Study of charm production by neutrinos in nuclear emulsion
Melzer, O.

Citation for published version (APA):
Melzer, O. (2001). Study of charm production by neutrinos in nuclear emulsion

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1 Introduction 1

2 Charm production in neutrino charged current interactions 7
 2.1 Kinematics 8
 2.2 Deep inelastic charm production 10
 2.3 Diffractive charm production 14
 2.4 Leptonic decays of charmed hadrons 15
 2.5 Present experimental status 18

3 The CHORUS experiment 23
 3.1 Neutrino beam 24
 3.2 The experimental setup 26
 3.2.1 Target area 26
 3.2.2 Hadron spectrometer 28
 3.2.3 Honeycomb chamber 29
 3.2.4 Calorimeter 29
 3.2.5 Muon spectrometer 31
 3.2.6 Trigger system 32
 3.3 Emulsion target 33
 3.3.1 Track formation 34
 3.3.2 Emulsion shrinkage and track distortion 34
 3.3.3 Swelling of emulsion 35
 3.3.4 Automatic scanning 36
 3.3.5 Scanning procedure 37
 3.3.6 Manual scanning 39
 3.4 Event reconstruction 40
IV

CONTENTS

4 Deep inelastic charm production 43
4.1 Analysis procedure 43
 4.1.1 Classification of neutrino events 43
 4.1.2 Correcting the data 45
 4.1.3 Event generation and detector response 49
 4.1.4 Charm event selection 52
4.2 Results 54
 4.2.1 Charm topologies 54
 4.2.2 Charm kinematics 58
 4.2.3 Charm cross section 58
 4.2.4 Neutral charm versus charged charm 65
 4.2.5 Charm quark mass 67
 4.2.6 Charm fragmentation 68
 4.2.7 Strange sea 70
 4.2.8 Weak mixing V_{cd} 74

5 Diffractive charm production 77
5.1 Selection of diffractive D_{s}^{*} events 77
5.2 Background study 78
5.3 Detector acceptance and reconstruction efficiency 78
5.4 Reconstruction of a candidate event 79
5.5 Limit on the ν_{τ} mass 83
5.6 Cross section 84

Summary 87

Samenvatting 89

Acknowledgements 97