Quantitative analysis of minimal residual disease by PCR in childhood acute lymphoid leukemia
de Haas, V.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.


References


110


32. Shurtleff SA, Buijs A, Behm FG, Rubnitz JE, Raimondi SC, Hancock ML, Chan GC, Pui CH, Grosveld G, Downing JR: TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric AML and defines a subgroup of patients with an excellent prognosis. Leukemia 9: 1985-1989, 1995


cell determines type of secondary IgH rearrangement (V-replacement or V to DJ joining) in childhood B precursor acute lymphoblastic leukemia. Leukemia 11: 1258-1265, 1997


114


References


75. de Haas V, Breunis WB, Verhagen OJ, van der Berg H, van der Schoot CE: Accurate quantification of minimal residual disease at day 15, by real-time quantitative polymerase chain reaction, identifies also patients with B-precursor acute lymphoblastic leukemia at high risk for relapse. Blood. 96: 1619-1620, 2000

76. de Haas V, Verhagen OJ, von dem Borne AEGKr, Kroes W, van den Berg H and van der Schoot CE: Quantification of minimal residual disease in children with oligoclonal B-precursor ALL indicates that the clones that grow out during relapse have the slowest rate of reduction already during induction therapy. Leukemia 15: 134-140, 2001


116
References


118


References


