Investigating the potential neurotoxicity of ecstasy (MDMA). An imaging approach
Reneman, L.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Chapter 10

Investigating the potential neurotoxicity of Ecstasy (MDMA): an imaging approach

Liesbeth Reneman¹, Jan Booij¹, Charles B.L.M. Majoie², Wim van den Brink³ and Gerard J. den Heeten²

¹Graduate School of Neurosciences, Department of Nuclear Medicine, Academic Medical Center, 1105 AZ Amsterdam, the Netherlands
²Department of Radiology, Academic Medical Center, 1105 AZ Amsterdam, the Netherlands
³Amsterdam Institute for Addiction Research and Department of Psychiatry, Academic Medical Center, 1105 BC Amsterdam, the Netherlands

Human Psychopharmacology (in press)
Abstract

Human 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy") users may be at risk of developing MDMA-induced neuronal injury. Previously, there were no methods available for directly evaluating the neurotoxic effects of MDMA in the living human brain. However, development of in vivo neuroimaging tools have begun to provide insights into the effects of MDMA in human brain. In this review, contributions of brain imaging studies on the potential neurotoxic effects of MDMA and functional consequences is highlighted. An overview will be given of PET, SPECT and MR Spectroscopy studies employed, most of which show evidence of neuronal injury in human MDMA users. In addition, different neuroimaging tools will be discussed that have investigated potential functional consequences of MDMA-induced 5-HT neurotoxic lesions. Finally, the contribution of brain imaging in future studies is discussed, emphasizing the crucial role it will play in our understanding of MDMA's short- and long-term effects in the human brain.

Introduction

Findings in animals suggest that the popular recreational drug 3,4-methylenedioxymethamphetamine (MDMA or Ecstasy) might damage brain serotonin (5-HT) neurons in human beings. MDMA-induced 5-HT neurotoxicity has been demonstrated in animals, including primates, using a variety of experimental techniques at doses that approach or overlap those used recreationally by human beings. In these animals, 5-HT neurotoxicity is evidenced by losses in various markers unique to 5-HT neurons, such as 5-HT, 5-hydroxyindolacetic acid (5-HIAA), tryptophan hydroxylase, and 5-HT transporters (Battaglia et al., 1987; Commins et al., 1987; Insel et al., 1989; Moliver et al., 1990; O'Hearn et al., 1988; Ricaurte et al., 1988a; Ricaurte et al., 1988b; Schmidt, 1987; Slikker et al., 1988). The effects of MDMA are highly selective, exclusively damaging brain 5-HT neurons. The effects of MDMA on 5-HT neurons may be long-lasting since studies in non-human primates suggest that while some brain regions show evidence of complete recovery, others remain denervated up to seven years after treatment with MDMA (Hatzidimitriou et al., 1999).

If MDMA does produce 5-HT neurotoxicity in humans, there would be important ramifications for the mental health and psychological function of people who use this drug, because irreversible loss of 5-HT neurons may be responsible for an immediate or delayed onset of neuropsychiatric disorders in which 5-HT has been implicated. Specifically, 5-HT imbalance has been postulated to underlie psychiatric disorders including depression, anxiety, panic disorder, and disorders of impulse control. In line with this, there have been many case reports of neuropsychiatric sequelae after MDMA use, including paranoid psychosis, anxiety, depression and panic disorder (Hegadoren et al., 1999; Schifano et al., 1998). Furthermore, since 5-HT appears to play an important role in cognitive function, and greatest neurotoxic effects of MDMA in animals are observed in the frontal cortex and hippocampus — areas known to play crucial roles in cognitive function and memory—, it is also important to study these effects of MDMA in the human brain.

Previously, potential 5-HT neurotoxic changes in the living human brain have only been identified using indirect methods. For example, some studies have evaluated the cerebrospiral fluid 5-HIAA concentrations in MDMA users and found either normal (Peroutz 1987) or decreased levels (Mccann et al., 1994; Ricaurte et al., 1990). Neuroendocrine challenge tests are another strategy for detecting 5-HT dysfunction by indirect means (Verkes et al., 2001). However, in vivo neuroimaging tools, such as positron emission tomography (PET), single photon emission computed tomography (SPECT), and several magnetic resonance (MR) imaging applications have begun to directly provide insights into the effects of MDMA on the living human brain. Furthermore, these imaging techniques have been shown to identify several potential functional consequences of MDMA-induced neurotoxicity, and may be useful in identifying unknown but potential long-term effects.

The purpose of this review will be to present an overview of the contributions that in vivo brain imaging tools have made to our understanding of the neurotoxic effects and functional consequences of MDMA use, and how such imaging tools could be used in future studies.

I Biological markers of neuronal injury

Studying 5-HT neuronal loss using PET and SPECT

The introduction of an increasing number of radioactive tracers and the development of special detecting systems, enable the detection of molecules in vivo and the production of functional images of brain chemistry. The most advanced detecting systems nowadays are PET and SPECT. PET uses relatively short-lived positron-emitting isotopes (such as 11C or 18F), whereas SPECT utilizes radioligands with a longer half-life (such as 99mTc) in a spatial resolution of most recently developed PET systems is approximately 4 mm. The spatial and temporal resolution of SPECT is lower than that of PET. However, because of the lower costs of the logistics and production of SPECT radiotracers, this technique is
more widely available than PET.

The 5-HT transporter is a structural element of the 5-HT neuron, and thought to be a reliable marker of the integrity of the 5-HT neuron (Zhou et al., 1998; Scheffel and Ricaurte 1990). Recently, PET and SPECT radioligands have been developed for neuroimaging of 5-HT transporters in the human brain. Because animal studies already showed that MDMA-induced neurotoxicity is associated with loss of 5-HT neurons, imaging of the 5-HT transporter with PET or SPECT is ideally suited for studying the potential neurotoxic effects of MDMA in the living human brain. However, because there are important features for a good in vivo tracer for 5-HT transporters, there are only a few radioligands which fulfill at least some of the criteria and subsequently only two tracers have been used to investigate the effects of MDMA in vivo.

$[^{11}C]Mcn5652$ PET

The $[^{11}C]Mcn5652$ PET study with $[^{11}C]Mcn5652$ was carried out in 1998 in human MDMA users (McCann et al., 1998). The purpose of the study was to compare $[^{11}C]Mcn5652$ labelled 5-HT transporter densities in human MDMA users with 5-HT transporter densities in control subjects. Nine males and 4 females who reported previous use of MDMA were enrolled, along with 9 male and 6 female control subjects. Participants agreed to abstain from use of psychoactive drugs for at least 3 weeks before the study. As in the MDMA-treated baboon, global decreases in 5-HT transporter densities were observed in the MDMA users, which correlated with the extent of previous MDMA use. Taken in conjunction with the results of previous animal studies showing selective decreases in 5-HT axonal markers after treatment with MDMA (Scheffel et al., 1998), this was the first report providing direct evidence that MDMA users are susceptible to MDMA-induced brain 5-HT neuronal injury.

$[^{11}F]\beta\text{-CIT}$ SPECT

Subsequently, PET and SPECT studies have been done to look at the 5-HT transporter densities in the human brain after treatment with MDMA, using $[^{11}F]\beta\text{-CIT}$ SPECT. The cocaine analogue $[^{11}F]\beta\text{-CIT}$ SPECT is presently the best studied and most used SPECT tracer for labeling of 5-HT transporters. $[^{11}F]\beta\text{-CIT}$ binds with high affinity to both dopamine and 5-HT transporters (Boja et al., 1999). In the in vivo region distribution of $[^{11}F]\beta\text{-CIT}$ in rats, monkeys, and humans correlates well with known regional concentrations of 5-HT transporters. The specific uptake of $[^{11}F]\beta\text{-CIT}$ in the striatum is primarily associated with DA transporters, while the selective 5-HT uptake inhibitor norpseudoephedrine (NEP) blocks the 5-HT uptake blocker fluoxetine. In contrast, the brain uptake of the inactive enantiomer $[^{11}L]Mcn5652$ is relatively uniform across brain regions. Scheffel and co-workers (1998) were the first to validate the use of $[^{11}C]Mcn5652$ PET in detecting MDMA-induced 5-HT neuronal loss. To this purpose, following baseline scans with $[^{11}C]Mcn5652$ PET, a baboon was treated with MDMA. PET studies at 13, 19 and 40 days post-MDMA revealed decreases in mean radioactivity of $[^{11}C]Mcn5652$, but not $[^{11}L]Mcn5652$, in all brain regions studied. Reductions in specific $[^{11}C]Mcn5652$ binding (calculated as the difference in radioactivity concentrations between $[^{11}L]$ and $[^{11}L]Mcn5652$) ranged from 84% in the pons to 89% in the occipital cortex. Data obtained from PET studies correlated well with regional 5-HT axonal marker concentrations in the CNS measured after sacrifice of the animal, although $[^{11}C]Mcn5652$ PET tended to underestimate the extent of 5-HT damage found post-mortem. Therefore, it was concluded that using $[^{11}C]Mcn5652$ PET it should be possible to determine whether human MDMA users are susceptible to MDMA's neurotoxic effects.
baseline $^{[11]}\beta$-CIT SPECT scans, the monkey was treated with MDMA. SPECT studies at 4, 10 and 31 days post-MDMA treatment revealed decreases in $^{[11]}\beta$-CIT binding ratios in the hypothalamic/midbrain region. Data obtained from SPECT studies in this brain region correlated well with regional 5-HT transporter densities obtained with autoradiography after sacrifice of the animal.

One other study has investigated reductions in 5-HT transporter densities after MDMA-treatment with SPECT. In that study the 5-HT transporter ligand 5-iodo-6-nitroquipazine (INQUIP) was used in control and MDMA-treated rhesus monkeys (Jagust et al., 1996). $^{[1]}$INQUIP was able to detect some cortical as well as subcortical reductions in 5-HT transporters in the MDMA treated monkeys when compared to the non-treated monkeys.

Several studies have recently been conducted using $^{[1]}$IC3-CIT SPECT to study the effects of MDMA on human brain 5-HT neurons. Semple and colleagues (1999) observed decreased $^{[1]}$IC3-CIT binding only in the cerebral cortex (particularly prominent in the primary sensory cortex) of 10 male MDMA users as compared to 10 well-matched controls. Reductions in binding inversely correlated with time since last MDMA use. No correlations were observed between $^{[1]}$IC3-CIT binding ratios and a variety of neuropsychological measures. However, there are several problems associated with this study. Subjects were asked to abstain from psychoactive drugs for one week, whereas this was 3 weeks in the $^{[1]}$C15McN5652 PET study (McCann et al., 1998). Furthermore, $^{[1]}$IC3-CIT SPECT scans were acquired 90 minutes post injection of the radiotracer. However, $^{[1]}$IC3-CIT does not reach near-equilibrium conditions earlier than about four hours post injection (Pirker et al., 2000). At scanning times this early, factors related to radioligand delivery and washout, rather than 5-HT transporter binding per se, play a prevalent role in determining $^{[1]}$IC3-CIT binding.

Using $^{[1]}$IC3-CIT SPECT, Reneman and colleagues (2001a) replicated findings of previous PET and SPECT studies suggesting that heavy use of MDMA is associated with neurotoxic effects on 5-HT neurons in several 5-HT rich brain regions. Three different subgroups of 54 MDMA users and 15 controls were scanned after a drug-free interval of at least 3 weeks. Subjects were recruited from the same community sources, and thus well matched for age, gender distribution and psychosocial factors. Interestingly, the authors observed significant decreases in overall binding ratios in female, but not in male heavy MDMA users, suggesting that females may be more susceptible than males to the neurotoxic effects of MDMA. It was also observed that MDMA-induced neurotoxic changes in most, but not all, brain regions of female ex-MDMA users were reversible, and that moderate MDMA use may lead to neurotoxic changes in the parieto-occipital cortex and occipital cortex, brain regions which seem to be particularly sensitive to MDMA's effects.

Regional differences in 5-HT transporter densities reported in MDMA users studied with $^{[1]}$IC3-CIT SPECT by Semple and Reneman are fewer than in the study of McCann and colleagues. This may reflect higher nonspecific binding of $^{[1]}$IC3-CIT. However, data obtained from $^{[1]}$IC3-CIT SPECT studies in the MDMA treated rhesus monkey correlated well with regional 5-HT transporter densities obtained with autoradiography in some brain regions. As for $^{[1]}$C15McN5652 PET, also $^{[1]}$IC3-CIT SPECT may lack adequate sensitivity to detect smaller MDMA-induced 5-HT lesions.

Studying non specific neuronal loss using ^{1}H MR Spectroscopy

The reduction of the amino acid N-acetyl aspartate (NAA) detected by proton magnetic resonance spectroscopy (^{1}H MRS) represents a robust but unspecific marker for neuronal loss or dysfunction (Urenjak et al., 1993). In addition to NAA, myo-inositol (MI, a possible glial marker) and creatine/phosphocreatine (Cr) can be assessed. Determining NAA changes in relation to Cr is commonly employed and seems valid, because Cr remains stable in a variety of brain diseases. In 1999 Chang and colleagues reported findings on ^{1}H MRS spectra obtained in 22 MDMA users and 37 controls, who had to abstain from psychoactive drugs for at least 2 weeks. Normal NAA levels were observed in MDMA users, but MI and MI/Cr levels were increased in the parietal white matter of MDMA users. The cumulative lifetime MDMA dose showed significant effects of MI in the parietal white matter and the occipital cortex. The normal NAA levels suggest a lack of significant neuronal injury in MDMA users, whereas increased MI may reflect increased glial content, possibly reflecting ongoing repair processes.

In contrast, Reneman and co-workers (submitted for publication) recently reported decreased NAA/Cr and NAA/Cho levels in the frontal cortex of 15 male MDMA users, studied at least 1 week after the last MDMA tablet taken, as compared to 12 gender and age matched control subjects. Furthermore, a significant association was observed between extent of previous MDMA use and NAA/Cr or NAA/Cho ratios in the frontal cortex. Discrepancies between the study by Chang and that of Reneman, may be attributed in part to age-
associated differences between both studies. In the Reneman study, subjects (both MDMA users and controls) were on average younger with a smaller age range. However, precise quantification of 'near-water' resonance peaks is difficult in water suppressed 1H MRS, and may therefore also account for the discrepancy between the studies.

II Functional consequences of MDMA-induced neuronal injury
5-HT is involved in various brain functions, such as mood, sleep, appetite and cognitive function. In addition, considerable evidence has accumulated suggesting that 5-HT plays a pivotal role in the regulation of post-synaptic 5-HT2 receptor densities (see for review Meneses 1999) and control of cerebral perfusion (Belohlavkova et al., 2001; Cohen et al., 1996). While a number of studies have shown evidence for cognitive problems in MDMA users using neuropsychological assessments (for review see Parrott 2000) few neuroimaging studies have simultaneously investigated potential functional consequences of MDMA-induced 5-HT neurotoxic lesions. This lack of studies is probably related to the fact that these functions are difficult to study using functional neuroimaging techniques, except for techniques focusing on cerebral perfusion and cerebral glucose metabolic rate, i.e. techniques indicating general neuronal metabolic activity. Although some authors have investigated the acute effects of ecstasy on glucose metabolism and cerebral blood flow (Schreckenberger et al., 1998 and 1999; Gamma et al., 2000), this review concentrates on the long-term effects of MDMA-induced 5-HT neurotoxic lesions.

Post-synaptic 5-HT2 receptor densities
While 11C]MecN5652 and [111]β-CIT SPECT study pre-synaptic 5-HT transporter densities, the development of iodine-123-4-amino-N-[1-[3-[4-fluorophenoxy]propyl]4-methyl-4-piperidinyl]-5-iodo-2-methoxybenzamide ([111]IR91150), a radioligand which binds with high affinity and selectivity to 5-HT2A receptors (Terriere et al., 1995), has made it possible to assess the density of cortical HT2A receptors in the living human brain using SPECT (Busato et al., 1997). While the effects of MDMA on 5-HT nerve fibers and terminals have been studied extensively in animals, little is known about its effects on post-synaptic 5-HT receptors. Only one study has evaluated post-synaptic 5-HT2 receptor densities in MDMA-treated rats (Scheffel et al., 1992b). There is considerable evidence from the literature that post-synaptic 5-HT2 receptors manifest a down-regulation in situations with high levels of synaptic 5-HT, while 5-HT depletion has been associated with a compensatory up-regulation of 5-HT2 receptors (Sharif et al., 1989; Stockmeier and Kellar 1989). Therefore, Reneman and colleagues studied cortical 5-HT2A receptor densities in the cerebral cortex of 17 recent as well as 7 ex-MDMA users using [99mTc]IR91150 SPECT (Reneman 2001b). The cut-off point of the drug-free interval in the ex-MDMA group was chosen at 2 months, while 1 week in the recent MDMA group. The authors report that post-synaptic 5-HT2A receptor densities were significantly lower in all cortical areas studied, while 5-HT2A receptor densities were significantly higher in the occipital cortex of ex-MDMA users. The results of this study suggest a compensatory up-regulation of post-synaptic 5-HT2A receptors in the occipital cortex of ex-MDMA users possibly due to low synaptic 5-HT levels.

Cerebral blood flow
SPECT as well as perfusion MR imaging, have been employed to study the effects of MDMA-induced 5-HT alterations on brain cerebrovascularity of MDMA users. Chang and colleagues (2000) compared regional blood flow (rCBF) in 21 MDMA users and 21 age- and gender matched control subjects using [99mTc] hexamethylpropyleneamine oxime (HMPAO) SPECT. In addition, 10 of the MDMA subjects were scanned after receiving 2 doses of MDMA. Eight subjects were scanned within 3 weeks after they received MDMA, while 2 were scanned more than 2 months later. The 21 MDMA users showed no different regional or global rCBF compared to controls. However, 3 weeks after MDMA administration, rCBF was decreased, implicating vasoconstriction, in several cortical brain regions and caudate, whereas rCBF tended to be increased, implicating vasodilatation, rather than decreased in the two subjects who were scanned 2-3 months after MDMA administration. The short-term effect of MDMA involves excessive release, and it was therefore suggested that with normalization of the excess of 5-HT or depletion of 5-HT in some regions at later time point, rCBF may return to normal or increase above normal, due to removal of serotonergic constrictive effects.

Similar observations were made by Reneman and co-workers (Reneman et al., 2000a). In order to examine whether changes in brain 5-HT2A receptor densities are associated with alterations in blood vessel volumes, [99mTc]IR91150 SPECT and perfusion weighted MRI was performed in 5 MDMA users and 6 control subjects. MDMA using subjects were scanned after a drug-free interval of on average 7 weeks. Using dynamic contrast-enhanced perfusion-weighted MR imaging, has become possible to study the brain vasculature by calcu-
Cerebral glucose metabolic rate

Two studies used 2-{18F}-fluoro-2-deoxy-D-glucose (FDG) PET as an index of glucose metabolism. In the first, PET scans were performed 2-16 months after the last MDMA ingestion in 7 MDMA users and 7 age-matched tumor patients (Obrocki et al., 1999). It was postulated that MDMA-induced 5-HT neurotoxic lesions may lead to alterations in glucose utilization. Glucose metabolic uptake of the MDMA using group was reduced in the left hippocampus, a brain region known to be consistently affected by MDMA in animals treated with this drug. Recently, by the same group, a second study was published in which FDG PET scans were performed between 3 days and 96 months after the last MDMA ingestion in 93 MDMA users and 27 age-matched oncology patients (Buchert et al., 2001). FDG uptake was reduced in the putamen, caudate and left amygdala. No association between FDG uptake and extent of previous MDMA use was observed. Because differences between MDMA users were rather small and restricted to some brain regions, the authors concluded that FDG PET cannot be used as a diagnostic tool in detecting MDMA-induced neuronal loss, and should rather be used complementary with other imaging tools such as PET and SPECT.

III Linking biological markers of neuronal injury with impaired cognitive function

By combining imaging studies with neuropsychological assessment it is possible to study links between neuronal loss, or brain damage, and cognitive function. Several studies have found an association between markers of neuronal injury and impaired cognitive function in MDMA users. Reneman and colleagues (Reneman et al., 2000b) investigated whether MDMA use is related to compensatory alterations in post-synaptic 5-HT_{2A} receptors and whether there is a relation between the latter and memory disturbances. Memory is of particular interest since several studies have found that recreational MDMA users display significant memory impairments, whereas their performance on other cognitive tests is generally normal (Parrott 2000). To this purpose brain cortical 5-HT_{2A} receptor densities were studied with \textsuperscript{[11C]}J-5-I-R91150 SPECT in 13 abstinent MDMA-users and 9 healthy controls. Memory performance was assessed using a word recall test (Rey Auditory Verbal Learning Test). \textsuperscript{[11C]}J-5-I-R91150 binding ratios were significantly higher in the occipital cortex of MDMA users than in controls, indicating up-regulation. Mean cortical 5-HT_{2A} receptor binding correlated positively with RAVLT-recall in MDMA users, suggesting altered 5-HT neuronal function with correlated memory impairment in abstinent MDMA users.

In another study, Reneman and colleagues (2000c) compared cortical \textsuperscript{[11C]}J-B-CIT labelled 5-HT transporter densities in different groups of MDMA users: twenty-two recent MDMA users who did not use MDMA for at least 3 weeks, 16 ex-MDMA users who had stopped using MDMA for more than 1 year, and 13 controls who claimed never to have used MDMA were enrolled. In addition, memory was assessed using RAVLT. Reduced cortical 5-HT transporter densities were observed in recent, but not ex-MDMA users. However, both recent as well as ex-MDMA users recalled significantly less words compared to controls. Greater use of MDMA was associated with greater impairment in immediate verbal memory. However, memory performance was not associated with \textsuperscript{[11C]}J-B-CIT binding to cortical 5-HT transporters, in contrast to the previously mentioned study by Reneman (2000b) in which a strong association between post-synaptic 5-HT_{2A} receptor densities and memory performance was observed. These findings may suggest that while the neurotoxic effects of MDMA on 5-HT neurons in the human cortex may be reversible, the effects of MDMA on memory function may be long(er) lasting. Finally, one other study has investigated the relation between brain damage and memory function (Reneman et al., 2001d). Again, RAVLT was used to study 8 abstinent MDMA users and 7 controls. In addition 1H MRS was used in different brain regions of all MDMA users to measure NAA/Cr ratios. MDMA users recalled significantly less words compared to controls. In MDMA users, delayed memory function was strongly associated with NAA/Cr only in the prefrontal cortex, suggesting that greater decrements in memory function predicted lower NAA/Cr levels -and by inference greater neuronal dysfunction- in the prefrontal cortex of MDMA users.

Although most of these studies were conducted using small sample sizes, they at least suggest an intriguing relationship between markers of brain damage and memory performance in MDMA users. However,
they need be confirmed in a larger number of subjects.

Other neuroimaging techniques
Functional MR imaging (fMRI) may have tremendous potential for better delineating the consequences of MDMA-induced neurotoxicity. fMRI is a novel imaging technique aimed at localizing cerebral functions, including sensorimotor, vision, language and memory (Bolla et al., 1990). This technique is based on the phenomenon that activation of specific brain areas causes changes in hemodynamic and oxygenation of the cerebral blood at these locations, which can be visualized with echo-planar MR imaging techniques. fMRI may be particularly useful in visualizing brain activity patterns that correspond with cognitive functions in MDMA users, because several research groups have found MDMA users to have cognitive deficits, particularly on memory tasks. A study similar to fMRI was recently conducted by Gamma and colleagues (2001) in which rCBF profiles obtained with [H,2O] PET were compared between MDMA users and controls during cognitive activation by a task requiring sustained attention. No differences between the two groups were observed. Since the bulk of studies utilizing classic neuropsychiatric testing reported deficits in memory function (Bolla 1998), whereas performance on more basic cognitive tasks is generally unimpaired (Parrott 2000), it would be of interest to compare rCBF profiles between MDMA users and controls during activation by a memory task. However, fMRI may prove to be a more valuable technique in identifying MDMA-induced functional consequences, since they can be made even faster than [H,2O] PET, without engendering more radiation dosimetry with each sampling and with fine temporal resolution.

Another technique of interest may be diffusion-weighted MR imaging, which provides a unique form of MR contrast that enables the diffusional motion of water molecules to be quantitatively measured in biological tissue, especially axons (Le Bihan et al., 1992). Cellular structures, such as highly organized myelinated axons in white matter, restrict water molecular motion, and the apparent diffusion coefficient (ADC) is reduced compared to diffusion in bulk water (Moseley et al., 1992; Pierpaoli et al., 1996). Any process that results in changes in structural elements of tissue, removing some of the “restricting” barriers, can result in increased ADC values. It is therefore thought that diffusion-weighted MR imaging is a promising approach for the evaluation of tissue changes in degenerating brain and nerve matter (Horsfield et al., 1998; Kinoshita et al., 1999). In a preliminary study Reneman and colleagues (2000a) observed increased ADC values in the globus pallidus of 8 MDMA users as compared to 6 controls, matched for age and gender distribution. These changes in the globus pallidus may reflect (non-5-HT specific) tissue changes, which are in agreement with case reports suggesting that the globus pallidus is particularly sensitive to the effects of MDMA (Spatt et al., 1997).

In the near future, diffusion tensor imaging (DTI) may turn out to be a useful technique in studying axonal projections in the living human brain. It enables in vivo

Table 1. Summary of neuroimaging studies investigating MDMA’s effects in the human brain

<table>
<thead>
<tr>
<th>Investigating</th>
<th>Biological marker</th>
<th>Technique used</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurological loss</td>
<td>5-HT transporter</td>
<td>[1H]McN5652 PET</td>
<td>McCann 1998</td>
</tr>
<tr>
<td></td>
<td>NAA</td>
<td>[31]H MRS</td>
<td>Semple 1999; Reneman 2001a; 2001c</td>
</tr>
<tr>
<td></td>
<td>ADC</td>
<td>Diffusion MRI</td>
<td>Chang 1999</td>
</tr>
<tr>
<td>Functional consequences</td>
<td>5-HT, receptor</td>
<td>[31]R91150 SPECT</td>
<td>Reneman 2000b; 2001b</td>
</tr>
<tr>
<td></td>
<td>Cerebral blood flow</td>
<td>[31]TcHMPAO SPECT</td>
<td>Chang 2000</td>
</tr>
<tr>
<td></td>
<td>Cerebral glucose metabolic rate</td>
<td>Perfusion MRI</td>
<td>Reneman 2000a; Reneman 2001c</td>
</tr>
<tr>
<td></td>
<td>Cognitive function</td>
<td>FDC PET</td>
<td>Obrocik 1999; Buchert 2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fMRI</td>
<td>Gamma 2001</td>
</tr>
<tr>
<td>Linking neuronal injury with cognitive function</td>
<td>5-HT, receptor + memory</td>
<td>[31]R91150 SPECT</td>
<td>Reneman 2000b</td>
</tr>
<tr>
<td></td>
<td>5-HT transporter + memory</td>
<td>[31]H MRS</td>
<td>Reneman 2001c</td>
</tr>
<tr>
<td></td>
<td>NAA + memory</td>
<td>[31]H MRS</td>
<td>Reneman 2001d</td>
</tr>
</tbody>
</table>
three dimensional (3D) reconstruction of axonal projections using a rapid 3D high-resolution diffusion-weighted imaging technique combined with a recently designed fiber reconstruction algorithm (Xue et al., 1999). However, it is of great importance that animal studies are conducted in parallel to studies in humans to validate this technique, and other mentioned in the present report, in detecting MDMA-induced 5-HT neuronal lesions.

Discussion and future studies

In summary, using brain imaging techniques, several lines of evidence provide suggestive evidence that human MDMA users are susceptible to MDMA-induced neuronal damage, and that this may lead to functional impairments such as memory loss and possibly alterations in the brain cerebrovasculature.

It is important to note that the presently discussed studies are limited by a number of factors. Their conclusions heavily depend upon results of experimental animal studies showing MDMA-induced serotonergic lesions. Studies in humans are clearly subject to ethical and methodological constraints (Curran 2000). Consequently, until now most studies conducted in humans have had a retrospective design, in which evidence is indirect and differs in the degree to which any causative links can be implied between MDMA use and neurotoxicity. Clearly, to definitively establish a causative link between observed neurotoxic changes and MDMA use, an experimental study design would be needed. However, given that the drug is illicit, has potential neurotoxicity and has resulted in some fatalities, it is very difficult to perform such a study. One possible approach would be to assess people both before and after they took MDMA. Neuroimaging techniques may be very helpful in providing such longitudinal studies in human MDMA users.

Whereas both PET and SPECT have become commonly used techniques in assessing the potential risk of MDMA, more recently introduced MR imaging tools hold great promise, but will yet have to prove their potential to the field. Currently available radioligands may not have the requisite sensitivity to detect smaller MDMA-induced lesions. Without doubt more selective radioligands for the 5-HT transporter will be developed for PET or SPECT in the future that may be more sensitive in detecting MDMA-induced neuronal loss. Although none of the currently available techniques is perfect, converging lines of evidence are needed (using combinations of different imaging techniques) to make an adequate risk assessment of MDMA. In any case, the currently available preliminary data obtained using these methods can be strengthened considerably by laying the groundwork with preclinical studies in animals where direct, post-mortem neurochemical and neuroanatomical studies can be conducted.

Future studies will have to find out whether neurotoxic effects in heavy MDMA users tested to date also occur in less frequent users. Some have argued that even a single dose of MDMA may be neurotoxic in human beings (Gjisman et al., 1999; McCann and Ricaurte 2001). MDMA users may be studied prospectively to shed light on the fate of damaged 5-HT neurons with age, and whether dysfunction (e.g., memory loss) resolves with abstinence or increases with age. More studies should be conducted combining neuroimaging studies with neuropsychological assessments to study links between brain damage and memory loss. Finally, more studies should be conducted focusing on other systems than the serotonergic system to increase our understanding on the effects of MDMA and subsequent compensatory mechanisms in the brain.

If indeed MDMA leads to 5-HT neuronal injury the health implications may be considerable, in which MDMA will be responsible for early or late neuropsychiatric morbidity. Neuroimaging techniques will greatly contribute to our understanding of MDMA’s short- and long-term effects in the human brain. The fact that all these techniques are non-invasive and most of them can be used repeatedly in the same subject is a very critical feature.

References

Boja JW, McNeill RM, Lewin AH, Abraham P, Carroll FL, Kuchar MJ. Selective dopamine tran...
Investigating the potential neurotoxicity of Ecstasy (MDMA): An imaging approach

Arch Gen Psychiatry 2000c; 58: 901-906.

Teniere D, Janssen PM, Commeren W.
Investigating the potential neurotoxicity of Ecstasy (MDMA): An imaging approach

