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A B S T R A C T

Over the past decade, multivariate “decoding analyses” have become a popular alternative to traditional mass-
univariate analyses in neuroimaging research. However, a fundamental limitation of using decoding analyses is
that it remains ambiguous which source of information drives decoding performance, which becomes problematic
when the to-be-decoded variable is confounded by variables that are not of primary interest. In this study, we use
a comprehensive set of simulations as well as analyses of empirical data to evaluate two methods that were
previously proposed and used to control for confounding variables in decoding analyses: post hoc counter-
balancing and confound regression. In our empirical analyses, we attempt to decode gender from structural MRI
data while controlling for the confound “brain size”. We show that both methods introduce strong biases in
decoding performance: post hoc counterbalancing leads to better performance than expected (i.e., positive bias),
which we show in our simulations is due to the subsampling process that tends to remove samples that are hard to
classify or would be wrongly classified; confound regression, on the other hand, leads to worse performance than
expected (i.e., negative bias), even resulting in significant below chance performance in some realistic scenarios.
In our simulations, we show that below chance accuracy can be predicted by the variance of the distribution of
correlations between the features and the target. Importantly, we show that this negative bias disappears in both
the empirical analyses and simulations when the confound regression procedure is performed in every fold of the
cross-validation routine, yielding plausible (above chance) model performance. We conclude that, from the
various methods tested, cross-validated confound regression is the only method that appears to appropriately
control for confounds which thus can be used to gain more insight into the exact source(s) of information driving
one's decoding analysis.

1. Introduction

In the past decade, multivariate pattern analysis (MVPA) has emerged
as a popular alternative to traditional univariate analyses of neuro-
imaging data (Haxby, 2012; Norman et al., 2006). The defining feature of
MVPA is that it considers patterns of brain activation instead of single
units of activation (i.e., voxels in MRI, sensors in MEG/EEG). One of the
most-often used type of MVPA is “decoding”, in which machine learning
algorithms are applied to neuroimaging data to predict a particular
stimulus, task, or psychometric feature. For example, decoding analyses
have been used to successfully predict various experimental conditions
within subjects, such as object category from fMRI activity patterns
(Haxby et al., 2001) and working memory representations from EEG data
(LaRocque et al., 2013), as well between-subject factors such as Alz-
heimer's disease (vs. healthy controls) from structural MRI data

(Cuingnet et al., 2011) and major depressive disorder (vs. healthy con-
trols) from resting-state functional connectivity (Craddock et al., 2009).
One reason for the popularity of MVPA, and especially decoding, is that
these methods appear to be more sensitive than traditional
mass-univariate methods in detecting effects of interest. This increased
sensitivity is often attributed to the ability to pick up multidimensional,
spatially distributed representations which univariate methods, by defi-
nition, cannot do (Jimura and Poldrack, 2012). A second important
reason to use decoding analyses is that they allow researchers to make
predictions about samples beyond the original dataset, which is more
difficult using traditional univariate analyses (Hebart and Baker, 2017).

In the past years, however, the use of MVPA has been criticized for a
number of reasons, both statistical (Allefeld et al., 2016; Davis et al.,
2014; Gilron et al., 2017; Haufe et al., 2014) and more conceptual
(Naselaris and Kay, 2015; Weichwald et al., 2015) in nature. For the
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purposes of the current study, we focus on the specific criticism put
forward by Naselaris and Kay (2015), who argue that decoding analyses
are inherently ambiguous in terms of what information they use (see
Popov et al., 2018, for a similar argument in the context of encoding
analyses). This type of ambiguity arises when the classes of the
to-be-decoded variable systematically vary in more than one source of
information (see also Carlson and Wardle, 2015; Ritchie et al., 2017;
Weichwald et al., 2015). The current study aims to investigate how
decoding analyses can be made more interpretable by reducing this type
of “source ambiguity”.

To illustrate the problem of source ambiguity, consider, for example,
the scenario in which a researcher wants to decode gender 2 (male/fe-
male) from structural MRI with the aim of contributing to the under-
standing of gender differences — an endeavor that generated
considerable interest and controversy (Chekroud et al., 2016; Del Giudice
et al., 2016; Glezerman, 2016; Joel and Fausto-Sterling, 2016; Rose-
nblatt, 2016). By performing a decoding analysis on the MRI data, the
researcher hopes to capture meaningful patterns of variation in the data
of male and female participants that are predictive of the participant's
gender. The literature suggests that gender dimorphism in the brain is
manifested in two major ways (O'Brien et al., 2011; Good et al., 2001).
First, there is a global difference between male and female brains: men
have on average about 15% larger intracranial volume than women,
which falls in the range of mean gender differences in height (8.2%) and
weight (18.7%; Gur et al., 1999; Lüders et al., 2002).3 Second, brains of
men and women are known to differ locally: some specific brain areas are
on average larger in women than in men (e.g., in superior and middle
temporal cortex; Good et al., 2001) and vice versa (e.g., in frontomedial
cortex; Goldstein et al., 2001). One could argue that, given that one is
interested in explaining behavioral or mental gender differences, global
differences are relatively uninformative, as it reflects the fact than male
bodies are on average larger than female bodies (Gur et al., 1999;
Sepehrband et al., 2018). As such, our hypothetical researcher is likely
primarily interested in the local sources of variation in the neuroanatomy
of male and female brains.

Now, supposing that the researcher is able to decode gender from the
MRI data significantly above chance, it remains unclear on which source
of information the decoder is capitalizing: the (arguably meaningful)
local difference in brain structure or the (in the context of this question
arguably uninteresting) global difference in brain size? In other words,
the data contain more than one source of information that may be used to
predict gender. In the current study, we aim to evaluate methods that
improve the interpretability of decoding analyses by controlling for
“uninteresting” sources of information.

1.1. Partitioning effects into true signal and confounded signal

Are multiple sources of information necessarily problematic? And
what makes a source of information interesting or uninteresting? The
answers to these questions depend on the particular goal of the
researcher using the decoding analysis (Hebart and Baker, 2017). In
principle, multiple sources of information in the data do not pose a
problem if a researcher is only interested in accurate prediction, but not in
interpretability of the model (Bzdok, 2017; Haufe et al., 2014; Hebart and
Baker, 2017). In brain-computer interfaces (BCI), for example, accurate

prediction is arguably more important than interpretability, i.e., knowing
which sources of information are driving the decoder. Similarly, if the
researcher from our gender decoding example is only interested in
accurately predicting gender regardless of model interpretability, source
ambiguity is not a problem.4 In most scientific applications of decoding
analyses, however, model interpretability is important, because re-
searchers are often interested in the relative contributions of different
sources of information to decoding performance. Specifically, in most
decoding analyses, researchers often (implicitly) assume that the decoder
is only using information in the neuroimaging data that is related to the
variable that is being decoded (Ritchie et al., 2017). In this scenario,
source ambiguity (i.e., the presence of multiple sources of information) is
problematic as it violates this (implicit) assumption. Another way to
conceptualize the problem of source ambiguity is that, using the afore-
mentioned example, (global) brain size is confounding the decoding
analysis of gender. Here, we define a confound as a variable that is not of
primary interest, correlates with the to-be-decoded variable (the target), and is
encoded in the neuroimaging data.

To illustrate the issue of confounding variables in the context of
decoding clinical disorders, suppose one is interested in building a clas-
sifier that is able to predict whether subjects are suffering from schizo-
phrenia or not based on the subjects’ gray matter data. Here, the variable
“schizophrenia-or-not” is the variable of interest, which is assumed to be
encoded in the neuroimaging data (i.e., the gray matter) and can thus be
decoded. However, there are multiple factors known to covary with
schizophrenia, such as gender (i.e., men are more often diagnosed with
schizophrenia than women; McGrath et al., 2008) and substance abuse
(Dixon, 1999), which are also known to affect gray matter (Bangalore
et al., 2008; Gur et al., 1999 and Van Haren et al., 2013). As such, the
variables gender and substance abuse can be considered confounds ac-
cording to our definition, because they are both correlatedwith the target
(schizophrenia or not) and are known to be encoded in the neuroimaging
data (i.e., the effect of these variables is present in the gray matter data).
Now, if one is able to classify schizophrenia with above-chance accuracy
from gray matter data, one cannot be sure which source of information
within the data is picked up by the decoder: information (uniquely)
associated with schizophrenia or (additionally) information associated
with gender or substance abuse? If one is interested in more than mere
accurate prediction of schizophrenia, then this ambiguity due to con-
founding sources of information is problematic.

Importantly, as our definition suggests, what is or is not regarded as a
confound is relative— it depends on whether the researchers deems it of
(primary) interest or not. In the aforementioned hypothetical schizo-
phrenia decoding study, for example, one may equally well define the
severity of substance abuse as the to-be-decoded variable, in which the
variable “schizophrenia-or-not” becomes the confounding variable. In
other words, one researcher's signal is another researcher's confound.
Regardless, if decoding analyses of neuroimaging data are affected by
confounds, the data thus contain two types of information: the “true
signal” (i.e., variance in the neuroimaging data related to the target, but
unrelated to the confound) and the “confounded signal” (i.e., variance in
the neuroimaging data related to the target that is also related to the
confound; see Fig. 1). In other words, source ambiguity arises due to the
presence of both true signal and confounded signal and, thus, controlling
for confounds (by removing the confounded signal) provides a crucial
methodological step forward in improving the interpretability of
decoding analyses.

In the decoding literature, various methods have been applied to
control for confounds. We next provide an overview of these methods,
highlight their advantages and disadvantages, and discuss their rationale
and the types of research settings they can be applied in. Subsequently,

2 The terms “gender” and “sex” are both used in the relevant research liter-
ature. Here, we use the term gender because we refer to self-reported identity in
the data described below.
3 Note that information related to global brain size persists when researchers

analyze the structural MRI data in a common, normalized brain space, because
spatial registration “squeezes” relatively large brains into a smaller template,
increasing voxel statistics (e.g., gray matter density in VBM analyses), and vice
versa (Douaud et al., 2007). This effect of global brain size similarly affects
functional MRI analyses (Brodtmann et al., 2009).

4 However, if accurate prediction is the only goal in this scenario, we would
argue that there are probably easier and less expensive methods than neuro-
imaging to predict a participant's gender.
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we focus on two of these methods to test whether these methods succeed
in controlling for the influence of confounds.

1.2. Methods for confound control

In decoding analyses, one aims to predict a certain target variable
from patterns of neuroimaging data. Various methods discussed in this
section are supplemented with a mathematical formalization; for con-
sistency and readability, we define the notation we will use in Table 1.

1.2.1. A priori counterbalancing
Ideally, one would prevent confounding variables from influencing

the results as much as possible before the acquisition of the neuroimaging
data.5 One common way do this (in both traditional “activation-based”
and decoding analyses) is to make sure that potential confounding var-
iables are counterbalanced in the experimental design (G€orgen et al.,
2017). In experimental research, this would entail randomly assigning
subjects to design cells (e.g., treatment groups) such that there is no
structural correlation between characteristics of the subjects and design
cells. In observational designs (e.g., in the gender/brain size example
described earlier), it means that the sample is chosen such that there is no
correlation between the confound (brain size) and observed target vari-
able (gender). That is, given that men on average have larger brains than
women, this would entail including only men with relatively small brains
and women with relatively large brains.6 The distinction between
experimental and observational studies is important because the former
allow the researcher to randomly draw samples from the population,
while the latter require the researcher to choose a sample that is not
representative of the population, which limits the conclusions that can be
drawn about the population (we will revisit this issue in the Discussion
section).

Formally, in decoding analyses, a design is counterbalanced when the
confound C and the target y are statistically independent. In practice, this
often means that the sample is chosen so that there is no significant
correlation coefficient between C and y (although this does not neces-
sarily imply that C and y are actually independent). To illustrate the

process of counterbalancing, let's consider another hypothetical experi-
ment: suppose one wants to set up an fMRI experiment in which the goal
is to decode abstract object category (e.g., faces vs. houses) from the
corresponding fMRI patterns (cf. Haxby et al., 2001), while controlling
for the potential confounding influence of low-level or mid-level stimulus
features, such as luminance, spatial frequency, or texture (Long et al.,
2017). Proper counterbalancing would entail making sure that the im-
ages used for this particular experiments have similar values for these
low-level and mid-level features across object categories (see G€orgen
et al., 2017, for details). Thus, in this example, low-level and mid-level
stimulus features should be counterbalanced with respect to object
category, such that above chance decoding of object category cannot be
attributed to differences in low-level or mid-level stimulus features (i.e.,
the confounds).

A priori counterbalancing of potential confounds is, however, not
always feasible. For one, the exact measurement of a potentially con-
founding variable may be impossible until data acquisition. For example,
the brain size of a participant is only known after data collection. Simi-
larly, Todd et al. (2013) found that their decoding analysis of rule rep-
resentations was confounded by response times of to the to-be-decoded
trials. Another example of a “data-driven” confound is participant motion
during data acquisition (important in, for example, decoding analyses
applied to data from clinical populations such as ADHD; Yu-Feng et al.,
2007). In addition, a priori counterbalancing of confounds may be
challenging because of the limited size of populations of interest. Espe-
cially in clinical research settings, researchers may not have the luxury of
selecting a counterbalanced sample due to the small number of patient
subjects available for testing. Lastly, researchers may simply discover
confounds after data acquisition.

Given that a priori counterbalancing is not possible or undesirable in
many situations, it is paramount to explore the possibilities of controlling
for confounding variables after data acquisition for the sake of model
interpretability, which we discuss next.

1.2.2. Include confounds in the data
One perhaps intuitive method to control for confounds in decoding

analyses is to include the confound(s) in the data (i.e., the neuroimaging
data, X; see, e.g., Sepehrband et al., 2018) used by decoding model. That
is, when applying a decoding analysis to neuroimaging data, the
confound is added to the data as if it were another voxel (or sensor, in
electrophysiology). This intuition may stem from the analogous situation
in univariate (activation-based) analyses of neuroimaging data, in which
confounding variables are controlled for by including them in the design
matrix together with the stimulus/task regressors. For example, in

Fig. 1. Visualization of how variance in brain data (X) can partitioned into
“True signal” and “Confounded signal”, depending on the correlation structure
between the brain data (X), the confound (C), and the target (y). Overlapping
circles indicate a non-zero (squared) correlation between the two variables.

Table 1
Notation.

Symbol Dims. Description

N Number of samples (usually subjects or trials)
K Number of neuroimaging features (e.g., voxels or sensors)
P Number of confound variables (e.g., age, reaction time, or brain

size)
Xij N� K The neuroimaging patterns (often called the “data” in the current

article), where the subscript i 2 f1; ::: ; Ng refers to individual
samples (rows), and the subscript j 2 f1; ::: ; Kg to individual
features (columns)

y N� 1 The target variable (i.e., what is to be decoded)
C N� P The confound variable(s)bβ Kþ 1 The parameters estimated in a general linear model (GLM)

w Kþ 1 The parameters estimated in a decoding model
rCy Sample Pearson correlation coefficient between Cand y
ryðX:CÞ Sample semipartial Pearson correlation coefficient between X

and y, controlled for C (i.e., C is regressed out of X)
pðrCyÞ p-value of the sample Pearson correlation between C and y

Note: format based on (Diedrichsen and Kriegeskorte, 2017). For the correlations
(r), we assume that P ¼ 1 and thus that the correlations in the table reduce to a
scalar.

5 In the context of behavioral data, a priori counterbalancing is often called
“matching” or a employing a “case-control design” (Cook et al., 2002).
6 Note that the counterbalancing process is the same for both traditional

univariate (activation-based) studies and decoding studies, but the direction of
analysis is reversed in univariate (e.g., gender → brain) and decoding studies
(e.g., brain → gender). As such, in univariate studies the confound (e.g., brain
size) is counterbalanced with respect to the predictor(s) (e.g., gender) while in
decoding studies the confound (e.g., brain size) is counterbalanced with respect
to the target (e.g., gender).
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univariate analyses of functional MRI, movement of the participant is
often controlled for by including motion estimates in the design matrix of
first-level analyses (Johnstone et al., 2006); in EEG, some control for
activity due to eye-movements by including activity measured by con-
current electro-oculography as covariates in the design-matrix (Parra
et al., 2005). Usually, the general linear model is then used to estimate
each predictor's influence on the neuroimaging data. Importantly, the

parameter estimates (bβ) are often interpreted as reflecting the unique
contribution 7 of each predictor variable, independent from the influence
of the confound.

Contrary to general linear models as employed in univariate (acti-
vation-based) analyses, including confound variables in the data as pre-
dictors for decoding models is arguably problematic. If a confound is
included in the data in the context of decoding models, the parameter
estimates of the features (often called “feature weights”, w, in decoding
models) may be corrected for the influence of the confound, but themodel
performance (usually measured as explained variance, R2, or classification
accuracy; Hebart and Baker, 2017) is not. That is, rather than providing
an estimate of decoding performance “controlled for” a confound, one
obtains a measure of performance when explicitly including the confound
as an interesting source of variance that the decoder is allowed to use.
This is problematic because research using decoding analyses generally
does not focus on parameter estimates but on statistics of model perfor-
mance. Model performance statistics (e.g., R2, classification accuracy)
alone cannot disentangle the contribution of different sources of infor-
mation as they only represent a single summary statistic of model fit
(Ritchie et al., 2017). One might, then, argue that additionally inspecting
feature weights of decoding models may help in disambiguating different
sources of information (Sepehrband et al., 2018). However, it has been
shown that feature weights cannot be reliably mapped to specific sources
of information, i.e., as being task-related or confound-related (e.g., fea-
tures with large weights may be completely uncorrelated with the target
variable Haufe et al., 2014; Hebart and Baker, 2017). As such, it does not
make sense to include confounds in the set of predictors when the goal is
to disambiguate the different sources of information in decoding
analyses.

Recently, another approach similar to including confounds in the data
has been proposed, which is based on the idea of a dose-response curve
(Alizadeh et al., 2017). In this method, instead of adding the confound(s)
to the model directly, the relative contribution of true and confounded
signal is systematically controlled. The authors show that this approach is
able to directly quantify the unique contribution of each source of in-
formation, thus effectively controlling for confounded signal. However,
while sophisticated in its approach, this method only seems to work for
categorical confounds, as it is difficult (if not impossible) to systemati-
cally vary the proportion of confound-related information when dealing
with continuous confounds or when dealing with more than one
confound.

1.2.3. Control for confounds during pattern estimation
Another method that was used in some decoding studies on functional

MRI data aims to control for confounds in the initial procedure of esti-
mating activity patterns of the to-be-decoded events, by leveraging the
ability of the GLM to yield parameter estimates reflecting unique vari-
ance (Woolgar et al., 2014). In this method, an initial “first-level” (uni-
variate) analysis models the fMRI time series (s) as a function of both
predictors-of-interest (X) and the confounds (C), often using the GLM8:

s ¼ Xβx þ Cβc þ ε (1)

Then, only the estimated parameters (bβ, or normalized parameters,
such as t-values or z-values) corresponding to the predictors-of-interest

(cβx ) are used as activity estimates (i.e., the X used for predicting the
target y) in the subsequent decoding analyses. This method thus takes
advantage of the shared variance partitioning in the pattern estimation
step to control for potential confounding variables. However, while
elegant in principle, this method is not applicable in between-subject
decoding studies (e.g. clinical decoding studies; e.g., van Waarde et al.,
2014; Cuingnet et al., 2011), in which confounding variables are defined
across subjects, or in electrophysiology studies, in which activity patterns
do not have to be 9 estimated in a first-level model, thus limiting the
applicability of this method.

1.2.4. Post hoc counterbalancing of confounds
When a priori counterbalancing is not possible, some have argued

that post hoc counterbalancing might control for the influence of con-
founds (Rao et al., 2017, p. 24, 38). In this method, given that there is
some sample correlation between the target and confound (rCy 6¼ 0) in
the entire dataset, one takes a subset of samples in which there is no
empirical relation between the confound and the target (e.g., when
rCy � 0). In other words, post hoc counterbalancing is a way to decor-
relate the confound and the target by subsampling the data. Then, sub-
sequent decoding analysis on the subsampled data can only capitalize on
true signal, as there is no confounded signal anymore (see Fig. 2). While
intuitive in principle, we are not aware of whether this method has been
evaluated before and whether it yields unbiased performance estimates.

1.2.5. Confound regression
The last and perhaps most common method to control for confounds

is removing the variance that can be explained by the confound (i.e., the
confounded signal) from the neuroimaging data directly (Abdulkadir et
al, 2014; Dukart et al., 2011; Kostro et al., 2014; Rao et al., 2017; Todd
et al., 2013)— a process we refer to as confound regression (also known as
“image correction”; Rao et al., 2017). In this method, a (usually linear)
regressionmodel is fitted on each feature in the neuroimaging data (i.e., a
single voxel or sensor) with the confound(s) as predictor(s). Thus, each
feature j in the neuroimaging data X is modelled as a linear function of
the confounding variable(s), C:

Xj ¼ Cβ þ ε (2)

We can estimate the parameter(s) bβj for feature Xj using, for example,
ordinary least squares as follows (for an example using a different model,
see Abdulkadir et al., 2014):

bβj ¼ ðCTCÞ�1CTXj (3)

Then, to remove the variance of (or “regress out”) the confound from
the neuroimaging data, we can subtract the variance in the data associ-

ated with confound (Cbβ j) from the original data:

Xj; corr ¼ Xj � Cbβ j (4)

In which Xj; corr represents the neuroimaging feature Xj from which all
variance of the confound is removed (including the variance shared with
y, i.e., the confounded signal; see Fig. 2). When subsequently applying a
decoding analysis on this corrected data, one can be sure that the decoder

7 However, parameter estimates only reflect unique variance when ordinary,
weighted, or generalized least squares is used to find the model parameters.
Other (regularized) linear models, such as ridge regression or LASSO, are not
guaranteed to yield parameters that explain unique proportions of variance.
8 Note that X and C, here, refer to (usually HRF-convolved) predictors of the

time series signal (s) for a single voxel. In the rest of the article, X and C refer to
features that are defined across samples (not time).

9 Note that, technically, one could use the “Control for confounds during
pattern estimation” method in electrophysiology as well, by first fitting a uni-
variate model explaining the neuroimaging data (Xj for j¼ 1,…, K) as a function
of both the target (y) and the confound (C) and subsequently only using the
parameter estimates of the target-predictor (βX) as patterns in the subsequent
decoding analysis.
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is not capitalizing on signal that is correlated with the confound, which
thus improves interpretability of the decoding analysis.

Confound regression has been applied in several decoding studies.
Todd et al. (2013) were, as far as the current authors are aware, the first
to use this method to control for a confound (in their case, reaction time)
that was shown to correlate with their target variable (rule A vs. rule B).
Notably, they both regressed out reaction time from the first-level time
series data (similar to the “Control for confounds during pattern esti-
mation” method) and regressed out reaction time from the trial-by-trial
activity estimates (i.e., confound regression as described in this sec-
tion). They showed that controlling for reaction time in this way
completely eliminated the above chance decoding performance. Simi-
larly, Kostro et al. (2014) observe a substantial drop in classification
accuracy when controlling for scanner site in the decoding analysis of
Huntington's disease, but only when scanner site and disease status were
actually correlated. Lastly, Rao et al. (2017) found that, in contrast to
Kostro et al. and Todd et al. confound regression yielded similar (or
slightly lower, but still significant) performance compared to the model
without confound control, but it should be noted that this study used a
regression model (instead of a classification model) and evaluated
confound control in the specific situation when the training set is
confounded, but the test set is not.10 In sum, while confound regression
has been used before, it has yielded variable results, possibly due to
slightly different approaches and differences in the correlation between
the confounding variable and the target.

1.3. Current study

In summary, multiple methods have been proposed to deal with
confounds in decoding analyses. Often, these methods have specific as-
sumptions about the nature or format of the data (such as “A priori

counterbalancing” and “Confound control during pattern estimation”),
differ in their objective (e.g., prediction vs. interpretation, such as in
“Include confounds in the data”), or have yielded variable results (such as
“Confound regression”). Therefore, given that we are specifically inter-
ested in interpreting decoding analyses, the current study evaluates the
two methods that are applicable in most contexts: post hoc counter-
balancing and confound regression (but see Supplementary Methods and
Results, section “Confound control during pattern estimation” for a
tentative evaluation of this method based on simulated functional MRI
data). In addition to these two methods, we propose a third method — a
modified version of confound regression — which we show yields
plausible, seemingly unbiased, and interpretable results.

To test whether these methods are able to effectively control for
confounds and whether they yield plausible results, we apply them to
empirical data, as well as to simulated data in which the ground truth
with respect to the signal in the data (i.e., the proportion of true signal
and confounded signal) is known. For our empirical data, we enact the
previously mentioned hypothetical study in which participant gender is
decoded from structural MRI data. We use a large dataset (N ¼ 217) of
structural MRI data and try to predict subjects' gender (male/female)
from gray and white matter patterns while controlling for the confound
of “brain size” using the aforementioned methods, which we compare to
a baseline model in which confounds are not controlled for. Given the
previously reported high correlations between brain size and gender
(Barnes et al., 2010; Smith and Nichols, 2018), we expect that success-
fully controlling for brain size yields lower decoding performance than
using uncorrected data, but not below chance level. Note that higher
decoding performance after controlling for confounds is theoretically
possible when the correlation between the confound and variance in the
data unrelated to the target (e.g., noise) is sufficiently high to cause
suppressor effects (see Fig. 1 in Haufe et al., 2014; Hebart and Baker,
2017). However, because our confound, brain size, is known to correlate
strongly with our target gender (approx. r¼ 0.63; Smith and Nichols,
2018), it is improbable that it also correlates highly with variance in
brain data that is unrelated to gender. It follows then that classical sup-
pression effects are unlikely and we thus expect lower model perfor-
mance after controlling for brain size.

However, shown in detail below, both post hoc counterbalancing and
confound regression lead to unexpected results in our empirical analyses:
counterbalancing fails to reduce model performance while confound

Fig. 2. A schematic visualization how the main two confound control methods evaluated in this article deal with the “confounded signal”, making sure decoding
models only capitalize on the “true signal”.

10 Note that we did not discuss studies that implement a different confound
regression procedure (e.g., Abdulkadir et al., 2014; Dukart et al., 2011), in
which confound regression is only estimated on the samples from a single class
of the target variable (e.g., in our gender decoding example, this would mean
that confound regression models are only estimated on the data from male, or
female, subjects). As this form of confound regression does not disambiguate the
sources of information driving the decoder, it is not discussed further in this
article.
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regression consistently yields low model performance up to the point of
significant below chance accuracy. In subsequent analyses of simulated
data, we show that both methods lead to biased results: post hoc coun-
terbalancing yields inflated model performance (i.e., positive bias)
because subsampling selectively selects a subset of samples in which
features correlate more strongly with the target variable, suggesting
(indirect) circularity in the analysis (Kriegeskorte et al., 2009). Further-
more, our simulations show that negative bias (including significant
below chance classification) after confound regression on the entire
dataset is due to reducing the signal below what is expected by chance
(Jamalabadi et al., 2016), which we show is related to and can be pre-
dicted by the standard deviation of the empirical distribution of corre-
lations between the features in the data and the target. We propose a
minor but crucial addition to the confound regression procedure, in
which we cross-validate the confound regression models (which we call
“cross-validated confound regression”, CVCR), which solves the below
chance accuracy issue and yields plausible model performance in both
our empirical and simulated data.

2. Methods

2.1. Data

For the empirical analyses, we used voxel-based morphometry (VBM)
data based on T1-weighted scans and tract-based spatial statistics (TBSS)
data based on diffusion tensor images from 217 participants (122
women, 95 men), acquired with a Philips Achieva 3T MRI-scanner and a
32-channel head coil at the Spinoza Centre for Neuroimaging (Amster-
dam, The Netherlands).

2.1.1. VBM acquisition & analysis
The T1-weighted scans with a voxel size of 1.0� 1.0� 1.0mm were

acquired using 3D fast field echo (TR: 8.1 ms, TE: 3.7ms, flip angle: 8�,
FOV: 240� 188mm, 220 slices). We used “FSL-VBM00 protocol (Douaud
et al., 2007) from the FSL software package (version 5.0.9 (Smith et al.,
2004); using default and recommended parameters (including non-linear
registration to standard space). The resulting VBM-maps were spatially
smoothed using a Gaussian kernel (3mm FWHM). Subsequently, we
organized the data in the standard pattern-analysis format of a 2D (N�
K) array of shape 217 (subjects)� 412473 (non-zero voxels).

2.1.2. TBSS acquisition & analysis
Diffusion tensor images with a voxel size of 2.0� 2.0� 2.0mm were

acquired using a spin-echo echo-planar imaging (SE-EPI) protocol (TR:
7476ms, TE: 86ms, flip angle: 90�, FOV: 224� 224mm, 60 slices),
which acquired a single b¼ 0 (non-diffusion-weighted) image and 32
(diffusion-weighted) b¼ 1000 images. All volumes were corrected for
eddy-currents and motion (using the FSL command “eddy_correct”) and
the non-diffusion-weighted image was skullstripped (using FSL-BET with
the fractional intensity threshold set to 0.3) to create a mask that was
subsequently used in the fractional anisotropy (FA) estimation. The FA-
images resulting from the diffusion tensor fitting procedure were sub-
sequently processed by FSL's tract-based spatial statistics (TBSS) pipeline
(Smith et al., 2006), using the recommended parameters (i.e., non-linear
registration to FSL's 1 mm FA image, construction of mean FA-image and
skeletonized mean FA-image based on the data from all subjects, and a
threshold of 0.2 for the skeletonized FA-mask). Subsequently, we orga-
nized the resulting skeletonized FA-maps into a 2D (N� K) array of shape
217 (subjects)� 128340 (non-zero voxels).

2.1.3. Brain size estimation
To estimate the values for our confound, global brain size, we

calculated for each subject the total number of non-zero voxels in the
gray matter and white matter map resulting from the segmentation step
in the FSL-VBM pipeline (using FSL's segmentation algorithm “FAST”;
Zhang et al., 2001). The number of non-zero voxels from the gray matter

map was used as the confound for the VBM-based analyses and the
number of non-zero voxels from the white matter map was used as the
confound for the TBSS-based analyses. Note that brain size estimates
from total white matter volume and total gray matter volume correlated
strongly, rð216Þ ¼ 0:93; p < 0:001.

2.1.4. Data and code availability
In the Github repository corresponding to this article (https://github.

com/lukassnoek/MVCA), we included a script (download_data.py) to
download the data (the 4D VBM and TBSS nifti-images as well as the non-
zero 2D samples� features arrays). The repository also contains detailed
Jupyter notebooks with the annotated empirical analyses and simula-
tions reported in this article.

2.2. Decoding pipeline

All empirical analyses and simulations used a common decoding
pipeline, implemented using functionality from the scikit-learn Python
package for machine learning (Abraham et al., 2014; Pedregosa et al.,
2011). This pipeline included univariate feature selection (based on a
prespecified amount of voxels with highest univariate difference in terms
of the ANOVA F-statistic), feature-scaling (ensuring zero mean and unit
standard deviation for each feature), and a support vector classifier (SVC)
with a linear kernel, fixed regularization parameter (C ¼ 1), and sample
weights set to be inversely proportional to class frequency (to account for
class imbalance). In our empirical analyses, we evaluated model perfor-
mance for different numbers of voxels (as selected by the univariate feature
selection). For our empirical analyses, we report model performance as the
F1 score, which is insensitive to class imbalance (which, in addition to
adjusted sample weights, prevents the classifier from learning the relative
probabilities of target classes instead of representative information in the
features; see also Supplementary Fig. S14 for a replication of part of the
results using AUROC, anothermetric that is insensitive to class imbalance).
At chance level classification, the F1 score is expected to be 0.5. For our
simulations, in which there is no class imbalance, we report model per-
formance using accuracy scores. In figures showing error bars around the
average model performance scores, the error bars represent 95% confi-
dence intervals estimated using the “bias-corrected and accelerated” (BCA)
bootstrap method using 10,000 bootstrap replications (Efron, 1987). For
calculating BCA bootstrap confidence intervals, we used the implementa-
tion from the open source “scikits.bootstrap” Python package (https://
github.com/cgevans/scikits-bootstrap). Statistical significance was calcu-
lated using non-parametric permutation tests, as implemented in
scikit-learn, with 1000 permutations (Ojala and Garriga, 2010).

2.3. Evaluated methods for confound control

2.3.1. Post hoc counterbalancing
We implemented post hoc counterbalancing in two steps. First, to

quantify the strength of relation between the confound and the target in
our dataset, we estimated the point-biserial correlation coefficient be-
tween the confound, C(brain size), and the target, y (gender) across the
entire dataset (including all samples i ¼ 1; ::: ; N). Because of both
sampling noise and measurement noise, sample correlation coefficients
vary around the population correlation coefficient and are thus
improbable to be 0 exactly.11 Therefore, in the next step, we subsampled

11 For continuous confounds, it is practically impossible to achieve a correla-
tion with the target of exactly zero, which is the reason we subsample until it is
smaller than a prespecified threshold. For categorical confounds, however, a
correlation between the confound and the target of exactly zero is possible (this
amounts to equal proportions of levels of c within each class of y; G€orgen et al.,
2017), even necessary, because it is impossible to find a (K-fold) cross-validation
partitioning in which each split is counterbalanced w.r.t. the confound if the
correlation in the entire dataset between the target and the confound is not zero.
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the data until the correlation coefficient between C and y becomes non-
significant at some significance threshold α:

p
�
rCy

�
> α (5)

In our analyses, we used an α of 0.1. Note that this is more “strict”12

than the conventionally used threshold (α¼ 0.05), but given that
decoding analyses are often more sensitive to signal in the data (whether
it is confounded or true signal), we chose to err on the safe side and
counterbalance the data using a relatively strict threshold of α¼ 0.1.

Subsampling was done by iteratively removing samples that
contribute most to the correlation between the confound and the target
until the correlation becomes non-significant. In our empirical data in
which brain size is positively correlated with gender (coded as male¼ 1,
female¼ 0) this amounted to iteratively removing the male subject with
the largest brain size and the female subject with the smallest brain size.
This procedure optimally balances (1) minimizing the correlation be-
tween target and confound and (2) maximizing sample size. As an
alternative to this “targeted subsampling”, we additionally implemented
a procedure which draws random subsamples of a given sample size until
it finds a subsample with a non-significant correlation coefficient. If such
a subsample cannot be found after 10,000 random draws, sample size is
decreased by 1, which is repeated until a subsample is found. This pro-
cedure resulted in much smaller subsamples than the targeted sub-
sampling procedure (i.e., more power loss) since the optimal subsample
is hard to find randomly.13 In the analyses below, therefore, we used the
targeted subsampling procedure. Importantly, even with extreme power
loss, random subsampling can cause the same biases as will be described
for the targeted subsampling method below (cf. Fig. 8 and Fig. 10 and
Supplementary Figs. S13-S14).

Then, given that the subsampled dataset is counterbalanced with
respect to the confound, a random stratified K-fold cross-validation
scheme is repeatedly initialized until a scheme is found in which all
splits are counterbalanced as well (cf. G€orgen et al., 2017). This partic-
ular counterbalanced cross-validation scheme is subsequently used to
cross-validate the MVPA pipeline. We implemented this post hoc coun-
terbalancing method as a scikit-learn-style cross-validator class, available
from the aforementioned Github repository (in the counterbalance.py
module).

2.3.2. Confound regression
In our empirical analyses and simulations, we tested two different

versions of confound regression, which we call “whole-dataset confound
regression” (WDCR) and “cross-validated confound regression” (CVCR).
In WDCR, we regressed out the confounds from the predictors from the
entire dataset at once, i.e., before entering the iterative cross-validated
MVPA pipeline (the approach taken by Abdulkadir et al., 2014; Dubois
et al., 2017; Kostro et al., 2014; Todd et al., 2013). Note that we can do
this for all K voxels at once using the closed-form OLS solution, in which

we first estimated the parameters bβC:

bβC ¼ ðCTCÞ�1
CTX (6)

where C is an N � 2 array in which the first column contained an inter-
cept and the second column contained the confound brain size. Accord-

ingly, bβC is an 2� K array. We then removed the variance associatedwith
the confound from our neuroimaging data as follows:

Xcorr ¼ X � CbβC (7)

Now, Xcorr is an array with the same shape as the original X array, but
without any variance that can be explained by confound, C (i.e., X is
residualized with regard to C).

In our proposed cross-validated version of confound regression
(which was mentioned but not evaluated by Rao et al., 2017, p. 25),
“CVCR”, we similarly regressed out the confounds from the neuro-

imaging data, but instead of estimating bβC on the entire dataset, we
estimated this within each fold of training data (Xtrain):

bβC; train ¼
�
CT

trainCtrain

��1
CT

trainXtrain (8)

And we subsequently used these parameters (bβC; train) to remove the
variance related to the confound from both the train set (Xtrain and Ctrain):

Xtrain; corr ¼ Xtrain � Ctrain
bβC; train (9)

and the test set (Xtest and Ctest):

Xtest; corr ¼ Xtest � Ctest
bβC; train (10)

Thus, essentially, CVCR is the cross-validated version of WDCR. One
might argue that regressing the confound from the train set only (i.e.,
implementing only equation (9), not equation (10)) is sufficient to con-
trol for confounds as it prevents the decoding model from relying on
signal related to the confound. We evaluated this method and report the
corresponding results in Supplementary Fig. S10.

We implemented these confound regression techniques as a scikit-
learn compatible transformer class, available in the open-source skbold
Python package (Snoek, 2017) and in the aforementioned Github
repository.

2.3.3. Control for confounds during pattern estimation
In addition to post hoc counterbalancing and confound regression, we

also evaluated how well the “control for confounds during pattern esti-
mation” method controls for the influence of confounds in decoding
analyses of (simulated) fMRI data. The simulation methods and results
can be found in the Supplementary Materials.

2.4. Analyses of simulated data

In addition to the empirical evaluation of counterbalancing and
confound regression in the gender decoding example, we ran three
additional analyses on simulated data. First, we investigated the efficacy
of the three confound control methods on synthetic data with known
quantities of “true signal” and “confounded signal”, in order to detect
potential biases. Second, we ran additional analyses on simulated data to
investigate the positive bias in model performance observed after post
hoc counterbalancing. Third, we ran additional analyses on simulated
data to investigate the negative bias in model performance observed after
WDCR. In the Supplementary Materials, we investigate whether the
confound regression results generalize to (simulated) functional MRI
data (Supplementary Fig. S1-2).

2.4.1. Efficacy analyses
In this simulation, we evaluated the efficacy of the three methods for

confound control on synthetic data with a prespecified correlation be-
tween the confound and the target, rCy , and varying amounts of
“confounded signal” (i.e., the explained variance in y driven by shared
variance between X and C). These simulations allowed us to have full
control over (and knowledge of) the influence of both signal and
confound in the data, and thereby help us diagnose biases associated with
post hoc counterbalancing and confound regression.

Specifically, in this efficacy analysis, we generated hypothetical data
sets holding the correlation coefficient between C and y constant, while

12 We refer to a relatively high α as “strict”, here, because we use it here for the
purpose of demonstrating no effect.
13 One could run the “random subsampling” procedure with more than 10,000
draws in order to reduce the aforementioned power loss; but in the extreme, this
would result in the same optimal subsample that can be found much faster by
targeted subsampling.
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varying the amount of true signal and confounded signal. We oper-
ationalized true signal as the squared semipartial Pearson correlation
between y and each feature in X, controlled for C. As such, we will refer
to this term as signal R2:

signal R2 ¼ ryðX:CÞ2 (11)

Similarly, we operationalized the confounded signal as the shared
explained variance of y by each feature of X and C. This term, which we
will refer to as confound R2, is calculated as follows:

confound R2 ¼ ryX2 � signal R2 (12)

In the simulations reported and shown in the main article, we used
rCy ¼ 0:65, which corresponds to the observed correlation between brain
size and gender in our dataset. To generate synthetic data with this
prespecified structure, we generated (1) a data matrix X of shape N� K,
(2) a target variable y of shape N� 1, and (3) a confound variable C of
shape N� P. For all simulations, we used the following parameters: N ¼
200, K ¼ 5, and P ¼ 1 (i.e., a single confound variable). We generated y
as a categorical variable with binary values, y 2 f0; 1g, with equal class
probabilities (i.e., 50%), given that most decoding studies focus on bi-
nary classification. We generated C as a continuous random variable
drawn from a standard normal distribution. We generated each feature Xj

as a linear combination of y and C plus Gaussian noise. Thus, for each
predictor j ¼ 1; ::: ; K in Xj:

X j ¼ βy y þ βCC þ ε; ε � Nð0; γÞ (13)

in which βy represented the weight given to y, and βC represented the
weight given to C in the generation of the feature Xj, and Nð0; γÞ is the
normal distribution with zero mean and standard deviation γ. The pa-
rameters βy and βC were both initialized with a value of 1. First, if the
difference between the total variance explained and the sum of the
desired signal R2 and confound R2 values was larger than 0.01, the
standard deviation of the normal distribution from which the errors were
drawn (i.e., γ) was adjusted (decreased with 0.01 when the total R2 is too
low, increased with 0.01 when the total R2 is too high), after which Xj

was generated again. This process was iterated until the target total R2

value is found. Then, the total variance explained was partitioned into
confound R2 and signal R2. If one or both of these values differed from the
targeted values by more than 0.01, the generative parameters βy and βC
were adjusted: if signal R2 is too low, βy was increased with 0.01, and
decreased with 0.01 otherwise. If confound R2 is too low, βC was
increased with 0.01, and decreased with 0.01 otherwise. After adjusting
these parameters, Xj was generated again. This process was iterated until
the data contain the desired “true signal” and “confounded signal”.

We evaluated the different methods for confound control for two
values of signal R2 (0.004, representing plausible null data,14 and 0.1,
representing a plausible true effect) and a range of confound R2 values (in
steps of 0.05: 0.00, 0.05, 0.10,…, 0.35). This simulation was iterated 10
times (with different partitions of the folds) to ensure the results were not
influenced by random noise. Importantly, the specific scenario in which
confound R2 equals 0, which represents data without any confounded
signal (ryX2 ¼ Signal R2), served as “reference model performance” to
which we can compare the efficacy the confound control methods. This
comparison allowed us to detect potential biases.

After the data were generated, a baseline model (no confound con-
trol) and the three methods outlined above (post hoc counterbalancing,
WDCR, and CVCR) were applied to the simulated data using the standard
pipeline described in the “Decoding pipeline” section (but without uni-
variate feature selection) and compared to the reference performance.

2.4.2. Analysis of positive bias after post hoc counterbalancing
As detailed below, post hoc counterbalancing did not lead to the

expected decrease in model performance; instead, there appeared to be a
trend towards an increase in model performance. To further investigate
the cause of this unexpected result, we simulated a multivariate normal
dataset with three variables, reflecting our data (X), target (y), and
confound (C), with 1000 samples (N) and a single feature (K ¼ 1). We
iterated this data generation process 1000 times and subsequently
selected the dataset which yielded the largest (positive) difference be-
tween model performance after post hoc counterbalancing versus no
confound control. In other words, we used the dataset in which the
counterbalancing issue was most apparent. While not necessarily repre-
sentative of typical (neuroimaging) datasets, this process allowed us to
explain and visualize how it is possible that model performance increases
after counterbalancing the data.

To generate data from a multivariate normal distribution, we first
generated variance-covariance matrices with unit variance for all vari-
ables, so that covariances can be interpreted as correlations. The co-
variances in the matrix were generated as pairwise correlations (ryX ; rCy ;
rCX), each sampled from a uniform distribution with range ½ � 0:65;
0:65�. We generated data using such prespecified correlation structure
because the relative increase in model performance after counter-
balancing did not appear to occur when generating completely random
(normally distributed) data. Moreover, we restricted the range of the
uniform distribution from which the pairwise correlations are drawn to
½�0:65; 0:65� because a larger range can result in covariance matrices
that are not positive-semidefinite. After generating the three variables,
we binarized the target variable (y) using a mean-split (y ¼ 0 if y < y,
y ¼ 1 otherwise) to frame the analysis as a classification problem rather
than a regression problem.

We then subsampled the selected dataset using our post hoc coun-
terbalancing algorithm and subsequently ran the decoding pipeline
(without univariate feature selection) on the subsampled (“retained”)
data in a 10-fold stratified cross-validation scheme. Notably, we cross-
validated our fitted pipeline not only to the left-out retained data, but
also to the data that did not survive the subsampling procedure (the
rejected data; see Fig. 3). Across the 10 folds, we kept track of two sta-
tistics from the retained and rejected samples: (1) the classification
performance, and (2) the signed distance to the decision boundary.
Negative distances in binary classification (in simple binary classification
with y 2 f0; 1g) reflect a prediction of the sample as y ¼ 0, while pos-
itive distances reflect a prediction of the sample as y ¼ 1. As such, a
correctly classified sample of class 0 has a negative distance from the
decision boundary, while a correctly classified sample of class 1 has a
positive distance from the decision boundary. Here, however, we wanted
to count the distance of samples that are on the “incorrect” side of the
decision boundary as negative distances, while counting the distance of
samples that are on the “correct” side of the decision boundary as positive
distances. To this end, we used a “re-coded” version of the target variable
(y* ¼ �1 if y ¼ 0, y* ¼ 1 otherwise) and multiplied it with the distance.
Consequently, negative distances of correct samples of condition
0 become positive and positive distances of incorrect samples of condition
0 become negative (by multiplying them by �1). As such, we calculated
the signed distance from the decision boundary (δi) for any sample i as:

δi ¼ y*i ðwTXi þ bÞ (14)

in which w refers to the feature weights (coefficients) and b refers to the
intercept term. Any differences in these two statistics (proportion
correctly classified and signed distance to the classification boundary)
between the retained and rejected samples may signify biases in model
performance estimates (i.e., better cross-validated model performance on
the retained data than on the rejected data would confirm positive bias,
as it indicates that subsampling tends to reject hard-to-classify samples).
We applied this analysis also to the empirical data (separately for the
different values of K) to show that the effect of counterbalancing, as

14 Note that plausible null data do not reflect a signal R2 of 0, because this
statistic is biased towards values larger than 0 (because it represents a squared
number) when dealing with noisy data, hence our choice of signal R2 ¼ 0.004.
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demonstrated using simulated data, also occurs in the empirical data.

2.4.3. Analysis of negative bias after WDCR
As also detailed below, WDCR can lead to significantly below chance

accuracy. To investigate the cause of this below chance performance (and
to demonstrate that CVCR does not lead to such results), we performed
two follow-up simulations. The first follow-up simulation shows that the
occurrence of below chance accuracy depends on the distribution of
feature-target correlations (ryX ; see Jamalabadi et al., 2016, for a similar
argument), and the second follow-up simulation shows that WDCR arti-
ficially narrows this distribution. This artificial narrowing of the distri-
bution is exacerbated both by an increasing number of features (K), as
well as higher correlations between the target and confound (rCy).

In the first simulation, we simulated random null data (drawn from a
standard normal distribution) with 100 samples (N) and 200 features
(K), as well as a binary target feature (y 2 f0;1g). We then calculated the
cross-validated prediction accuracy using the standard pipeline (without
univariate feature selection) described in the “Decoding pipeline” sec-
tion; we iterate this process 500 times. Then, we show that the variance
of the cross-validated accuracy is accurately predicted by the standard
deviation (i.e., “width”) of the distribution of correlations between the
features and the target (ryXj with j ¼ 1; :::; K), which we will denote by
sdðryXÞ. Importantly, we show that below chance accuracy likely occurs
when the standard deviation of the feature-target correlation distribution
is lower than the standard deviation of the sampling distribution of the
Pearson correlation coefficient parameterized with the same number of
samples (N ¼ 200) and the same effect size (i.e., ρ ¼ 0, because we
simulated random null data). The sampling distribution of the Pearson
correlation coefficient is described by Kendall and Stuart (1973). When
ρ ¼ 0 (as in our simulations), the equation is as follows:

f ðr; NÞ ¼ �
1� r2

�ðN�4
2 Þ½B�

�
1
2
;
N � 2
2

��1

(15)

where Bða; bÞ represents the Beta-function.
Then, in a second simulation, we similarly simulated null data as in

the previous simulation, but now we also generate a continuous
confound (C) with a varying correlation with the target (rCy 2 f0:0; 0:1;
0:2; ::: ;0:9; 1:0gÞ. Before subjecting the data to the decoding pipeline,
we regressed out the confound from the data (i.e., WDCR). We did this for
different numbers of features (K 2 f1; 5; 10; 50; 100; 500; 1000g).
Then, we applied CVCR on the simulated data as well for comparison.

3. Results

3.1. Influence of brain size

Before evaluating the different methods for confound control, we
determined whether brain size is truly a confound given our proposed
definition (“a variable that is not of primary interest, correlates with the
target, and is encoded in the neuroimaging data”). We evaluated the
relationship between the target and the confound in two ways. First, we
calculated the (point-biserial) correlation between gender and brain size,
which was significant for both the estimation based on white matter,
rð216Þ ¼ :645; p < 0:001, and the estimation based on grey matter,
rð216Þ ¼ :588; p < 0:001, corroborating the findings by Smith and
Nichols (2018). Second, as recommended by G€orgen et al. (2017), who
argue that the potential influence of confounds can be discovered by
running a classification analysis using the confound as the (single)
feature predicting the target, we ran our decoding pipeline (without
univariate feature selection) using brain size as a single feature to predict
gender. This analysis yielded a mean classification performance (F1
score) of 0.78 (SD ¼ :10) when using brain size estimated from white
matter and 0.81 (SD ¼ :09) when using brain size estimated from gray
matter, which are both significant with p < 0:001 (see Fig. 4A).

To estimate whether brain size is encoded in the neuroimaging data,
we compared the distribution of bivariate correlation coefficients (of
each voxel with brain size) with the sampling distribution of correlation
coefficients when ρ ¼ 0 and N ¼ 217 (see section “Analysis of negative
bias after WDCR” for details). Under the null hypothesis that there are no
correlations between brain size and voxel intensities, each individual
correlation coefficient between a voxel and the confound can be regarded
as an independent sample with N ¼ 217 (ignoring correlations between
voxels for simplicity). Because K is very large for both the VBM and TBSS
data, the empirical distribution of correlation coefficients should, under
the null hypothesis, approach the analytic distribution of correlation
coefficients parametrized by N ¼ 217 and ρ ¼ 0. Contrarily, the density
plots in Fig. 4B clearly show that the observed correlation coefficients
distribution does not follow the sampling distribution (with both an in-
crease in variance and a shift of the mode). This indicates that at least
some of the correlation coefficients between voxel intensities and brain
size are extremely unlikely under the null hypothesis. Note that this
interpretation is contingent on the assumption that the relation between
brain size and VBM/TBSS data is linear. In the Supplementary Materials
and Results (Supplementary Fig. S7-9), we provide some evidence for the
validity of this assumption.

3.2. Baseline model: no confound control

In our baseline model on the empirical data, for different numbers of
voxels, we predicted gender from structural MRI data (VBM and TBSS)
without controlling for brain size (see Fig. 5). The results show significant
above chance performance of the MVPA pipeline based on both the VBM
data and the TBSS data. All performance scores averaged across folds
were significant (p < 0:001).

These above chance performance estimates replicate previous studies
on gender decoding using structural MRI data (Del Giudice et al., 2016;
Rosenblatt, 2016; Sepehrband et al., 2018) and will serve as a baseline
estimate of model performance to which the confound control methods
will be compared.

In the next three subsections, we will report the results from the three
discussed methods to control for confounds: post hoc counterbalancing,
whole-dataset confound regression (WDCR), and cross-validated
confound regression (CVCR).

3.3. Post hoc counterbalancing

3.3.1. Empirical results
In order to decorrelate brain size and gender (i.e., rCy > 0:1), our

Fig. 3. Visualization of method to evaluate whether counterbalancing yields
unbiased cross-validated model performance estimates.
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subsampling algorithm selected 117 samples in the VBM data (i.e., a
sample size reduction of 46.1%) and 131 samples in the TBSS data (i.e., a
reduction of 39.6%). The model performance for different values of K
(number of voxels) are shown in Fig. 6. Contrary to our expectations, the
predictive accuracy of our decoding pipeline after counterbalancing was
similar to baseline performance. This is particularly surprising in light of
the large reductions in sample size, which results in a loss in power,
which in turn is expected to lead to lower model performance.

One could argue that the lack of expected decrease in model perfor-
mance after counterbalancing can be explained by the possibility that the
subsampling and counterbalancing procedure just leads to the selection
of different features during univariate feature selection compared to the
baseline model. In other words, the increase in model performance may
be caused by the feature selection function, which selects “better” voxels
(i.e., containing more “robust” signal), resulting in similar model per-
formance in spite of the reduction in sample size. However, this does not
explain the similar scores for counterbalancing and the baseline model
when using all voxels (the data points at K voxels ¼ ::: ðallÞ in Fig. 6).
Another possibility for the relative increase in model performance based
on the counterbalanced data versus the baseline model is that counter-
balancing increased the amount of signal in the data. Indeed, counter-
balancing appeared to increase the (absolute) correlations between the

data and the target (ryX), which is visualized in Fig. 7, suggesting an
increase in signal.

This apparent increase in the correlations between the target and
neuroimaging data goes against the intuition that removing the influence
of a confound that is highly correlated with the target will reduce
decoding performance. To further investigate this, we replicated this
effect of post hoc counterbalancing on simulated data, as described in the
next section (“Efficacy analyses”), and additionally investigated the
cause of the negative bias observed after WDCR using a separate set of
simulations.

3.3.2. Efficacy analysis
To evaluate the efficacy of the three confound control methods, we

simulated data in which we varied the strength of confound R2 and signal
R2, after which we applied the three confound control methods to the
data. The results of this analysis show that counterbalancing maintains
chance-level model performance when there is almost no signal in the
data (i.e., signal R2¼ 0.004; Fig. 8, left graph, green line). However,
when there is some signal (i.e., signal R2¼ 0.1; Fig. 8, right graph), we
observed that counterbalancing yields similar or even higher scores than
the baseline model, replicating the effects observed in the empirical
analyses.

Fig. 4. A) Model performance when using brain size to predict gender for both brain-size estimated from grey matter (left) and from white matter (right). Points in
yellow depict individual F1 scores per fold in the 10-fold cross-validation scheme. Whiskers of the box plot are 1.5x the interquartile range. B) Distributions of observed
correlations between brain size and voxels (rXC), overlayed with the analytic sampling distribution of correlation coefficients when ρ ¼ 0 and N ¼ 217, for both the
VBM data (left) and TBSS data (right). Density estimates are obtained by kernel density estimation with a Gaussian kernel and Scott's rule (Scott, 1979) for band-
width selection.

Fig. 5. Baseline scores using the VBM (left) and TBSS (right) data without any confound control. Scores reflect the average F1 score across 10 folds; error bars reflect
95% confidence intervals. The dashed black line reflect theoretical chance-level performance and the dashed orange line reflects the average model performance when
only brain size is used as a predictor for reference; Asterisks indicates significant performance above chance: *** ¼ p < 0.001, ** ¼ p < 0.01, * ¼ p< 0.05.
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Fig. 6. Model performance after counterbalancing (green) versus the baseline performance (blue) for both the VBM (left) and TBSS (right) data (upper row) and the
difference in performance between the methods (lower row). Performance reflects the average (difference) F1 score across 10 folds; error bars reflect 95% confidence
intervals. The dashed black line reflect theoretical chance-level performance (0.5) and the dashed orange line reflects the average model performance when only brain
size is used as a predictor. Asterisks indicates significant performance above chance: *** ¼ p < 0.001, ** ¼ p < 0.01, * ¼ p< 0.05.

Fig. 7. Density plots of the correlations between the target and voxels across all voxels before (blue) and after (green) subsampling for both the VBM and TBSS data.
Density estimates are obtained by kernel density estimation with a Gaussian kernel and Scott's rule (Scott, 1979) for bandwidth selection.

Fig. 8. Results from the different confound control methods on simulated data without any experimental effect (signal R2¼ 0.004; left graph) and with some
experimental effect (signal R2¼ 0.1; right graph) for different values of confound R2. The orange line represents the average performance (�1 SD) when confound R2 ¼
0, which serves as a “reference performance” for when there is no confounded signal in the data. For both graphs, the correlation between the target and the confound,
ryC , is fixed at 0.65. The results from the WDCR and CVCR methods are explained later in the paper.
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As is apparent from Fig. 8 (right panel), when there is some signal, the
counterbalanced data seem to yield better performance than the baseline
model only for relatively low confound R2 values (confound R2< 0.15).
As suggested by our findings in the empirical data (see Fig. 7), we hy-
pothesized that the observed improvement in model performance after
counterbalancing was caused by the increase in correlations between the
target and features in the neuroimaging data. In support of this hypoth-
esis, Fig. 9 illustrates the relations between the strength of the confound
(confound R2, color coded), the increase in correlations after post hoc
counterbalancing (ΔryX ¼ ryXafter � ryXbefore; x-axis) for each confound R2,
and the resulting difference in model performance (ACCCB - ACCbaseline;
y-axis). The figure shows that the increase or decrease in accuracy after
counterbalancing (compared to baseline) depends on ΔryX (rð79Þ ¼ :922;
p < 0:001), which in turn depends on confound R2 (rð79Þ ¼ � 0:987;
p < 0:001). To reiterate, these differences in model performance are
only due to the post hoc counterbalancing procedure and not due to
varying signal in the simulated data. The effect of post hoc counter-
balancing on model performance thus seems to depend on the strength of
the confound.

While this relationship in Fig. 9 might be statistically interesting, it
does not explain why post hoc counterbalancing tends to increase the
correlations between neuroimaging data and target, and even out-
performs the baseline model when confound R2 is low and some signal is
present. More importantly, it does not tell us whether the post hoc
counterbalancing procedure uncovers signal that is truly related to the
target — in which case the procedure suppresses noise — or inflates
performance estimates and thereby introduces positive bias. Therefore,
in the next section, we report and discuss results from a follow-up
simulation that intuitively shows why post hoc counterbalancing leads
to an increase in performance, and furthermore shows that this increase
is in fact a positive bias.

3.3.3. Analysis of positive bias after post hoc counterbalancing
With this follow-up analysis, we aimed to visualize the scenario in

which post hoc counterbalancing leads to a clearly better performance
than model performance without confound control. As such, we gener-
ated 1000 data sets using a covariance matrix that we knew leads to a
large difference between the baseline model and model performance
after counterbalancing (i.e., data with a low confound R2). From these
1000 datasets, we selected the dataset that yielded the largest difference
for our visualization (see the “Analysis of positive bias after post hoc
counterbalancing”” section in the Methods for details).

The data that yielded the largest difference (i.e., a performance in-
crease from 0.613 to 0.804, a 31% increase) are visualized in Fig. 10.

Each sample's confound value (C) is plotted against its feature value (X),
both before subsampling (upper scatter plot) and after subsampling
(lower scatter plot). From visual inspection, it appears that the samples
rejected by the subsampling procedure (i.e., the samples with the white
border) have relatively large absolute values of the confound variable,
which tend to lie close to or on the “wrong” side of the classification
boundary (i.e., the dashed black line) in this specific configuration of the
data. In other words, subsampling seems to reject samples that are harder
to classify or would be incorrectly classified based on the data (here, the
single feature of X). The density plots in Fig. 10 show the same effect in a
different way: while the difference in the modes of the distributions of
the confound (C) between classes is reduced after subsampling (i.e., the
density plots parallel to the y-axis), the difference in the modes of the
distributions of the data (X) between classes is actually increased after
subsampling (i.e., the density plots parallel to the x-axis).

We quantified this effect of subsampling by comparing the signed
distance from the decision boundary (i.e., the dashed line in the upper
scatter plot) between the retained samples and the rejected (subsampled)
samples, in which a larger distance from the decision boundary reflects a
higher confidence of the classifier's prediction (see Fig. 3 for a visuali-
zation of this method). Indeed, we found that samples that are removed
by subsampling lie significantly closer to (or on the “wrong” side of) the
decision boundary (M ¼ � :358; SD ¼ :619) than samples that are
retained after subsampling (M ¼ :506; SD ¼ :580), as indicated by a
independent samples t-test, tð998Þ ¼ 22:32; p < 0:001. Also (which fol-
lows from the previous observation), samples that would have been
removed by subsampling are more often classified incorrectly (75%
incorrect) than the samples that would have been retained by sub-
sampling (20% incorrect), as indicated by a chi-squared test, χ2 ¼
270:29; p < 0:001.

To show that the same effect (i.e., removing samples that tend to be
hard to classify or would be wrongly classified) occurred in the empirical
data after counterbalancing as well, we applied the same analysis of
comparing model performance and distance to boundary between the
retained and rejected samples to the empirical data. Indeed, across all
different numbers of voxels (K), the retained samples were significantly
more often classified correctly (Fig. 11A) and had a significantly larger
distance to the classification boundary (Fig. 11B) than the rejected
samples. This demonstrates that the same effect of post hoc counter-
balancing, as shown in the simulated data, likely underlies the increase in
model performance of the counterbalanced data relative to the baseline
model in the empirical data.

One can wonder howmuch the occurrence of these observed biases in
post hoc counterbalancing depends on the specific method of

Fig. 9. The relationship between the increase in correlations between target and data (ryX ) after subsampling, confound R2, difference in model performance (here:
accuracy) between the counterbalance model and baseline model (ACCCB - ACCbaseline).
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subsampling used. Random subsampling led to qualitatively similar re-
sults as targeted subsampling (cf. Supplementary Figs. S13-S14 with
random subsampling). Instead, the bias is introduced through features
that weakly correlate with the target in the whole sample, but strongly in
subsamples where there is no correlation between target and the
confound (features which, as our results show, exist in the neuroimaging
data). That is, the bias is an indirect result of decorrelating target and
confound in the sample, which is an essential step in post hoc counter-
balancing (in fact, it is the goal of counterbalancing). For this reason, we
consider it unlikely (but not impossible) that there exists a way to sub-
sample data without introducing biases.

In summary, removing a subset of observations to correct for the in-
fluence of a confound can induce substantial bias by removing samples
that are harder to classify using the available data. The bias itself can be

subtle (e.g., in our empirical results, the predictive performance falls in a
realistic range of predictive performances), and could remain undetected
when present. Therefore, we believe that post hoc counterbalancing by
subsampling the data is an inappropriate method to control for
confounds.

3.4. Whole-dataset confound regression (WDCR)

3.4.1. Empirical results
In addition to post hoc counterbalancing, we evaluated the efficacy of

“whole-dataset confound regression” (WDCR), i.e. regressing out the
confound from each feature separately using all samples from the dataset
to control for confounds. Compared to the baseline model, WDCR yielded
a strong decrease in performance, even dropping (significantly) below

Fig. 10. Both scatterplots visualize the relationship between the data (X with K ¼ 1, on the x-axis), the confound (C, on the y-axis) and the target (y). Dots with a
white border in the upper scatterplot indicate samples that are rejected in the subsampling process; the lower scatterplot visualizes the data without these rejected
samples. The dashed black lines in the scatterplot represent the decision boundary of the SVM classifier; the color of the background shows how samples in that area
are classified (a blue background means a prediction of y ¼ 0 and a green background means a prediction of y ¼ 1). The density plots parallel to the y-axis depict the
distribution of the confound (C) for the samples in which y ¼ 0 (blue) and in which y ¼ 1 (green). The density plots parallel to x-axis depict the distribution of the data
(X) for the samples in which y ¼ 0 (blue) and in which y ¼ 1 (green). Density estimates are obtained by kernel density estimation with a Gaussian kernel and Scott's
rule (Scott, 1979) for bandwidth selection.
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chance for all TBSS analyses and a subset of the VBM analyses (see
Fig. 12).

This strong (and implausible) reduction in model performance after
WDCR is investigated in more detail in the next two sections on the re-
sults from the simulations.

3.4.2. Efficacy analysis
The results from the analyses investigating the efficacy of the

confound control methods (see Fig. 8) show that WDCR accurately cor-
rects for the confound in both in data without signal (i.e., when signal
R2¼ 0.004) and in data with some signal (i.e., when signal R2¼ 0.1), as
evident from the fact that the performance after WDCR is similar to the
reference performance. This result (i.e., plausible performance after
confound control) stands in contrast to the results from the empirical
analyses, which is why we ran a follow-up analysis on simulated data to
investigate this specific issue.

3.4.3. Analysis of negative bias after WDCR
Inspired by the work of Jamalabadi et al. (2016) on below chance

accuracy in decoding analyses, we ran several follow-up analyses to get
insight into why WDCR leads to below chance model performance. As
Jamalabadi et al. show, below chance model performance occurs when
the data contain little signal. In our first follow-up simulation, we sought
to refine the explanation of the cause of below chance model perfor-
mance by linking it to the observed standard deviation of the empirical
distribution of correlations between the data (X) and the target (y). To do
so, we simulated random data (X) and a binary target (y 2 f0; 1g) and
estimated (per fold) the cross-validated classification accuracy using the
standard pipeline described in the methods section. We repeated this
process 500 times, yielding 500 data sets. The expected average predic-
tive accuracy for each dataset is 0.5, but this varies randomly across folds
and iterations. We hypothesized that this variance can be explained by
the standard deviation (“width”) of the initial feature-target correlation

Fig. 11. A) The proportion of samples classified correctly, separately for the “retained” samples (blue line) and “rejected” samples (green line); the dashed line
represents chance level (0.5). B) The average distance to the classification boundary for the retained and rejected samples; the dashed line represents the decision
boundary, with values below the line representing samples on the “wrong” side of the boundary (and vice versa). Asterisks indicates a significant difference between
the retained and rejected samples: *** ¼ p < 0.001, ** ¼ p < 0.01, * ¼ p< 0.05.

Fig. 12. Model performance after WDCR (orange) versus the baseline performance (blue) for both the VBM (left) and TBSS (right) data. Performance reflects the
average F1 score across 10 folds; error bars reflect 95% confidence intervals. The dashed black line reflect theoretical chance-level performance (0.5) and the dashed
orange line reflects the average model performance when only brain size is used as a predictor. Asterisks indicates performance of the WDCR model that is significantly
above or below chance: *** ¼ p < 0.001, ** ¼ p < 0.01, * ¼ p< 0.05.
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distribution, sdðrXyÞ: narrower distributions may yield relatively lower
cross-validated classification accuracy than relatively wider
feature-target correlation distributions. Indeed, we find that the initial
standard deviation of this distribution is significantly correlated with the
cross-validated accuracy, rð499Þ ¼ 0:73; p < 0:001 (Fig. 13A). Impor-
tantly, we find that this relationship holds for different values of N(see
Supplementary Fig. 15), for different sizes of the test set (see Supple-
mentary Fig. 16), and for different sizes of K (see Supplementary Fig. 17).

This observation, then, begs the question: why do narrower-than-
chance correlation distributions lead to below chance accuracy? One
potential explanation of below chance accuracy is that the classifier may
learn a particular (linear) relationship between features and the target in
the train set (e.g., rXy ¼ 0:05), while the sign of this relationship is
“flipped” in the test set (e.g., rXy ¼ � 0:03; see Jamalabadi et al., 2016),
which is known in the machine learning literature as “dataset shift”
(Quionero-Candela et al., 2009). This situation would lead classifiers to
predict the exact opposite classes for samples in the test set, leading to
below chance accuracy. In the results of our simulated data, the standard
deviation of the feature-target distribution was indeed significantly
negatively correlated with the proportion of features that flipped the sign
of their correlation between the train set and test set, rð499Þ ¼ � :687;
p < 0:001. This means that a higher density of feature-target correla-
tions around 0 (i.e., a narrower width of the corresponding distribution)
leads to more “sign flips”. This phenomenon of “sign flipping” has been
reported before in the context of (a priori) counterbalancing of categor-
ical variables (X) with respect to the target (y), where it was observed
that complete counterbalancing led to consistent “sign flipping” and
consequently 0% accuracy (G€orgen et al., 2017). Similarly, we found that
the proportion of features that flip sign was significantly negatively
correlated with accuracy, r ¼ � :565; p < 0:001, indicating that larger
proportions of features that flip sign leads to lower accuracy (see
Fig. 13B). Interestingly, at a proportion of 0.5, accuracy is approximately
at chance level (0.5; dashed lines in Fig. 13B).

This relationship between “sign flipping” and accuracy, however,
leaves room for improvement in terms of explaining the variance of ac-
curacy scores. Therefore, we sought to further refine our “model” of ac-
curacy by defining “dataset shift” not by the proportion of sign flips, but
by the average difference between the feature-target correlations between
the train set and test set. Moreover, because not all features contribute
equally strongly to a classifier's prediction (i.e., they are weighted), we
furthermore weighed each feature's “shift” by the associated classifier

weight (wj). Formally, we estimated dataset shift ( bds) thus as follows:

bds ¼ 1
K

XK
j¼1

�
rXj; train ; ytrain � rXj; test ; ytest

�
wj (16)

Indeed, the correlation between this particular operationalization of
“dataset shift” and accuracy across simulations was much higher than
just the proportion of sign flips, r(499)¼�0.934 (Fig. 13B).

Having established the relation between the standard deviation of the
initial feature-target correlation distribution and accuracy, we followed
up our simulation by investigating specifically the effect of WDCR on the
standard deviation of the correlation distribution.We investigated this by
simulating data with different strengths of the correlation between the
confound and the target (rCy) and the number of features (K). From
Fig. 14A, it is clear that, while the expected chance level is 0.5 in all cases,
model performance quickly drops below chance for increasing correla-
tions between the target and the confound, as well as for increasing
numbers of features; even leading to a model performance of 0% when
the confound is perfectly correlated with the target and when using 1000
features. Fig. 14C shows that, indeed, higher rCyvalues lead to narrower
correlation distributions, which is shown in Fig. 14D to yield relatively
lower accuracy scores.

In summary, our simulations show that below chance accuracy is
accurately predicted by the standard deviation (i.e., “width”) of the
distribution of empirical feature-target correlations and that WDCR re-
duces this standard deviation, which explains why the empirical analyses
yielded below chance model performance (especially for larger numbers
of voxels).

3.5. Cross-validated confound regression (CVCR)

3.5.1. Empirical results
As the results from the empirical analyses and simulations suggest,

the use of WDCR is problematic because of the partitioning of the dataset
into a separate train set and test set after confound regression. As such,
our proposed cross-validated confound regression (CVCR) methods sug-
gests to move the confound regression procedure inside the cross-
validation loop, thereby also cross-validating this step. As expected,
compared to the baseline model (i.e., no confound control), the results
from the empirical analyses using CVCR show reduced (but not below
chance) model performance for both VBM and TBSS data, and all
different numbers of voxels (see Fig. 15). Notably, for some numbers of
voxels, model performance was not significantly above chance level.

We also evaluated whether regressing the confound from the train set

Fig. 13. A) The relationship between the standard deviation of the distribution of feature-target correlations, sdðryXÞ, and accuracy across iterations of cross-validated
classification analyses of null data. The vertical dashed line represents the standard deviation from the sampling distribution parameterized with ρ ¼ 0 and N ¼ 100
(i.e., the same parameters used to generate the null data); the horizontal dashed line represents the expected accuracy for data with this standard deviation based on
the regression line estimated from the data across simulations (see Supplementary Fig. 15 for the same plot with different values for N). B) The relationship between
the proportion of features of which the sign of their correlation with the target (rXy) “flips” between the train-set and the test-set and accuracy. The vertical dashed line
represents a proportion of 0.5., i.e., 50% of the features flip their correlation sign, which corresponds approximately with an accuracy of 0.5. C) The relationship
between the weighted difference between feature-target correlations in the train and test set (see equation (16)) and accuracy.
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only was sufficient to control for confounds, but found that it does not
effectively control for confounds when there is no true signal (i.e., there
is positive bias), which is visualized in more detail in Supplementary
Fig. S10 (cf. Fig. 8).

3.5.2. Efficacy analysis
Similar to WDCR, CVCR yielded plausible and unbiased model per-

formance (see Fig. 8, pink line). Moreover, when applied to the simulated
null data as described in the “WDCR follow-up simulation” section, CVCR
yielded model performance scores at chance level across all levels of the
confound-target correlation and numbers of features (see Fig. 14B).

3.6. Summary methods for confound control

In this section, we investigated the effects of different method to

control confounds (post hoc counterbalancing, WDCR, and CVCR) on
empirical MRI data and simulated data (see Fig. 16 for a summary of the
empirical results). Post hoc counterbalancing was, at least using the
subsampling method described, clearly unable to effectively control for
confounding influences, which is putatively caused by indirect circularity
in the analysis process due to subsampling. Confound regression showed
an expected drop in model performance (but not below chance level), but
only when the confound regression step is properly cross-validated (i.e.,
the CVCR version).

4. Discussion

Decoding analyses have become a popular alternative to univariate
analyses of neuroimaging data. This analysis approach, however, inher-
ently suffers from ambiguity in terms of which source of information is

Fig. 14. A) The effect of WDCR on data varying in the correlation of the confound with the target (rCy ; x-axis) and the number of features (K; different lines). B) The
effect of CVCR on data varying in the correlation of the confound with the target and the number of features. The dashed black line represents chance model per-
formance in subplots A and B. C) The relation between the correlation of the confound with the target (rCy) and the standard deviation of the feature-target correlation
distribution, sdðryXÞ for the WDCR data. The dashed black line represents the standard deviation of the correlation distribution predicted by the sampling distribution.
D) The relation of the standard deviation of the correlation distribution and accuracy for the WDCR data (only shown for the data when K ¼ 100; see Supplementary
Fig. 18 for visualizations of this effect for different values of K). The data depicted in all panels are null data.

Fig. 15. Model performance after CVCR (pink) versus the baseline performance (blue) for both the VBM (left) and TBSS (right) data. Performance reflects the average
F1 score across 10 folds; error bars reflect 95% confidence intervals across 1000 bootstrap replications. The dashed black line reflect theoretical chance level per-
formance (0.5) and the dashed orange line reflects the average model performance when only brain size is used as a predictor. Asterisks indicates performance of the
CVCR model that is significantly above or below chance: *** ¼ p < 0.001, ** ¼ p < 0.01, * ¼ p< 0.05.
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picked up by the decoder (Naselaris and Kay, 2015). Given that one is
often interested in model interpretability rather than merely accurate
prediction (Hebart and Baker, 2017), one should strive to control for
alternative sources of information (i.e., other than the target of interest)
that might drive decoding. Effectively controlling for these alternative
sources of information, or confounds, helps in disambiguating decoding
models. In this article, we reviewed and tested two generic, broadly
applicable methods that aim to control for confounds in decoding ana-
lyses: post hoc counterbalancing and confound regression. Additionally,
we proposed a third method that, unlike the other two methods, has
shown to effectively control for confounds.

Both when applied to empirical and simulated data, we found that
neither post hoc counterbalancing nor (whole-dataset) confound
regression yielded plausible and unbiased model performance estimates.
First, we found that post hoc counterbalancing leads to optimistic (i.e.,
positively biased) model performance estimates, which is a result of
removing samples that are hard to classify or would be wrongly classi-
fied, during the subsampling process. Because this subsampling process is
applied to the entire dataset at once (i.e., it is not cross-validated), it can
be seen as a form of indirect circular analysis (Kriegeskorte et al., 2009),
in which the data themselves are used to inform analysis decisions, which
can lead to biased generalization estimates. Second, our initial evaluation
of confound regression, which was applied on the entire dataset
(“WDCR”), yielded pessimistic (i.e., negatively biased) and even signifi-
cantly below chance model performance estimates. Extending previous
research (Jamalabadi et al., 2016), we show that this negative bias occurs
when the “signal” in the data (operationalized as the width of the
feature-target correlation distribution) is lower than would be expected
by chance, which we link to the sampling distribution of the Pearson
correlation coefficient. Importantly, we show that WDCR systematically
narrows the width of the correlation distribution — and thus leads to
lower model performance — which is exacerbated by both higher cor-
relations between target and confound, as well as by a larger number of
features.

The negative bias observed in WDCR is caused by the fact that it is
performed on the whole dataset at once, leading to statistical de-
pendencies between subsequent train and test partitions. To overcome
this negative bias, we propose to cross-validate the confound regression
procedure (which we call “Cross-Validated Confound Regression”,
CVCR). We show that this method yields plausible model performance in
the empirical analyses (i.e., significantly above chance model perfor-
mance) and nearly unbiased model performance in the simulations, for
different datasets varying in the amount of features (K) and the strength
of the confound (rCy). Moreover, initial supplementary simulations sug-
gest that these results generalize to (simulated) fMRI data (Supplemen-
tary Fig. S1), seemingly demonstrating effective control of confounds
across different degrees of autocorrelation (Supplementary Fig. S2). The
method may show some negative bias in some scenarios due to the fact
that, in the train set, CVCR will remove all variance associated with the
confound (even variance spuriously correlated with the confound).
However, this bias seems, at least in the simulated scenarios, very small.

Overall, we believe that our results demonstrate that CVCR is a flexible
and effective method to control for confounds in decoding analyses of
neuroimaging data.

4.1. Relevance and consequences for previous and future research

4.1.1. A priori and post hoc counterbalancing
We believe our results have implications not only for post hoc coun-

terbalancing, but a priori counterbalancing in observational designs in
general. In both behavioral research (Wacholder et al., 1992) and neu-
roimaging research (G€orgen et al., 2017), a priori counterbalancing (or
case-control “matching”) is a common strategy to avoid effects of con-
founds. However, as we show in the current study, this may uninten-
tionally remove samples that are harder to predict, especially when there
is little shared variance between the confound and the other predictors
(i.e., when there is low confound R2). Because, conceptually, this rep-
resents a form of circular analysis, counterbalancing — regardless of
whether it is applied a priori or post hoc — can yield biased model
performance estimates. To some extent, the bias in the post hoc coun-
terbalancing results should not come as a surprise: as noted in the
Methods section, counterbalancing in observational research requires the
researcher to choose a sample that is not representative of the population
(see also Sedgwick, 2013). As a result, out-of-sample predictive perfor-
mance drops significantly, in our case even to chance level.

Since post hoc counterbalancing does not show any positive bias in
model performance when there is no signal at all (i.e., signal R2 ¼ 0), one
could argue that any observed significant above chance effect, while
positively biased in terms of effect magnitude, can be interpreted as ev-
idence that there must be signal in the data in the first place. However,
we argue against this interpretation for two reasons. First, any above
chance predictive performance of models fitted after subsampling is not
only positively biased, but also does not cross-validate to the rejected
samples (see Fig. 11). That is, the model picks up relations between
features and target that are only present in the subsample, and not in the
samples left out of the analysis. As a result, it is questionable whether
(and if so, how) the model should be interpreted—after all, (we assume
that) the rejected samples were drawn from the population of interest in a
valid way. Second, any possible absence of above chance model perfor-
mance after subsampling can neither be interpreted as evidence for an
absence of a true effect, since the subsampling procedure necessarily
leads to a (often substantial) power loss. It could still well be that in the
original sample there was a true relation between features and target.
Thus, interpretation of modelling efforts after subsampling is problem-
atic in case of both presence and absence of above chance model
performances.

4.1.2. Confound regression
In contrast to post hoc counterbalancing, confound regression in its

uncross-validated form (i.e., WDCR) has been applied widely in the
context of decoding analyses (Dubois et al., 2017; Kostro et al., 2014; Rao
et al., 2017; Todd et al., 2013). Indeed, the first study that systematically

Fig. 16. An overview of the empirical results on the four different confound methods: None, post hoc counterbalancing, WDCR, and CVCR.
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investigated the effect of confounds in decoding analyses (Todd et al.,
2013) used WDCR to account for the confounding effect of reaction times
(RT) on decoding of rule representations and found that WDCR
completely eliminated the predictive performance that was found
without controlling for RT. This observation, however, can potentially be
explained by the negative bias induced by WDCR. This possible expla-
nation is corroborated by a follow-up study that similarly looked into RT
confounding the decoding of rule representations (Woolgar et al., 2014),
who did not use WDCR but accounted for RT confounding by including it
as a covariate during the pattern estimation procedure (see Supplemen-
tary Methods and Results for a tentative evaluation of this method),
which in contrast to the study by Todd et al. yielded significant decoding
performance. Moreover, while not specifically investigated here, we
expect a similar negative bias to occur when a confound is removed from
a continuous target variable using WDCR - which may offer an expla-
nation for the null finding of (Dubois et al., 2017), who fail to decode
personality characteristics from resting-state fMRI.

4.1.3. Relevance to other analysis methods
While this article focuses on controlling for confounds in decoding

analyses specifically, we believe that our findings may be relevant for
analysis methods beyond decoding analyses as well. In fact, methods for
controlling for confounds (or alternative sources of information) have
previously been investigated and applied in another type of MVPA named
“representational similarity analysis” (RSA; Kriegeskorte et al., 2008). In
the context of RSA, the explained variance in the neural data is often
partitioned into different (model-based) feature sets (i.e., sources of in-
formation), which allows one to draw conclusions about the unique in-
fluence of each source of information (see, e.g., Groen et al., 2018; Hebart
et al., 2018; Ramakrishnan et al., 2014). Specifically, variance parti-
tioning in RSA is done by removing the variance from the representa-
tional dissimilarity matrix (RDM) based on the feature set that needs to
be controlled for. Notably, the variance of the RDMs that are not of in-
terest can be removed from only the neural RDM (Hebart et al., 2018;
Ramakrishnan et al., 2014) or both from the neural RDM and the RDM of
interest (Groen et al., 2018). While the analysis context is different, the
underlying technique is identical to confound regression as described and
evaluated in this article. Importantly, the studies employing this variance
partitioning technique (Groen et al., 2018; Hebart et al., 2018; Ram-
akrishnan et al., 2014) similarly report plausible model performances
after confound regression (i.e., relatively lower but not below chance
performance), corroborating our results with (cross-validated) confound
regression. Note that the distinction between WDCR and CVCR in the
context of most RSA studies (including the aforementioned studies) is
largely irrelevant, as representational similarity analyses are not
commonly cross-validated. However, recently, some have proposed to
use cross-validated distance measures (such as the cross-validated
Mahalanobis distance; Guggenmos et al, 2018; Walther et al., 2016) in
RSA, which could suffer from negative bias when combined with (not
cross-validated) variance partitioning similar to what we observed with
WDCR in the context of decoding analyses.

We believe that especially our findings with regard to WDCR and
CVCR may be relevant for any cross-validated analysis, regardless of the
“direction” of analysis (encoding vs. decoding) and the dimensionality of
the neural data (univariate vs. multivariate approaches). In general, our
findings with respect to negative bias after WDCRwere to be expected, as
it introduces dependence between the train set and the test set which
violates the crucial assumption of independence of any cross-validated
analysis. While a violation of the independence assumption often leads
to positive bias such as in “double dipping” (Kriegeskorte et al., 2009),
we show here that it may also lead to negative bias. Either way, our
findings reinforce the idea that data analysis operations should never be
applied to the entire dataset before subjecting the data to a
cross-validated analysis. Therefore, we believe that our findings with
respect to WDCR and CVCR will generalize to any cross-validated anal-
ysis (such as cross-validated MANOVA, Allefeld and Haynes, 2014; or

cross-validated encoding models, Naselaris et al., 2011), but future
research is necessary to substantiate this claim.

4.1.4. Importance for gender decoding studies
The importance of proper confound control is moreover highlighted

by the empirical question we address. Without any optimization of the
prediction pipeline, we were able to predict gender with a model per-
formance up to approximately 0.85 without confound control. This is in
line with reports from various other studies (Del Giudice et al., 2016;
Rosenblatt, 2016; Sepehrband et al., 2018). However, this predictive
performance is driven by a mixture two sources of information: global
and local differences in brain structure. With confound control, however,
we show that predictive performance using only local differences lies
around 0.6 for VBM data and 0.7 for TBSS data—a substantial drop in
performance. Especially because the remaining predictive performance is
lower than predictive performance using only brain size, we argue that
the use of proper confound control may lead one to draw substantially
different conclusions about the differences in brain structure between
men and women. For the debate on gender dimorphism, it is thus
extremely important to take global brain size into account in the context
of decoding analyses (as has been similarly recommended for
mass-univariate analyses; Barnes et al., 2010).

4.2. Choosing a confound model: linear vs. nonlinear models

In the present paper, we focused on the use of linear models for
confound control. It is crucial to note that the efficacy of confound con-
trol depends on the suitability of the confound regression model
employed. Removing variance associated with a confound using a linear
model removes only the variance of data (features) that is linearly related
to the confound. When a confound is nonlinearly related to the data,
some variance associated with the confound can remain in the data after
a linear confound model is used to regress out variance. It is possible that
the decoding model subsequently applied still picks up this residual
“confounded” variance. In other words, an unsuitable confound model
may control for confounds imperfectly.

The exact relation between confound and (brain) data is hardly ever
known a priori. However, it is possible to explore the nature of this
relation using the data at hand. For example, a researcher can apply a
cross-validated prediction pipeline to predict a feature (e.g., VBM voxel
intensity) from the confound. The researcher can then test what type of
model (linear or nonlinear) describes the relation between confound and
data best. In the Supplementary Materials (section “Linear vs nonlinear
confound models: predicting VBM and TBSS data based on brain size”),
we provide an example of this approach. We used linear, quadratic, and
cubic regression models to predict VBM and TBSS voxel intensity using
brain size as feature. In the Supplementary Results, we show that linear
models perform equally well as or better than polynomial models for the
majority of voxels (Supplementary Figs. S7 and S9). Further, for voxels
where polynomials outperform linear models, the difference between
model performances is minimal (Supplementary Fig. S8). Thus, in the
empirical research question explored in this paper, a linear confound
model seems to suit the data very well.

4.3. Practical recommendations

As indicated by the title of this article, we will now outline some
practical recommendations for dealing with confounds in decoding an-
alyses of neuroimaging data. First, one needs to obtain an accurate
measurement of potential confounds (Westfall and Yarkoni, 2016). While
we assumed the availability of such a measure in this article, this is not
always trivial. In experimental settings, for example, reaction times can
potentially be identified as a confound (Todd et al., 2013; Woolgar et al.,
2014), but arguably, it is not reaction time but rather an unobserved
variable related to reaction time (e.g., difficulty or attention) that con-
founds the analysis. In such scenarios, the best one can do is measure
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reaction time as a proxy, and be aware that any subsequent confound
control method is limited by how well this proxy corresponds to the
actual confound. Second, one needs to identify which variables actually
confound a decoding analysis. To detect confounds, we recommend using
the “same analysis approach” outlined by G€orgen et al. (2017). In short,
this method involves trying to predict the target variable using your
confound(s) as predictive features (for example, when using only brain
size to predict gender). In case of significant above chance decoding
performance, and assuming the confounds are actually encoded in the
neuroimaging data, the hypothesized confounds will most likely influ-
ence the actual decoding analysis. While in the current article we focused
on simple univariate confounding effects (i.e., confounding by a single
variable), the same analysis approach is not limited to detecting uni-
variate confounds — it facilitates detecting multivariate (i.e., con-
founding by multiple variables) or interaction effects (i.e., confounding
by interaction effects between variables) as well. For example, if one
hypothesizes that the target variable is related to the interaction between
confound C1 and C2 (i.e., C1 � C2), one can simply use the interaction
term as the potential confound in the same analysis approach to evaluate
the potential confounding influence.

Once the specific confound terms have been identified, we recom-
mend regressing out the confound from the data in a cross-validated
manner (i.e., using CVCR). Specifically, we recommend including
confound regression as the first step in your decoding pipeline to avoid
the effect of confounds on other operations in the pipeline (such as
univariate feature selection; Chu et al., 2012). In this article, we used
ordinary least squares (OLS) regression to remove the influence of con-
founds from the data, because a linear model describes the relation be-
tween brain size and VBM/TBSS voxel intensities well (see
Supplementary Figs. S7–9). However, not only linear models can be used
to remove variance associated with a confound from the data — it is
possible to use nonlinear models (potentially with multiple confounds
and interactions between them) if it is clear that the relation between
confounds and neuroimaging features is nonlinear (see previous section
for details on choosing a confound model). However, as a limitation to
the presented results, we did not test whether CVCR also leads to (nearly)
unbiased results when used with nonlinear models. We advise, therefore,
in such cases, to first test in a simulation study whether CVCR provides an
unbiased confound control method with nonlinear models before use
with actual data.

5. Conclusions

In general, we believe that the contributions of the current study are
twofold. First and foremost, it provides a systematic evaluation of widely
applicable methods to control for confounds and shows that, of the
methods investigated, only one (“cross-validated confound regression”)
appears to yield plausible and almost unbiased results. The results from
this evaluation hopefully prevents researchers from using post hoc
counterbalancing and whole-dataset confound regression, which we
show may introduce (unintended) biases. Moreover, we made all ana-
lyses and preprocessed data openly available (https://github.com/
lukassnoek/MVCA) and provide a simple implementation for cross-
validated confound regression that interfaces with the popular scikit-
learn package in the Python programming language. Second, we
believe that this study improves understanding of the elusive phenome-
non of below chance accuracy (building on previous work by Jamalabadi
et al., 2016). In general, we hope that this study helps researchers in
gaining more insight into their decoding analyses by providing a method
that disentangles the contributions of different sources of information
that may be encoded in their data.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.neuroimage.2018.09.074.
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