De novo malignancy after paediatric renal replacement therapy

Coutinho, H.M.; Groothoff, J.W.; Offringa, M.; Gruppen, M.P.; Heymans, H.S.A.

Published in:
Archives of disease in childhood

DOI:
10.1136/adc.85.6.478

Citation for published version (APA):
De novo malignancy after paediatric renal replacement therapy

H M Coutinho, J W Groothoff, M Offringa, M P Gruppen and H S A Heymans

doi:10.1136/adc.85.6.478

Updated information and services can be found at:
http://adc.bmjjournals.com/cgi/content/full/85/6/478

These include:

References
This article cites 22 articles, 2 of which can be accessed free at:
http://adc.bmjjournals.com/cgi/content/full/85/6/478#BIBL

Rapid responses
You can respond to this article at:
http://adc.bmjjournals.com/cgi/eletter-submit/85/6/478

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article

Topic collections
Articles on similar topics can be found in the following collections

- Transplantation (282 articles)
- Cancer:other (950 articles)
- Renal Medicine (427 articles)
- Other Pediatrics (1856 articles)

Notes

To order reprints of this article go to:
http://www.bmjjournals.com/cgi/reprintform

To subscribe to Archives of Disease in Childhood go to:
http://www.bmjjournals.com/subscriptions/
De novo malignancy after paediatric renal replacement therapy

H M Coutinho, J W Groothoff, M Offringa, M P Gruppen, H S A Heymans

Abstract

Aims—To determine frequency, type, determinants, and outcome of malignancies in children with end stage renal failure. Methods—All Dutch patients, aged less than 15 years, who started chronic renal replacement therapy between 1972 and 1992 and who were at least 18 years old on 1 January 1997, were retrospectively studied.

Results—Mean follow up from first renal replacement therapy was 15.5 years. Twenty two malignancies were found in 21 of 249 patients. Skin cancer accounted for 59% and non-Hodgkin lymphoma for 23% of malignancies. At 25 years after first renal replacement therapy, the probability of developing a malignancy was 17% (95% CI: 9 to 24%). Compared to the general population the incidence rate for overall cancer was tenfold higher. For non-melanoma skin cancer and non-Hodgkin lymphoma, standardised risks were 222 and 46 respectively. The use of more than 20 mg/kg cyclophosphamide showed an association with increased risk of malignancy. Six patients died as a result of their malignancy, accounting for 9.5% of overall mortality. Whereas four out of five patients with non-Hodgkin lymphoma died, the most frequent malignancy, skin cancer, did not contribute to mortality.

Conclusion—The long term risk of certain malignancies is significantly increased in children who have undergone renal replacement therapy. As an important contributor to overall mortality, awareness of this risk of malignancy in these patients is necessary, especially after treatment with cyclophosphamide.

(Keywords: renal replacement therapy; malignancy; follow up)

The incidence of de novo malignancies in adult recipients of renal transplants is between six and seven times higher than in the general population. This is thought to be related to the use of immunosuppressive drugs for prevention of graft rejection. Mechanisms through which malignancies can arise include impaired immune surveillance, increased susceptibility to oncocentric viruses, and direct mutagenic effects of the drugs themselves. An increased risk of malignancy has also been described in adult dialysis patients: Inamoto et al found this group to have a 1.4-fold increased risk.

In adult kidney recipients, post-transplant malignancy is known to be an important cause of morbidity and mortality, with cumulative incidences in long term follow up studies varying from 2.6% to 19.4%. Non-melanoma skin cancer is the most frequent malignancy in this group.

In young adults with renal insufficiency since childhood, malignancy seems to be much less of a problem, with cumulative incidences varying from 0.8% to 3.9%. Lymphoma is the most frequent malignancy. However, current studies are either based on incomplete data registry or follow up time is relatively short. The long term risk of malignancy in young adults with renal insufficiency since childhood has not been evaluated sufficiently.

We present data from a Dutch national cohort study on Late Effects of Renal Insufficiency in Children (LERIC). The aim of this study, in which completeness of the cohort has been thoroughly assessed, is to determine frequency, type, determinants, and outcome of malignancies in this group of children.

Methods

STUDY POPULATION

The medical history of all Dutch patients, under 15 years of age, who started chronic renal replacement therapy (RRT) between 1972 and 1992 and who were at least 18 years old on 1 January 1997 was reviewed. Patients who needed RRT for more than four consecutive months were considered to be patients on chronic RRT. The cohort formation was based on data provided by the National Dutch Registry of patients on RRT (RENINE, Rotterdam, Netherlands). RENINE was founded in 1985. The completeness of data approaches 100% as central registration is obligatory for reimbursement of RRT. RENINE is the Dutch source of the European Dialysis and Transplantation Association (EDTA). Retrospective registration of patients with RRT starting before 1985 was checked by comparing RENINE data with the database of all Dutch centres for paediatric dialysis and kidney transplantation as well as the database of all centres for adult dialysis and transplantation. A list of all patients who fitted our age criteria was submitted to us by RENINE; it contained registry numbers, treatment modality, and the name of the last physician and hospital of treatment. All nephrologists in the Netherlands received a list of those cohort patients, who were under their treatment or had been so during the time of death. We contacted all physicians, asking them whether the list sent by RENINE was consistent with their registry base. Data were collected...
Table 1 Patient characteristics of the LERIC cohort

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Number/LERC cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients (male/female)</td>
<td>249 (136/113)</td>
</tr>
<tr>
<td>Total follow up time from start of RRT</td>
<td>3870 patient years</td>
</tr>
<tr>
<td>Mean follow up time from start of RRT, y (range)</td>
<td>15.5 (0.2–30.0)</td>
</tr>
<tr>
<td>Mean age at start of RRT, y (range)</td>
<td>10.6 (1.9–14.9)</td>
</tr>
<tr>
<td>Mean age at first transplantation, y (range)</td>
<td>11.5 (0.9–27.0)</td>
</tr>
<tr>
<td>Number of deaths</td>
<td>63</td>
</tr>
<tr>
<td>Number of patients never transplanted</td>
<td>18</td>
</tr>
<tr>
<td>Mean follow up time of patients never transplanted, y (range)</td>
<td>1.8 (0.3–9.8)</td>
</tr>
</tbody>
</table>

between November 1998 and July 2000. The study was approved by the Medical Ethical Committee of all participating centres.

DATA COLLECTION
To determine in which centres each patient had been treated, data collection was started in the centres of last treatment according to RE-NINE. From data found here, a list of all centres of treatment was made for each patient. For these centres, visits were arranged. If patients had been under treatment at two centres simultaneously, both centres were visited, unless all required data were found in one centre. If patients were found to have been treated in additional centres, these were added to the list and were visited as well.

A total of 37 hospitals in the Netherlands were visited by members of the LERIC team to collect and standardise medical histories of all patients included in the study. To achieve this, all available medical charts were reviewed. If charts had been lost or destroyed, data for a particular period could not be collected. These data were listed as missing, although important events such as death and occurrence of malignancy could be obtained from more recent medical information. Recorded data included date of birth, sex, kidney disease, date of first RRT, RRT history, use and type of immunosuppressive agents, total duration or cumulative dose of immunosuppressive agents irrespective of start of RRT, development of malignancy, date of diagnosis, type and outcome of malignancy, and occurrence and cause of death. Data were recorded from the first moment that renal disease led to hospitalisation until either patient death or last registered hospital visit up to July 2000. If uncertainties about malignancies remained, additional information was gathered by contacting the patient’s doctor. Malignancies prior to RRT and benign tumours were not included.

DATA ANALYSIS
Standardised risks were determined by calculating the expected number of malignancies based on the 1996 report of Incidence of Cancer in the Netherlands of the Netherlands Cancer Registry.17 These national data provide cancer incidence in the general population with a completeness of more than 95%. Nine regional cancer registries receive lists of newly diagnosed cases on a regular basis from the pathology and haematology departments in their region. In addition, lists of hospitalised cancer patients are obtained, based on data from the National Registry of Hospital Discharge Diagnosis (Landelijke Medische Registratie). After extensive checks for inconsistencies and duplicate records, the data are entered into the national database. All malignant and in situ malignancies are registered, except for basal cell carcinomas of the skin and carcinoma in situ of the cervix. As these malignancies are often removed without affirmation of the diagnosis by pathologist laboratories, registration of their incidence would not be reliable. Skin cancer is recorded per type per patient, unless new lesions arise more than three months after diagnosis. A malignancy first discovered at autopsy is also included in the cancer registry.

For all comparisons with the LERIC cohort we used an age and gender matched group of the general population. Calculation of standardised risks was based on the incidence rates in the Netherlands between 1992 and 1996, whereas our study cohort consists of all Dutch patients, aged under 15 years, who started chronic RRT between 1972 and 1992 and were at least 18 years old on 1 January 1997. No national registry for cancer incidence existed in the Netherlands until 1989. We therefore assumed that the incidence of cancer in the Netherlands was that between 1992 and 1996, that incidence remained constant between 1972 and 1992, and that incidence was distributed in a homogeneous way in the 0–44 year old age group. The standardised risk in the skin cancer group was calculated with the exclusion of basal cell carcinomas.

SPSS 9.0 and CIA (Confidence Interval Analysis, Prof. M J Gardner and British Medical Journal) were used for statistical calculation. For all factors marked with an asterisk in table 4, persons with the value zero were included in the reference group. Kaplan–Meier analysis was performed to determine cumulative cancer incidence. Cox regression analysis was performed to analyse potential risk factors. Time was defined as the amount of patient years at risk, with risk starting at first RRT (this is the moment one is considered a patient) and ending at diagnosis of malignancy, last recorded hospital visit, or patient death. If potentially oncogenic drugs such as cyclophosphamide were given before start of RRT, these were included.

Results
PATIENT CHARACTERISTICS
Table 1 shows patient characteristics of the whole of the LERIC cohort. From first RRT a total of 3870 patient years was recorded, with data of 81 patient years missing. Mean follow up was 15.5 years per patient. For 82 patients (33%) follow up was more than 20 years. At the end of the study no patients were lost to follow up. Eighteen patients never underwent transplantation; mean follow up time from first RRT was 1.8 years and 17 patients died within a mean time of 1.4 years after start of RRT (range 0.3–4.0). Sixty seven patients were transplanted once, 118 twice, 38 three times, and eight four times. Treatment modality at the
Confidence intervals were calculated with CIA (Confidence Interval Analysis, Prof. MJ Gardner and group of the general population in the Netherlands between 1992 and 1996.

†Basal cell carcinoma is excluded, because no national registration exists for this tumour.

*Years at risk defined as time between first renal replacement therapy and diagnosis of malignancy, last recorded hospital visit, or patient death.

Table 3: Standardised risk of developing a malignancy for the LERIC cohort

<table>
<thead>
<tr>
<th>Type</th>
<th>No. of tumours</th>
<th>Mean age at diagnosis of malignancy, y (range)</th>
<th>Interval between first transplantation and diagnosis, y (range) *</th>
<th>Mean follow up time after diagnosis, y (range)</th>
<th>No. of patients who died due to malignancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin cancer</td>
<td>13</td>
<td>27.8 (14.3–34.5)</td>
<td>15.0 (5.5–20.2)</td>
<td>3.6 (0.4–12.9)</td>
<td>0</td>
</tr>
<tr>
<td>SCC</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>BCC</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Melanoma</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>M. Bowen</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Non-Hodgkin lymphoma</td>
<td>5</td>
<td>23.5 (11.1–31.1)</td>
<td>11.7 (0.6–19.9)</td>
<td>0.6 (0.0–1.7)</td>
<td>4</td>
</tr>
<tr>
<td>ALL</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Fibrosarcoma</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Grawitz tumour</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Leiomyosarcoma</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>22</td>
<td>25.9 (11.1–34.5)</td>
<td>12.9 (0.1–21.1)</td>
<td>2.6 (0.0–12.9)</td>
<td>6</td>
</tr>
</tbody>
</table>

*Excluding one patient with malignant melanoma who never underwent transplantation. SCC, squamous cell carcinoma; BCC, basal cell carcinoma; ALL, acute lymphatic leukaemia.

INITIATION AND TYPE OF MALIGNANCY

Twenty two malignancies were found in 21 of the 249 patients (8.4% of those included in the study). Table 2 shows type, frequency, and age at diagnosis of malignancy, as well as interval between first transplantation and diagnosis of malignancy, follow up time recorded after diagnosis of malignancy, and death as a result of malignancy. Except for one patient with malignant melanoma, all patients with malignancies had been transplanted at least once. Thirteen patients had skin cancer (57% of all malignancies) and five had non-Hodgkin lymphoma (24%). The other malignancies found were one case of acute lymphatic leukaemia, one abdominal fibrosarcoma, one Grawitz tumour of the own kidney, and one leiomyosarcoma of the bladder. In the skin cancer group the ratio of basal cell carcinoma versus squamous cell carcinoma was 3:7. Some of the patients with skin cancer had lesions at multiple locations.

Mean age at diagnosis of malignancy was 25.9 years (SD 6.6, range 11.1–34.5), but skin cancer developed at a later mean age than non-Hodgkin lymphoma (at 27.8 and 23.5 years, respectively). The mean interval between first RRT and diagnosis of cancer was 13.8 years (SD 6.5, range 1.3–23.1). With 12 male and nine female patients, sex distribution in the malignancy group was comparable to the whole LERIC cohort as well as to the whole of the Netherlands in 1996 (51% male, 49% female).

STANDARDISED RISKS

Figure 1 shows the probability of developing a malignancy as a function of time since start of RRT (Kaplan–Meier analysis). At 25 years after first RRT the risk of developing a malignancy was 17% (95% CI: 9 to 24%). The increase in risk was most notable at 15 years after first RRT. Table 3 shows standardised risks of developing a malignancy. Compared to the general population the overall risk was ten-fold higher for patients in the LERIC cohort, with a larger risk for males than for females for overall cancer, non-melanoma skin cancer, and non-Hodgkin lymphomas. For non-melanoma skin cancer and non-Hodgkin lymphomas, standardised risks were 222 and 46 respectively. In the skin cancer group basal cell carcinoma was excluded, because no national registration exists for this tumour. This type of skin cancer is often removed without affirmation of diagnosis by pathologist laboratories. Therefore registration of its incidence would not be reliable.

DETERMINANTS

Table 4 shows variables analysed as potential risk factors. Only the use of more than 20 mg/kg cyclosporinamide was associated with an increased risk of malignancy. Standardised risk increased with increasing dosage. Even when the one patient with cancer of the bladder

Table 3: Standardised risk of developing a malignancy for the LERIC cohort

<table>
<thead>
<tr>
<th>Type</th>
<th>No. of patients</th>
<th>Years at risk*</th>
<th>Overall cancer rate LERIC (per 1000 person years)</th>
<th>Overall cancer rate population (per 1000 person years)</th>
<th>SR overall cancer (95% CI)</th>
<th>NMSC rate LERIC (per 1000 person years)†</th>
<th>NMSC rate population (per 1000 person years)†</th>
<th>SR NMSC (95% CI)†</th>
<th>NHL rate LERIC (per 1000 person years)</th>
<th>NHL rate population (per 1000 person years)</th>
<th>SR NHL (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin cancer</td>
<td>249</td>
<td>3870</td>
<td>0.56</td>
<td>10 (6.3–15.1)</td>
<td>2.1</td>
<td>0.0093</td>
<td>222 (96–438)</td>
<td>1.3</td>
<td>0.028</td>
<td>0.018</td>
<td>46</td>
</tr>
<tr>
<td>Male</td>
<td>136</td>
<td>2171</td>
<td>0.43</td>
<td>13 (6.9–23.3)</td>
<td>2.3</td>
<td>0.01</td>
<td>230 (74–530)</td>
<td>1.8</td>
<td>0.038</td>
<td>0.018</td>
<td>47</td>
</tr>
<tr>
<td>Female</td>
<td>113</td>
<td>1699</td>
<td>0.68</td>
<td>8 (3.6–14.9)</td>
<td>1.8</td>
<td>0.0087</td>
<td>203 (42–593)</td>
<td>0.59</td>
<td>0.018</td>
<td>0.018</td>
<td>33</td>
</tr>
</tbody>
</table>

*Years at risk defined as time between first renal replacement therapy and diagnosis of malignancy, last recorded hospital visit, or patient death.
†Basal cell carcinoma is excluded, because no national registration exists for this tumour.
SR, standardised risk; NMSC, non-melanoma skin cancer; NHL, non-Hodgkin lymphoma.

www.archdischild.com
Table 4 Variables analysed as potential risk factors for development of malignancy in the LERIC cohort

<table>
<thead>
<tr>
<th>Variable (index versus reference)</th>
<th>Index group: cancer/ total exposed</th>
<th>Reference group: cancer/ total not exposed</th>
<th>Relative risk</th>
<th>95% confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male sex</td>
<td>12/136</td>
<td>9/113</td>
<td>1.04</td>
<td>0.44–2.47</td>
</tr>
<tr>
<td>Total transplantation time more than 1 year*</td>
<td>18/204</td>
<td>3/45</td>
<td>1.32</td>
<td>0.41–4.30</td>
</tr>
<tr>
<td>Total transplantation time more than 6 years*</td>
<td>16/183</td>
<td>5/66</td>
<td>1.15</td>
<td>0.44–3.03</td>
</tr>
<tr>
<td>Use of azathioprine</td>
<td>20/226</td>
<td>1/23</td>
<td>2.04</td>
<td>0.29–14.50</td>
</tr>
<tr>
<td>Use of azathioprine in skin cancer group</td>
<td>12/226</td>
<td>1/23</td>
<td>1.22</td>
<td>0.17–8.97</td>
</tr>
<tr>
<td>Use of cyclosporine</td>
<td>13/147</td>
<td>8/102</td>
<td>1.13</td>
<td>0.49–2.62</td>
</tr>
<tr>
<td>Use of azathioprine and cyclosporine</td>
<td>13/138</td>
<td>8/111</td>
<td>1.31</td>
<td>0.56–3.04</td>
</tr>
<tr>
<td>Use of methylprednisolone</td>
<td>12/157</td>
<td>9/92</td>
<td>0.78</td>
<td>0.34–1.78</td>
</tr>
<tr>
<td>Use of ATG</td>
<td>6/77</td>
<td>15/172</td>
<td>0.89</td>
<td>0.36–2.21</td>
</tr>
<tr>
<td>Use of OKT3</td>
<td>2/28</td>
<td>19/221</td>
<td>0.83</td>
<td>0.20–3.38</td>
</tr>
<tr>
<td>Use of cyclosporhismide</td>
<td>6/37</td>
<td>15/212</td>
<td>2.92</td>
<td>0.95–5.53</td>
</tr>
<tr>
<td>Dose of cyclophosphamide (more than 20 mg/kg compared to less than 20 mg/kg or none)*</td>
<td>6/34</td>
<td>15/215</td>
<td>2.53</td>
<td>1.05–6.07</td>
</tr>
<tr>
<td>Dose of cyclophosphamide (more than 100 mg/kg compared to less than 100 mg/kg or none)*</td>
<td>5/17</td>
<td>16/232</td>
<td>4.26</td>
<td>1.78–10.20</td>
</tr>
</tbody>
</table>

*Patients with the value 0 were included in the reference group.
†Relative risks and 95% confidence intervals were calculated with the Cox regression method. Time was defined as the amount of patient years at risk with risk starting at first renal replacement therapy (this is the moment one is considered a patient) and ending at diagnosis of malignancy, last recorded hospital visit, or patient death; a total of 3870 patient years was recorded according to this definition.
‡Relative risks were calculated with CIA (Confidence Interval Analysis, Prof. MJ Gardner and British Medical Journal).

www.archdischild.com
to an underreporting of skin cancer by Offner et al. Furthermore, we found that risk of malignancy strikingly increased at 13 years after start of RRT. The difference in mean follow up, although small, could therefore also have contributed to the lower incidence found by Offner et al.

Similar types of malignancy were found in the LERIC study as in adult studies of renal transplant recipients. The ratio of basal cell carcinoma versus squamous cell carcinoma was 3:7 and thus reversed compared to the general population. In adult studies of renal transplant recipients similar findings have been reported, but none of these studies have reported an explanation. It has been postulated that squamous cell carcinomas are more susceptible to decreased cellular immunity caused by immunosuppressive agents than basal cell carcinomas. Furthermore, infection with human papillomavirus (HPV), frequently seen in immunosuppressed patients, might increase chances of developing squamous cell carcinomas rather than basal cell carcinomas (personal communication). However, this still has to be investigated.

Non-Hodgkin lymphoma occurred at a younger mean age than skin cancer and had the potential to develop sooner after first transplantation (after a minimum of 0.62 years compared to 5.48 years in skin cancer). Both Opelz and Henderson and Penn described this phenomenon in adult studies of renal transplant recipients. Penn suggested that non-Hodgkin lymphomas develop during the first few months after transplantation because of a high degree of immunosuppression following the use of multiple immunosuppressive agents. Epstein–Barr virus (EBV) plays an important role in development of non-Hodgkin lymphomas. EBV infection of B lymphocytes can lead to uncontrolled cell growth and proliferation. Unfortunately we have no data on exposure of our patients to this oncogenic virus. Gaya et al found that the risk of developing skin cancer increased with time after transplantation. Impairment of normal DNA repair mechanisms as a result of immunosuppressive drugs, combined with cumulative UV light induced damage may be responsible for the apparent latency period of several years before skin cancer develops. Skin cancer education of patients with RRT, for example, avoidance of excessive sunlight exposure, might lead to a longer latency period or even prevent the development of skin cancer.

STANDARDISED RISKS

We found a standardised risk (SR) of 10 for all malignancies compared to the general population. For non-melanoma skin cancer and non-Hodgkin lymphoma, however, standardised risks were 222 and 46. Not many studies have compared cancer incidence among RRT recipients to that of the general population. Opelz and Henderson found an SR of 37 for non-Hodgkin lymphoma in renal transplant recipients in the first post-transplant year. Gaya et al reported an SR of 6 for overall cancer, 19 for skin cancer, and 45 for non-Hodgkin lymphoma in renal transplant recipients after an average follow up of 9.6 years. The tenfold higher SR that we found for skin cancer compared to Gaya et al may be related to our longer follow up time.

Standardised risks were based on the incidence rates of malignancies in the Netherlands between 1992 and 1996, whereas malignancies in the LERIC cohort had developed before 1992. Considering the fact that overall and skin cancer incidences in the Netherlands in persons aged 0–44 years have increased since 1989, the standardised risk of the LERIC cohort could be underestimated.

DETERMINANTS

The crude association of cumulative cyclophosphamide dose of >20 mg/kg with increased risk of development of malignancies suggests a potential carcinogenic effect. This analysis was based on small numbers. Careful use of this immunosuppressive agent is warranted. Development of malignancies secondary to the use of cyclophosphamide has been described: cancer of the bladder as well as acute myeloid leukaemia. The immunosuppressive agent cyclophosphamide can lead to an increased risk of uncontrolled cell growth and proliferation, and invasion or reactivation of oncogenic viruses such as EBV. Furthermore, acrolein, the major toxic metabolite of cyclophosphamide, has been reported to induce bladder cancer in rats. Travis et al reported that cyclophosphamide related bladder cancer was dose dependent. We found evidence of an association between the risk of overall malignancies and dose of cyclophosphamide. Although we found only one case of bladder cancer, analysis of cyclophosphamide as a risk factor with exclusion of this case of bladder cancer still showed an increased risk of malignancy for cumulative doses of 100–200 mg/kg.

OUTCOME

Six of 21 patients died as a result of their malignancy, none of which were a result of skin cancer. Although this is the most frequent malignancy associated with renal transplantation, it therefore seems to be mainly contributing to morbidity, but not mortality. However, as the mean follow up time after diagnosis of skin cancer was only 3.6 years, no definitive conclusions can be drawn. On the other hand, as in the general population mortality caused by non-melanoma skin cancer is extremely low, the same might be expected for the LERIC cohort as well. Non-Hodgkin lymphomas did contribute in a significant number to both morbidity and mortality: four of five patients died in our cohort. They also caused death more rapidly than other malignancies in our cohort. Cessation or dose reduction of immunosuppressive agents has been reported to lead to tumour regression in non-Hodgkin lymphomas. This is something clinicians need to be aware of in order to try to reduce mortality caused by this type of cancer.
One Grawitz tumour was diagnosed by coinci-
dence in a patient who is currently alive. As this
type of cancer leads to death in nearly every case,
mortality in the LERIC cohort could easily
have been higher.

Malignancies in immunocompromised indi-
viduals and possibly also in chronic dialysis
patients appear to be more aggressive and more
difficult to treat, hence both morbidity and
mortality are prone to be higher compared to
malignancies in the general population.2,4–10

The mortality/incidence ratio we found for
overall cancer and non-Hodgkin lymphomas
supports these findings.

LIMITATIONS OF THE STUDY

Inherent to studies of relatively rare paediatric
diseases, our sample size was fairly small. Far-
thermore, the study design was retrospective
and data were collected from multiple centres.
We nevertheless believe this long term study
provides as complete a picture as possible on
frequency, type, determinants, and outcome of
malignancies after paediatric RRT. No patients
were lost to follow up, and data on important
events such as occurrence of malignancy were
not missing.

CONCLUSION

In conclusion, the long term risk of certain
cancer is significantly increased in chil-
dren with RRT. Although the most frequent
malignancy, skin cancer, resulted in no deaths,
the fact that malignancy related death repre-

sented 9.5% of overall mortality warrants
further research on this subject.

In patients treated with more than 20 mg/kg
of cyclophosphamide extra vigilance towards
the development of malignancies is required.
Regular medical check ups, such as routine
care by dermatologists and skin cancer edu-
cation of patients, could decrease both morbid-
ity and mortality caused by malignancy as a
late effect of paediatric RRT.

Bella Drost, Janneke van den Broek, Anouk van de Graaf
and Jeroen Hutter, all medical students, contributed to the data
collection. Biographics van Benthem, GS&GD Amsterdam, provided
statistical advice. Dr Huib Caron gave advice on oncological
aspects. Staff members of the Netherlands Cancer Registry were
very helpful with the interpretation of data of the 1996 report
of Incidence of Cancer in the Netherlands. Data collection
was made possible by the cooperation of the following physicians:
RF Hene, Medical Centre University Utrecht; JJ Homan van der
Heide, Academic Hospital Groningen; MR Lilien, Wilhelmina
Children’s Hospital, Utrecht; NJ van der Kar, St Radboud Hos-
pital, Nijmegen; M Kooistra, Dianet, Utrecht; JW van der Puij,
Medical Centre University Leiden; CG Rischem-Vos, Dijkzigt
Hospital, Rotterdam; S Surakchi, Academic Medical Centre,
Amsterdam; ED Wolff, Sophia Children’s Hospital, Rotterdam;
AJ Appelcoer, St Elisabeth Hospital, Tilburg; M Bokhorst, Rijn-
land Hospital, Leiderdorp; J Boonakker, Reinier de Graaf
Gasthuis, Delft; MLH Christiaans, Academic Hospital, Maas-
stricht; PPNN Diderich, St Franciscus Gasthuis, Rotterdam;
MA van Dorpel, St Clara Hospital, Rotterdam; WJ van Dorp,
Kennemer Gasthuis, Haarlem; WT Fugel, Medical Centre Leeu-
warden; PG Gerlag, St Joseph Hospital, Veldhoven; A van Es,
Dalius Centre ‘t Gooi, Hilversum; AB Geers, St Antonius
Hospital, Nieuwegein; EG Hagen, Hospital De Lichtenberg,
Amersfoort; SJ Horntjes, Catharina Hospital, Eindhoven; RM
Huisman, Dalius Centre Groningen; K Jie, Groene Hart Hos-
pital, Gouda; GMTH de Jong, Drechtshaven Hospital, Dord-
recht; AJ Hoitsma, St Radboud Hospital Nijmegen; G Kolster,
Iuala Clinics, Zwolle; I Keue, Dianet Buitenweldert, Amsterdam;
WAH Koning-Muller, Medical Spectre Twente, Enschede; AG
Lieverse, Duacoonessenhuis, Eindhoven; PB Leurs, Ooster-
schelde Hospital, Goes; N vd Lely, Reinier de Graaf Gasthuis,
Delft; MJ Nubé, Medical Centre Alkmaar; C Oldenbroek,
Westfries Gasthuis, Hoorn; MJM Smit, Juliana Children’s Hos-
pital, The Hague; G Vanstenburg, Scheper Hospital, Enschede;
RM Valentijn, Red Cross Hospital, The Hague; AE v Wijk,
Hospital Free University, Amsterdam. Financial support for
the study was provided by the Dutch Kidney Foundation
(Nierstichting Nederland).

1 Gaya SBM, Rees AJ, Lechler RI, et al. Malignant disease
in patients with long-term renal transplants. Transplantation
3 Liebelt AG. Malignant neoplasms in organ transplant
Vol. 6, Endology of cancer in man. Dordrecht: Kluwer
4 Inamoto H, Ozaki R, Matsuizaki T, et al. Incidence and
mortality pattern of malignancy and factors affecting the risk of
5 Krueger TC, Tallet MB, Richie RE, et al. Neoplasia in
immunosuppressed renal transplant patients: a 20-year
6 Langel P, Mühlbacher F, Steininger R, et al. Long-term out-
come in renal patients beyond five years after kidney trans-
7 Behrend M, Kolditz M, Klimm V, et al. Malignancies in
patients under long-term immunosuppression after kidney
8 Yasumura T, Oka T, Nakane Y, et al. Long-term prognosis of
renal transplant surviving for over 10 yr, and clinical, renal
and rehabilitation features of 20 yr successes. Clin Trans-
10 Brouws Bavinck JN, Vermeer BJ, Claas FHJ, et al. Skin can-
disorders after renal transplantation in patients with triple
13 Gagnadoux MF. Risk of malignancy in pediatric renal trans-
plant recipients [in French]. Ann Pediatr (Paris) 1997;44:
187–92.
14 Nocera A, Ghio L, Dell’Amico R, et al. De novo cancers in
paediatric renal transplant recipients: a multicentre analysis
within the North Italy Transplant programme (NITp),
15 Wingen AM, Wiesel M, Möhring K, et al. Malignancies in
children with renal replacement therapy. Transplant Proc
16 Penn I. Posttransplant malignancies in pediatric organ
17 Netherlands Cancer Registry. Incidence of cancer in the
Netherlands 1996: eighth report of the Netherlands Cancer
Registry. Netherlands Cancer Registry (NCR), for data
availability and demography. Statistics Netherlands/Centraal Bureau
voor de Statistiek, March 2000.
18 Barrett WL, Roy Firth M, Aron BS, Penn I. Clinical course
19 Penn I. Cancers complicating organ transplantation. N Engl
20 Brunnert FP, Landais P, Selwood NH, on behalf of the
EDTA-Era Registry Committee. Malignancies after renal
transplantation: the EDTA-Era registry experience. Neop-
21 Penn I. The changing pattern of posttransplant malig-
1995;342:1514–16.
23 Roberts MM. Acute leukaemia after immunosuppressive
cancer following immunosuppressive therapy for non-
rat urinary bladder carcinogenesis. Cancer Res 1988;48:
3577–81.
26 Stirling TE, Naloski MA, Porter KA, et al. Reversibility of
lymphomas and lymphoproliferative lesions developing under