Quantitative analysis of minimal residual disease by PCR in childhood acute lymphoid leukemia

de Haas, V.

Citation for published version (APA):
PUBLICATIONS


dee Haas V., Breunis W.B., Verhagen O.J.H.M., van den Berg H. and van der Schoot C.E. Accurate quantification of MRD at day 15, by real-time quantitative polymerase chain reaction, identifies also patients with B-precursor acute lymphoblastic leukemia at high risk for relapse.
*Blood, 2000, 96:1619-1620

dee Haas V., Oosten L., Dee R., Verhagen O.J., Kroes W., van den Berg H. and van der Schoot C.E. MRD studies are beneficial in the follow-up of TEL-AML1 patients with B-precursor acute lymphoblastic leukemia.
*Br J of Haematology, 2000, 111: 1080-1086

dee Haas V., Verhagen O.J., von dem Borne A.E.G.Kr., Kroes W., van den Berg H. and van der Schoot C.E. Quantification of minimal residual disease in children with oligoclonal B-precursor acute lymphoblastic leukemia indicates that the clones that grow out during relapse have the slowest rate of reduction already during induction therapy.
*Leukemia, 2001,15: 134-140

*Submitted for publication
Publications

de Haas V., Kaspers G.J.L., Oosten L., Bresters D., Pieters R., Wijkhuijs A.J.M., van Wering E.R., van den Berg H. and van der Schoot C.E. No clear relation between in-vitro drugresistance and level of minimal residual disease (MRD) as detected by PCR at the end of induction therapy in childhood ALL.
Submitted for publication

Submitted for publication

de Haas V., van der Schoot C.E. and van den Berg H. Risk assessment of ALL in children: focus on PCR-based techniques for MRD detection. (Review)
Annals of Oncology, 2001: 12: 1-6