuronal loss 19

Chapter 2 Measuring MDMA-induced 5-HT neuronal loss; technical aspects 21

2.1. Iodine-123 labelled nor-β-CIT binds to the serotonin transporter in vivo as assessed by biodistribution studies in rats
European Journal of Nuclear Medicine 1998; 25: 1666-1669

2.2 A comparative in vivo study of iodine-123 labelled β-CIT and iodine-123 labelled nor-β-CIT binding to serotonin transporters in rat brain
Synapse 1999; 34: 77-80

2.3 Validity of [123I]β-CIT SPECT for detecting MDMA-induced serotonergic neurotoxicity
Submitted for publication

Chapter 3 The effect of MDMA on 5-HT neurons 47

3.1 Partial reversibility and gender differences in the toxic effects of MDMA (“Ecstasy”) on brain serotonin neurons in humans:
a [123I]β-CIT SPECT study
The Lancet (in press)

3.2 Gender differences in serotonin and dopamine transporter densities in healthy volunteers: a [123I]β-CIT SPECT study
Submitted for publication

Chapter 4 The effect of MDMA on non-specific neurons 59

Reduced N-acetylaspartate levels in the frontal cortex of 3,4-Methylenedioxymethamphetamine (“Ecstasy”) users – Preliminary Results
American Journal of Neuroradiology (in press)
Chapter 5 The effect of MDMA on dopamine neurons

5.1 Use of amphetamine by recreational users of ecstasy (MDMA) is associated with reduced striatal dopamine transporter densities: a $[^{[3]}]$-CIT SPECT study
 Psychopharmacology (in press)

5.2 Addition of a 5-HT receptor agonist to methylphenidate potentiates the reduction of $[^{[3]}]$-FP-CIT binding to dopamine transporters in rat frontal cortex and hippocampus
 Synapse 2001; 39: 190-200

Part III: Potential functional consequences of MDMA-induced neuronal loss

Chapter 6 The effect of MDMA on post-synaptic 5-HT$_2$ receptor densities

The acute and chronic effects of MDMA ("Ecstasy") on cortical 5-HT$_{2A}$ receptors in rat and human brain
 Neuropsychopharmacology (in press)

Chapter 7 The effect of MDMA on the brain microvasculature

7.1 MDMA ("Ecstasy") and its predisposition to cerebrovascular accidents – Preliminary findings

7.2 Effects of Ecstasy (MDMA) on the brain in abstinent users: Initial observations with diffusion and perfusion MR imaging
 Radiology 2001; 220: 611-617

Chapter 8 The effect of MDMA on cognitive function

Memory function and serotonin transport promoter gene polymorphism in ecstasy (MDMA) users
 Submitted for publication
Part IV: Linking biological markers of neuronal loss with memory function

Chapter 9 Linking biological markers of neuronal loss with memory function

- **9.1** Cortical serotonin transporter density and verbal memory in individuals who stopped using 3,4-methylenedioxymethaphetamine (MDMA or “Ecstasy”) – Preliminary findings

 Archives of General Psychiatry 2001; 58: 901-906

- **9.2** Prefrontal N-acetylaspartate is strongly associated with memory performance in (abstinent) Ecstasy users: Preliminary report

 Biological Psychiatry 2001; 50: 550-554

- **9.3** Memory disturbances in “Ecstasy” users are correlated with an altered brain serotonin neurotransmission

 Psychopharmacology 2000; 148: 322-324

Part V: Summary and conclusion

Chapter 10 Review of the literature

- Investigating the potential neurotoxicity of Ecstasy (MDMA): An imaging approach

 Human Psychopharmacology (in press)

Chapter 11 Summary and general discussion

- Samenvatting
- Dankwoord
- Curriculum Vitae
- List of Publications