Limited contribution of interchromosomal gene conversion to NF1 gene mutation

Luijten, M.; Fahsold, R.; Mischung, C.; Westerveld, A.; Nürnberg, P.; Hulsebos, T.J.M.

Published in: Journal of Medical Genetics

DOI: 10.1136/jmg.38.7.481

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Limited contribution of interchromosomal gene conversion to NF1 gene mutation

M Luijten, R Fahsold, C Mischung, A Westerveld, P Nürnberg and T J M Hulsebos

doi:10.1136/jmg.38.7.481

Updated information and services can be found at:
http://jmg.bmjournals.com/cgi/content/full/38/7/481

These include:

References
This article cites 26 articles, 9 of which can be accessed free at:
http://jmg.bmjournals.com/cgi/content/full/38/7/481#BIBL

Rapid responses
You can respond to this article at:
http://jmg.bmjournals.com/cgi/eletter-submit/38/7/481

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article

Topic collections
Articles on similar topics can be found in the following collections

Genetics (3947 articles)

Notes

To order reprints of this article go to:
http://www.bmjournals.com/cgi/reprintform

To subscribe to Journal of Medical Genetics go to:
http://www.bmjournals.com/subscriptions/
Pseudoxanthoma elasticum: evidence for the existence of a pseudogene highly homologous to the ABCC6 gene

Dominique P Germain

Editor—Pseudoxanthoma elasticum (PXE, MIM 264800) is an inherited disorder of connective tissue in which the elastic fibres of the skin, eyes, and cardiovascular system slowly become calcified, causing a spectrum of disease involving these three organ systems, with highly variable phenotypic expression. 1 2 Mutations in the ABCC6 gene (previously known as MRP6), encoding a 1503 amino acid membrane transporter, have recently been identified by our group and others 3-7 as the genetic defect responsible for PXE. We subsequently designed a strategy for a complete mutational analysis of the ABCC6 gene, in order to provide accurate molecular and prenatal diagnosis of PXE. During this mutational screening, we have found evidence for the existence of at least one pseudogene highly homologous to the 5' end of ABCC6. Sequence variants in this ABCC6-like pseudogene could be mistaken for mutations in the ABCC6 gene and consequently lead to erroneous genotyping results in pedigrees affected with pseudoxanthoma elasticum.

Material and methods

Seven unrelated patients presenting with PXE were evaluated for mutational analysis of the ABCC6 gene. For each proband, diagnosis of PXE was consistent with previously reported consensus criteria,8 which include a positive von Kossa stain of a skin biopsy, indicating calcification of elastic fibres, in combination with specific cutaneous and ocular manifestations (angioid streaks).

Whole blood samples were obtained after participants had provided written consent using a form that was approved by the Institutional Review Board of our academic institution. High molecular weight DNA was isolated from peripheral blood leucocytes, using a standard salting out procedure. Primers for amplification of the ABCC6 gene were designed from the published sequence of human chromosome 16 bacterial artificial chromosome (BAC) clone A-962B4 (GenBank accession number U91318). PCR amplifications of ABCC6 exon 2 and exon 9 were done in 20 µl volumes with 100 nmol/l of each of the respective PCR primers (table 1), 100 ng of genomic DNA, 100 µmol/l of each dNTP, 1.0 U AmpliTaq Gold DNA polymerase (PE Biosystems), 10 mmol/l pH 8.3 Tris-HCl, 50 mmol/l KCl, and 1.5 mmol/l MgCl2. The thermal cycling profile used was 95°C for 10 minutes, followed by 35 cycles at 95°C for 30 seconds, 58°C for 30 seconds, and 72°C for one minute, followed by one cycle at 72°C for 10 minutes and a soak at 6°C.

RNA was isolated from lymphoblastoid cell lines or skin fibroblasts using Rneasy™ (Qiagen) and was reverse transcribed using random hexamers and Superscript-RT (Gibco BRL). Following reverse transcription, RT-PCR amplifications encompassing exon 2 in the published ABCC6 cDNA sequence5 (GenBank accession number AF076622) were done in 20 µl volumes with 4 µl of RT reaction. An aliquot of the amplified product was analysed by ethidium bromide visualisation on a 1.5% agarose gel. A 1/50 dilution was submitted to a nested PCR, using internal specific primers (table 1) and 2.0 U AmpliTaq Gold DNA polymerase (PE Biosystems), under the following conditions: 95°C for 10 minutes, followed by 20 cycles at 95°C for 30 seconds, annealing temperature gradient ranging from 48°C to 70°C for 30 seconds, and 72°C for one minute 30 seconds, followed by one cycle at 72°C for 10 minutes, and a soak at 10°C, on a Robocycler gradient 96 (Stratagene).

All PCR and RT-PCR fragments were purified using QiAquick Spin PCR Purification Kit (Qiagen) according to the manufacturer’s protocol, and 4 µl of the purified PCR products were sequenced using the Big Dye Terminator AmpliTaq FS Cycle Sequencing Kit on an automated ABI 310 DNA sequencer (PE Biosystems). DNA sequences were handled with Navigator 2.0 software.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence</th>
<th>Product size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genomic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABCC6 exon 2 forward</td>
<td>5'-TCT GCG TCC TGG AGG ATT GTA TA-3'</td>
<td>800</td>
</tr>
<tr>
<td>ABCC6 exon 2 forward</td>
<td>5'-ATG GGA GTG TAT GGG TAT GT-3'</td>
<td></td>
</tr>
<tr>
<td>ABCC6 exon 9 forward</td>
<td>5'-GGA CAG TGG GGG AAA TAA CG-3'</td>
<td>676</td>
</tr>
<tr>
<td>ABCC6 exon 9 reverse</td>
<td>5'-TAG CTC GGG GTG GGG AGA CC-3'</td>
<td></td>
</tr>
<tr>
<td>cDNA (nested PCR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABCC6 exon 2 forward</td>
<td>5'-GAG CCT GAA CCT GCC GCC AG-3'</td>
<td>334</td>
</tr>
<tr>
<td>ABCC6 exon 2 reverse</td>
<td>5'-GAA TCA GGA ACA CTG CGA AG-3'</td>
<td></td>
</tr>
</tbody>
</table>

Letters to the Editor

Pseudoxanthoma elasticum: evidence for the existence of a pseudogene highly homologous to the ABCC6 gene

Dominique P Germain
Results

During our mutational screening of the ABCC6 gene, we disclosed sequence changes which, although predicted to be truncating mutations, were unexpectedly detected not only in PXE patients but also in all tested controls. We first identified a single nucleotide insertion (c196insT) in the heterozygous state in a sporadic 14 year old female PXE patient. This mutation causes a shift in the reading frame, predicting a premature stop at codon 100 of the ABCC6 protein. Since we found this single nucleotide insertion in six other PXE patients, we initially interpreted this sequence change as a mutational hotspot. However, sequencing of the sporadic case’s parents’ DNA showed that, although unrelated to each other and phenotypically normal, they were both heterozygous for this frameshift mutation. These results were puzzling; if autosomal dominant inheritance with a de novo mutation had occurred, neither of the unaffected parents should be a carrier, and, conversely, if autosomal recessive transmission had occurred, the proband should be a compound heterozygote on the basis of our results, and, consequently, only one of the parents would be expected to be a carrier of the c196insT mutation. These odd results prompted us to investigate 58 controls, all of whom showed a heterozygous profile for the frameshift mutation in what was thought to be exon 2 of the ABCC6 gene (fig 1).
restriction site. To test for the presence or absence of this nucleotide change, we used \textit{Pst} I to digest PCR amplified genomic DNA of 79 additional controls and found all of them to be heterozygotes for the Q378X nonsense mutation (fig 2).

**Discussion**

Both results are interesting although surprising, since they identify two mutations, one nonsense and the other one inducing a frameshift, expected to cause truncation of the protein and thereby compromise its function. However, these mutations have been shown to be non-pathogenic since they are consistently found in healthy subjects. Among possible explanations for these results, we initially thought of the existence of mutational hotspots, but this hypothesis was ruled out through the discovery of the same mutations in controls. A technical artefact of direct automated sequencing was also considered, but was eliminated through the use of other experimental techniques, including restriction digest experiments. We then checked for possible homologies within the ATP binding cassette (ABC) superfamily.\textsuperscript{10} ABC genes are divided into seven distinct subfamilies (\textit{ABC1}, \textit{MDR/\textit{TAP}, MRP, ALD, OABP, GCN20}, and \textit{White}). However, if homologies do exist within the MRP subfamily (subfamily C) to which \textit{ABCC6} belongs, they are not important enough to explain our results, according to our database searches.

Finally, one likely explanation is the existence of a pseudogene with high homology with the 5' end of the \textit{ABCC6} gene, the PCR products being amplified from four rather than two genomic copies. Since we have used intronic primers to amplify \textit{ABCC6} genomic sequences, an \textit{ABCC6}-like pseudogene with introns is expected, as has been, for instance, reported for the gene encoding acid \(\beta\)-glucosidase.\textsuperscript{11} Indeed, as is found in Gaucher disease, the existence of a highly homologous \textit{ABCC6} pseudogene hampers the accuracy of molecular diagnosis of PXE, since sequence variants in the pseudogene might be mistaken for pathogenic mutations in the active \textit{ABCC6} gene.

Pseudogenes are thought to arise from tandem gene duplication events caused by chromosome misalignment and unequal crossing over during meiosis. This mechanism would explain the high homology observed in both exonic and intronic sequences of the \textit{ABCC6} gene and pseudogene.

The pseudogene could be located on a different chromosome or could be close to \textit{ABCC6} on chromosome 16. In favour of the later hypothesis is the fact that the short arm of chromosome 16 has been shown to be a site where complex rearrangements have taken place.\textsuperscript{12} Further evidence also comes from preliminary FISH experiments which detected double signals at 16p13.1, when fragments of BAC containing the \textit{ABCC6} gene were used as probes.\textsuperscript{13}

In order to determine whether the pseudogene is expressed or not, RNA was isolated from skin fibroblasts and lymphoblastoid cell lines and RT-PCR experiments amplifying exon 2 in \textit{ABCC6} cDNA were performed. We found \textit{ABCC6} mRNA to be expressed at low level in cultured skin fibroblasts and lymphoblastoid cell lines from both PXE patients and controls, in agreement with previous data indicating that \textit{ABCC6} is mainly expressed in liver and kidney.\textsuperscript{14} This prompted us to develop a nested PCR strategy, which proved efficient for the molecular analysis of \textit{ABCC6} mRNA. No frameshift was shown when nested RT-PCR fragments, encompassing the region corresponding to \textit{ABCC6} exon 2, were sequenced (fig 3). This indicates that the pseudogene that

---

**Figure 3** RT-PCR chromatograms of the region corresponding to exon 2 in the \textit{ABCC6} cDNA in the four subjects shown in lanes 1–4 in fig 1. \textit{ABCC6} mRNA was reverse transcribed and amplified through a nested PCR procedure. Direct automated sequencing of the region corresponding to the mutation detected in exon 2 at the genomic level does not show a thymine insertion in the mRNA and consequently no frameshift is seen. The same nucleotides as in fig 1 are shown, but sequencing was performed with a sense primer. These data indicate that the pseudogene is not expressed.
we describe belongs to the unprocessed category.

In conclusion, we have found nonsense and frameshift sequence variations in the \textit{ABCC6} gene, both of which appear to be non-pathogenic, thereby indicating the existence of at least one highly homologous pseudogene, which greatly complicates genotyping in families affected by pseudoxanthoma elasticum. Further studies are needed to map and fully characterise the sequence of the pseudogene(s). However, our results already emphasise the importance of not confusing variants in the pseudogene with pathogenic mutations in the \textit{ABCC6} gene, especially in genetic counselling or prenatal diagnosis.

- Pseudoxanthoma elasticum (PXE) is an inherited systemic disorder of connective tissue with highly variable phenotypic expression.
- Mutations in the \textit{ABCC6} gene were recently identified as the genetic defect responsible for PXE.
- We have characterised two truncating mutations (c196insT and Q378X) in the \textit{ABCC6} gene, always found in the heterozygous state, not only in PXE patients but also in all controls.
- This indicates the existence of a highly homologous pseudogene.
- Sequence variants in the pseudogene should not be confused with mutations in the \textit{ABCC6} gene, especially in genetic counselling or prenatal diagnosis.

The author thanks the patients and their families for their help during this project and gratefully acknowledges P Letourneur, J Perdu, and I Roncelin for excellent technical assistance and Dr D Recan for providing lymphoblastoid cell lines.


Hereditary and somatic DNA mismatch repair gene mutations in sporadic endometrial carcinoma

Robert B Chadwick, Robert E Pyatt, Theodore H Niemann, Samuel K Richards, Cheryl K Johnson, Michael W Stevens, Julie E Meek, Heather Hampel, Thomas W Prior, Albert de la Chapelle

Editor—Endometrial cancer (EC) is the second most common malignancy in the hereditary non-polyposis colorectal cancer (HNPCC) syndrome. In a recent large study, cumulative cancer incidences by the age of 70 in HNPCC mutation carriers were: colorectal 82%, endometrial 60%, gastric 13%, and ovarian 12%. Interestingly, in female mutation carriers the incidence of endometrial cancer (60%) exceeded that of colorectal cancer (CRC) (54%), as had been suggested earlier.

Predisposition to HNPCC is the result of germline mutations in the mismatch repair genes. Detectable mutations in the two major genes, MLH1 and MSH2, account for some 3% of all colorectal cancers. One might therefore assume that a similar proportion of all endometrial cancer patients would have such mutations; however, in a number of studies addressing this question, extremely few germline mutations have been found. Summarising the studies by Katabuchi et al., Kobayashi et al., Lim et al., Gurin et al., and Kowalski et al., only one germline mutation (in MLH1) was found in a total of 352 EC patients (0.3%). In these studies, mutations were sought in all patients whose tumours were microsatellite instability (MSI) positive.

Recent reports have suggested that MSH6 might account for many endometrial cancers and that families with these mutations show atypical features of HNPCC with endometrial and ovarian cancers outnumbering colorectal cancers.11,12 Additionally, MSI, a hallmark of HNPCC, was low in most tumours associated with MSH6 mutations or was preferentially shown by mononucleotide repeats rather than dinucleotide repeats.13–15 Previous studies have reported that 9–25% of sporadic endometrial cancers display microsatellite instability. In the majority of cases, this instability arises through hypermethylation of the MLH1 promoter region.16–20 This epigenetic change results in reduced (or no) expression of the MLH1 transcript.

This study was undertaken to revisit the issue of microsatellite instability and mismatch repair gene mutations in sporadic endometrial cancer. By initially studying tumour tissue, both germline and somatic mutations were evaluated in the MSH2, MLH1, and MSH6 genes in a retrospective series of microsatellite stable and microsatellite unstable endometrial cancers.

Material and methods

All patients diagnosed with endometrial adenocarcinoma between October 1996 and February 1998 at the Ohio State University Hospital were considered retrospectively. Among these 85 patients, archival tissue was available from 74.

After appropriate investigational review board (IRB) approval, these 74 charts were reviewed and the tissue blocks recovered. Histological sections were made, stained with haematoxylin and eosin, and the histological diagnosis critically re-evaluated. Sections 50 µm thick were cut from regions of the tumour containing as high a proportion of tumour cells as possible (typically >50%). To obtain non-malignant tissue, sections were obtained either from tissue emanating from other organs, primarily lymph nodes, that were histologically cancer free, or alternatively sections were made from parts of the endometrial tissue that had no cancer cells. All materials were unlinked from their identifiers before being subjected to DNA extraction and genetic analyses.

Tissue sections were deparaffinised with two xylene washes. Rehydration was accomplished through 20 minute incubations in decreasing concentrations of alcohol (100%, 80%, 50%) at room temperature followed by an overnight incubation in double distilled water at 4°C. DNA was extracted by lysis of the tissue for 18 hours at 55°C with 1 mg/ml proteinase K in 400 µl of buffer (10 mmol/l Tris, 400 mmol/l NaCl, 2 mmol/l EDTA, and 0.7% sodium dodecyl sulphate, pH 8.2). Degraded proteins were precipitated with 2.5 volumes of saturated NaCl after centrifugation. DNA was precipitated with 2.5 volumes of 100% ethanol at −20°C, washed in 70% cold ethanol, then dissolved in 50 µl of TE buffer (10 mmol/l Tris and 1 mmol/l EDTA, pH 8.0).

Microsatellite sequences were amplified using the Bethesda panel.11 Owing to limited availability of normal tissue, tumour DNA was used for MSI determination without its corresponding normal DNA pair. Amplifications were done in 15 µl PCR reaction volumes using 1 µl of each 8 µmol/l primer (the 5’ primer is fluorescently labelled), 10 ng of genomic DNA, and 8 µl of Qiagen’s HotStar Taq Master Mix. The thermal cycling profile was one cycle at 95°C for 12 minutes, followed by 45 cycles at 95°C for 10 seconds, 55°C for 15 seconds, and 72°C for 30 seconds, followed by one cycle at 72°C for 30 minutes, followed by a soak at 4°C. Replicate PCR reactions for each marker were pooled together and loaded on to the PE3700 automated sequencer. Allele sizing and calling was done using Genotyper software (Applied Biosystems). For polymorphic markers D2S123, D5S346, and D17S250 samples were scored as MSI positive if more than two alleles
were present. Since normal DNA was not available for comparison from all samples, it is possible that instances of MSI where the normal sample was homozygous and the tumour sample had only two alleles were missed. However, this limitation does not apply to the two mononucleotide repeat markers, suggesting that this did not lead to any serious underestimate of MSI, as these markers are more sensitive to MSI than the dinucleotide repeats.\textsuperscript{23, 24} For homozygous markers BAT25 and BAT26, samples were scored as MSI positive if the pattern deviated from the normal homozygous pattern. The BAT markers are polymorphic in African Americans.\textsuperscript{25, 26} However, the ethnicity of the subjects in this study was known and all three African American subjects (Nos 31, 65, and 70) were screened for mutations in the mismatch repair genes. Out of the 74 tumours tested, 17 (or 23\%) were found to be MSI positive, 14 MSI high and 3 MSI low (Table 1).

### Table 1 Summary of results in those 42 patients in whom mutational analyses were carried out

<table>
<thead>
<tr>
<th>Patient No</th>
<th>Age at diagnosis</th>
<th>Family history and site</th>
<th>MSI markers positive</th>
<th>MSI classification</th>
<th>MSH2</th>
<th>MLH1</th>
<th>MSH6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>39</td>
<td>Father prostate, paternal grandmother CSU, patient had second primary colon cancer, Hodgkin's lymphoma</td>
<td>0/5</td>
<td>N</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>74</td>
<td>No</td>
<td>4/5</td>
<td>H</td>
<td>No</td>
<td>Germline GAG(Glu) to GGG(Gly) at codon 578</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>73</td>
<td>Yes, CSU</td>
<td>0/5</td>
<td>N</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>40</td>
<td>Mother ovarian</td>
<td>0/5</td>
<td>N</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>9</td>
<td>67</td>
<td>Mother breast</td>
<td>4/5</td>
<td>H</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>77</td>
<td>Mother GI &amp; sister pancreatic</td>
<td>0/5</td>
<td>N</td>
<td>No</td>
<td>Somatic GAA(Glu) to AAA(Lys) at codon 608</td>
<td>No</td>
</tr>
<tr>
<td>13</td>
<td>50</td>
<td>Brother testicular</td>
<td>0/5</td>
<td>N</td>
<td>No</td>
<td>Somatic GAT(Asp) to TAT(Tyr) at codon 575</td>
<td>No</td>
</tr>
<tr>
<td>14</td>
<td>66</td>
<td>Mother &amp; father CSU</td>
<td>0/5</td>
<td>N</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>15</td>
<td>51</td>
<td>Maternal aunt, mother, sister lymphoma</td>
<td>4/5</td>
<td>H</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>16</td>
<td>38</td>
<td>Aunt breast</td>
<td>0/5</td>
<td>N</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>17</td>
<td>58</td>
<td>Father lung, mother breast, maternal grandmother gallbladder</td>
<td>0/5</td>
<td>N</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>19</td>
<td>79</td>
<td>Sister breast, daughter colon</td>
<td>1/5</td>
<td>L</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>21</td>
<td>45</td>
<td>Sister melanoma, grandmother breast</td>
<td>0/5</td>
<td>N</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>23</td>
<td>65</td>
<td>Mother endometrial</td>
<td>0/5</td>
<td>N</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>26</td>
<td>64</td>
<td>Father, sister, brother colon</td>
<td>0/5</td>
<td>N</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>30</td>
<td>57</td>
<td>Sister breast, grandchild breast</td>
<td>0/5</td>
<td>N</td>
<td>No</td>
<td>Somatic A deletion in (A)\textsuperscript{7} repeat of exon 4</td>
<td>No</td>
</tr>
<tr>
<td>31</td>
<td>78</td>
<td>Half sister breast</td>
<td>2/5</td>
<td>H</td>
<td>Somatic A deletion in (A)\textsuperscript{7} repeat of exon 4</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>78</td>
<td>Aunt &amp; sister breast</td>
<td>0/5</td>
<td>N</td>
<td>No</td>
<td>Somatic GAG(Glu) to AAG(Lys) at codon 515</td>
<td>No</td>
</tr>
<tr>
<td>37</td>
<td>76</td>
<td>Family history of stomach cancer</td>
<td>0/5</td>
<td>N</td>
<td>No</td>
<td>Somatic GAG(Glu) to AAG(Lys) at codon 515</td>
<td>No</td>
</tr>
<tr>
<td>38</td>
<td>54</td>
<td>Father CSU</td>
<td>0/5</td>
<td>N</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>41</td>
<td>52</td>
<td>Mother leukaemia and colon</td>
<td>0/5</td>
<td>N</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>42</td>
<td>50</td>
<td>No</td>
<td>1/5</td>
<td>L</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>45</td>
<td>85</td>
<td>Mother pancreatic</td>
<td>0/5</td>
<td>N</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>48</td>
<td>57</td>
<td>Mother colon, father lung</td>
<td>4/5</td>
<td>H</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>50</td>
<td>67</td>
<td>Maternal aunt bone</td>
<td>3/5</td>
<td>H</td>
<td>No</td>
<td>Somatic C deletion in (C)\textsuperscript{8} repeat of exon 5</td>
<td>No</td>
</tr>
<tr>
<td>51</td>
<td>74</td>
<td>No</td>
<td>2/5</td>
<td>H</td>
<td>No</td>
<td>Somatic GAT (Asp) to AAT (Asn) at codon 203</td>
<td>No</td>
</tr>
<tr>
<td>52</td>
<td>49</td>
<td>Family history of breast, bladder and colon</td>
<td>3/5</td>
<td>H</td>
<td>No</td>
<td>Somatic A deletion in (A)\textsuperscript{7} repeat of exon 4</td>
<td>No</td>
</tr>
<tr>
<td>55</td>
<td>78</td>
<td>Brother bladder</td>
<td>0/5</td>
<td>N</td>
<td>No</td>
<td>Germline GCC(Gly) to GAC(Asp) at codon 322</td>
<td>No</td>
</tr>
<tr>
<td>56</td>
<td>77</td>
<td>Mother &amp; sister pancreatic, maternal uncle CSU</td>
<td>3/5</td>
<td>H</td>
<td>No</td>
<td>Somatic A deletion in (A)\textsuperscript{7} repeat of exon 4</td>
<td>No</td>
</tr>
<tr>
<td>57</td>
<td>68</td>
<td>Mother and two sisters colon</td>
<td>3/5</td>
<td>H</td>
<td>No</td>
<td>Somatic C insertion in (C)\textsuperscript{8} repeat of exon 5</td>
<td>No</td>
</tr>
<tr>
<td>60</td>
<td>52</td>
<td>Mother breast &amp; colon, two sisters breast</td>
<td>0/5</td>
<td>N</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>61</td>
<td>56</td>
<td>Mother breast, ovarian, colon, sister colon, grandmother endometrial</td>
<td>0/5</td>
<td>N</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>64</td>
<td>85</td>
<td>Patient had second primary colon cancer</td>
<td>0/5</td>
<td>N</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>65</td>
<td>60</td>
<td>Father, two aunts &amp; uncle leukaemia, sister breast, uncle stomach</td>
<td>3/5</td>
<td>H</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>66</td>
<td>56</td>
<td>Mother colon, uncle prostate</td>
<td>0/5</td>
<td>N</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>67</td>
<td>77</td>
<td>Sister CSU</td>
<td>0/5</td>
<td>N</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>68</td>
<td>49</td>
<td>Maternal grandmother &amp; aunt gastric, maternal aunt breast, father lung cancer</td>
<td>5/5</td>
<td>H</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>70</td>
<td>57</td>
<td>Mother breast</td>
<td>1/5</td>
<td>L</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>78</td>
<td>59</td>
<td>Mother gastric</td>
<td>5/5</td>
<td>H</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>79</td>
<td>80</td>
<td>Sister colon, sister ovarian</td>
<td>0/5</td>
<td>N</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>83</td>
<td>57</td>
<td>Niece breast</td>
<td>0/5</td>
<td>N</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>84</td>
<td>72</td>
<td>Sister breast</td>
<td>2/5</td>
<td>H</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

CSU=cancer site unspecified, H=high, L=low, N=negative.
Table 2  Primers used to amplify all exons of the MSH6 gene. In order to facilitate subsequent direct sequencing, 5’ primers were tagged with M13 forward (TGTAAAACGACGGCCAGGT) and M13 reverse (CAGGAAACACGTATGACCC) sequences

<table>
<thead>
<tr>
<th>Exon</th>
<th>Primer sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fw: TGTAAAACGACGGCCAGTTCCGTCCGACAGAACGGTTG GCTTGAGCCTCTGCACCCGGCCC GACCATGTCATACCTGAGATATTTTATTTG</td>
</tr>
<tr>
<td>2</td>
<td>Fw: TGTAAAACGACGGCCAGTGCCAGAAGACTTGGAATTGTTTATTTG</td>
</tr>
<tr>
<td>3</td>
<td>Fw: TGTAAAACGACGGCCAGTTCCGTCCGACAGAACGGTTG</td>
</tr>
<tr>
<td>4A</td>
<td>Fw: TGTAAAACGACGGCCAGTGTTTATGAAACTGTTACTACC</td>
</tr>
<tr>
<td>4B</td>
<td>Fw: TGTAAAACGACGGCCAGTACTTGCCATACTCCTTTTGG</td>
</tr>
<tr>
<td>4C</td>
<td>Fw: TGTAAAACGACGGCCAGTCGTTAGTGGAGGTGGTGATG</td>
</tr>
<tr>
<td>4D</td>
<td>Fw: TGTAAAACGACGGCCAGTCTGTACCACATGGATGCTCT</td>
</tr>
<tr>
<td>4E</td>
<td>Fw: TGTAAAACGACGGCCAGTAAAGTAGCACGAGTGGAACAGACTGAG</td>
</tr>
<tr>
<td>5</td>
<td>Fw: TGTAAAACGACGGCCAGTGATTATTCTCAAAATGTTGCTGTGCG</td>
</tr>
<tr>
<td>6</td>
<td>Fw: TGTAAAACGACGGCCAGTGATTATTCTCAAAATGTTGCTGTGCG</td>
</tr>
<tr>
<td>7</td>
<td>Fw: TGTAAAACGACGGCCAGTACTTGCCATACTCCTTTTGG</td>
</tr>
<tr>
<td>8</td>
<td>Fw: TGTAAAACGACGGCCAGTACTTGCCATACTCCTTTTGG</td>
</tr>
<tr>
<td>9</td>
<td>Fw: TGTAAAACGACGGCCAGTGATTATTCTCAAAATGTTGCTGTGCG</td>
</tr>
</tbody>
</table>

All exons of the MSH2, MLH1, and MSH6 genes were screened by direct sequencing of genomic PCR products. In order to facilitate direct sequencing of PCR products for mutational analysis, all 5’ and 3’ PCR primers were tagged with M13 forward (TGTAAAACGACGGCCAGGT) and M13 reverse (CAGGAAACACGTATGACCC) sequences (table 2 and supplemental data). PCR reactions were done in 25 µl volumes with 100 nmol/l of each of the respective PCR primers, 25 ng of genomic DNA, 100 µmol/l of each dNTP, 1.0 U AmpliTaq Gold DNA polymerase (Perkin-Elmer), 10 mmol/l Tris-HCl, pH 8.3, 50 µmol/l KCl, and 2 mmol/l MgCl2. PCR products were purified using the Exonuclease I/Shrimp Alkaline Phosphatase PCR Product Presequencing Kit (USB). After purification according to the manufacturer’s protocol, 2 µl of the PCR products were sequenced using the BigDye Terminator AmpliTaq FS Cycle Sequencing Kit (Applied Biosystems). Determination of somatic or hereditary mutation status for all mutations was done by comparing tumour chromatograms to normal DNA chromatograms amplified from archival lymph node tissue DNA from the respective patients.

Results

Out of the 17 MSI positive endometrial tumours and an additional 25 that were MSI negative, only two germline changes were found (table 1 and supplemental data). These were a GAG(Glu) to GGC(Gly) mutation at codon 578 of the MLH1 gene in patient 3 and a GGC(Gly) to GAC(Asp) at codon 322 of the MSH2 gene in patient 52. The MLH1 mutation has been reported previously and the tumour from this person was MSI high. Additionally, a functional assay indicates that this mutation is pathogenic.29 Also, MLH1 immunohistochemistry showed virtually no expression of MLH1 in this patient’s tumour (supplemental data). The patient is a 74 year old white female with a history of hypertension, diabetes mellitus type II since the age of 54, and chronic renal failure. It was noted that her family history was positive for diabetes mellitus and hypertension, but there was no mention of a family history of cancer on chart review.

The GGC(Gly) to GAC(Asp) at codon 322 mutation of MSH2 found in patient 52 is listed in the ICG-HNPCC database (http://www.nfdht.nl/) as both a pathogenic mutation and a polymorphism.30–32 In the first paper describing this change it was considered a clinically insignificant polymorphism because it was found in one out of 30 unrelated controls.30 Moreover, in another study the same change was reported not to segregate with the cancer predisposition.31 To investigate its incidence further, we tested 50 grandparents from the families collected by the Centre d’Etude du Polymorphisme Humain and found it in one person. The glycine is conserved among human, mouse, rat, and yeast. MSH2 immunohistochemistry of this tumour showed reduced expression of MSH2 suggesting that this amino acid change may potentially contribute to pathogenicity (supplemental data). Notably, this tumour was MSI high and had an additional somatic truncating mutation in exon 4 of MSH2 (fig 1). The MSH2 antibody is specific for the carboxy terminus of MSH2 and thus less protein would be expected to be detected in a tumour with a truncating mutation in the amino terminus. Additionally, the tumour had a somatic mutation of GAT(Asp) to AAT(Asn) at codon 203 of MLH1. Immunohistochemistry using anti-human MLH1 antibody also showed reduced expression of MLH1 protein (supplemental data). The patient is a 49 year old white woman with a history of ulcerative colitis since the age of 20. The family history is significant for her mother with breast cancer alive at the age of 71, her father with bladder cancer who died at the age of 79, and her paternal grandfather who died from colon cancer in his late 60s. Thus, in summary, the evidence regarding the MSH2 germline amino acid substitution is inconclusive in that it may be either an innocent polymorphism or a low penetrant pathogenic mutation. For these reasons we do not count it as a pathogenic germline mutation in this study. No pathogenic germline mutations were found in the MSH6 gene in the 42 endometrial cancers studied.

Somatic truncating frameshift mutations were found in the coding repeat of seven adenines in exon 4 of MSH2 (fig 1). These 1 bp deletions lead to a predicted truncation at amino acid 245 of the MSH2 protein and both tumours were MSI high. This region of MSH2 has not been reported previously to be hypermutable. Mutations in this repeat were confined to MSI positive cancers, indicating...
that MSH2 is also a target in the microsatellite instability model of carcinogenesis similar to the TGFBRII, BAX, IGF2R, MSH3, MSH6, TCF4, MBD4, and RIZ genes.34–41 We are unable to evaluate the clinical and pathogenic significance of mutations that arise in mismatch repair genes in tumours that are already mismatch repair deficient. A case in point is tumour 52 that showed immunohistochemical deficiency of both MLH1 and MSH2 protein, no MLH1 germline mutation, but two genetic changes in MSH2. Owing to the absence of high quality tissue in this retrospective study we were unable to determine the methylation status of the MLH1 promoter and whether or not the two changes in MSH2 affected different alleles. Such studies need to be done in order to determine if somatic mismatch repair gene mutations in mismatch repair deficient cells confer additional functional properties. In this context it is important to note that coding mononucleotide tracts that are vulnerable to frameshifts exist not only in MSH6, but also in MSH2 as shown here.13

Somatic mutation of the mismatch repair genes (not including MLH1 promoter methylation) occurred at a rate of 5-10% in endometrial cancers, 2/42, 3/42, and 4/42 for MSH2, MLH1, and MSH6 respectively (table 1).

Discussion
In an unselected consecutive retrospective series of 74 endometrial cancers, microsatellite instability was found in 17 (23%). These 17 patients plus 25 other patients whose tumours were MSI negative were studied for MSH2, MLH1, and MSH6 somatic and germline mutations. Germine mutation in MLH1 was found in one endometrial cancer patient. Thus, hereditary mutations in these genes contribute to sporadic endometrial cancer at a rate of at least 1.4% (1/74). If the germline missense change in MSH2 is causally related to the cancer in one patient then the contribution of hereditary mutations would be 2/74. This incidence is higher than in several previous studies.6–10

In all, the previous authors studied 352 EC tumours for microsatellite instability and found 78 that were MSI positive (22%). These 78 patients were studied by various methods for germline mutations in MLH1 and MSH2 and only one was found, corresponding to a frequency of 1/352 or 0.3%. Because of small numbers and varying methodologies, it is not possible to assess which of the two estimates (this study of 1.4% and that by previous authors of 0.3%) is most likely to be correct. Intuitively, the high incidence of EC in HNPCC families would seem to suggest that germline mutation must occur with appreciable frequency in “sporadic” EC. The large study of Wijnen et al disclosed as many as 10 different truncating germline mutations of MSH6 among HNPCC or HNPCC-like families. These families had been ascertained clinically as being positive for the original or modified Amsterdam criteria. The families in which MSH6 was mutated characteristically had many patients with EC. It therefore seems that
In addition to MLH1 and MSH2, one would expect MSH6 to be mutated in some "sporadic" EC patients. As can be seen in table 1, sporadic EC patients sometimes have a degree of a family history of cancer. This study is the first one that specifically searched for mutations in MSH6 in sporadic EC; the absence of mutations is somewhat surprising in view of the findings of Wijnen et al. It remains to be seen whether a larger series of patients might disclose mutations in MSH6. If not, one may need to consider whether truncating mutations of MSH6 are somehow enriched in the Dutch population and rare elsewhere.

To revisit the previously stated minimal role of hereditary nonpolyposis colorectal cancer (HNPPC) in "sporadic" endometrial cancer (EC), 74 unselected ECs were studied for microsatellite instability (MSI): 17/74 (23%) were MSI(+).

Mutational analyses were performed for MLH1, MLH1, and MSH6 in these 17 patients and an additional 25 MSI negative patients, most with a family history of cancer.

One definite germline mutation was found in MLH1. A missense change in MLH1 needs further study. Thus, the proportion of hereditary mutations was at least 1/74 (1.4%), but MSH6 did not contribute.

Frameshifts in a previously unreported hypermutable region of seven coding adenonesins in exon 4 of MSH2 were discovered in two MSI positive tumours.

In conclusion, hereditary mismatch repair deficiency accounts for a small but definite proportion of sporadic EC.

We thank Dr F. Peltomäki for critical reading of this manuscript and Dr Wendy Frankel, Dr Gerard Nuino, and Tina McKernan for assistance with immunohistochemistry. This work was supported by NIH grants CA16058 and CA67941 and European Commission Grant BMH4CT960772.

References:


12 Esteller M, Levine R, Baylin SB, Ellenson LH, Herman JG. hMLH1 promoter hypermethylation is associated with the microsatellite instability phenotype in sporadic endometrial carcinomas. Oncogene 1998;17:2413-17.


Absence of learning difficulties in a hyperactive boy with a terminal Xp deletion encompassing the MRX49 locus

E S Tobias, G Bryce, G Farmer, J Barton, J Colgan, N Morrison, A Cooke, J L Tolmie

EDITOR—The genetic counselling of a pregnant woman who carries an Xp chromosomal deletion is far from straightforward. While the precise locations of the CDPX1 (aryl sulphatase E), steroid sulphatase (STS), and Kallman (KAL1) genes are known and FISH probes are available for these well characterised genes, the positions of putative mental retardation genes in this region have not yet been determined. Clinical and molecular studies undertaken over

Figure 1 (a) Case 6, (b) case 8, (c) case 9, (d) case 4, (e) case 12, and (f) case 13 of Ballabio et al, (g)–(i) cases BA16, BA26, BA139, and BA75 of Schaefer et al, (k) boy with IQ of 46, short stature, generalised ichthyosis, hypogonadotrophic hypogonadism, nystagmus, and photophobia, (l) boy with aggressive and hyperactive behaviour, myoclonic epilepsy, developmental delay, and no speech aged 4 years 8 months, (m) monocious male twins with X linked ichthyosis, learning difficulties (LD), and epilepsy, (n) our patient, with short stature, Binder syndrome, and ichthyosis (consistent with the loss of the SHOX, CDPX1, and STS genes, respectively) but no significant learning difficulties. The presence (+) or absence (−) of LD is indicated for each case. A broken line indicates the chromosomal region within which the breakpoint is assumed to lie, while a solid line indicates a retained region.
the past 10 years on patients with distal Xp deletions imply, however, that the putative X linked mental retardation (XLMR) gene, MRX49, lies distal to GS1 and STS but proximal to DXS31 and CDPX1 (fig 1).

Here we describe the clinical, cytogenetic, and molecular features of a boy with an unbalanced X;Y translocation resulting in a deletion of Xp extending from Xpter to the STS gene who, intriguingly, does not have learning difficulties (LD), despite the loss of this putative XLMR locus.

Case report
This 9 year old boy was delivered at term by caesarean section on account of fetal distress. He weighed only 2610 g but did not have any significant problems neonatally. His developmental milestones were achieved satisfactorily but he was investigated, aged 21 months, on account of his significant hyperactivity and ichthyosis. He has facial dysmorphism akin to that of Binder syndrome, including a broad nasal bridge and forehead, maxillary hypoplasia, relative prognathism, and dental malocclusion, in addition to terminal phalangeal shortening (fig 2). He suffered from epileptic seizures from the age of around 6 months, requiring prophylactic medication for two years. With the exception of one seizure that lasted 45 minutes, the fits were all brief and associated with pyrexia. His height lies just above the 3rd centile, while his head circumference and weight lie between the 25th and 50th centiles. He was diagnosed by a child
psychiatrist as having attention deficit hyperactivity disorder (ADHD) and was treated successfully with methylphenidate.

Psychometric testing, done by a senior educational psychologist, in addition to his assessment by his schoolteacher, indicated that he is of average cognitive potential and does not have any innate learning difficulties. His CT

Table 1  Results of molecular (DXYS233, PABX, DXS996, DXS1118E, DXS6837, DXS1139, DXS6834, DXS1130, DXS237, DXS278, and DXS987) and FISH (XYqtel, XYptel, STS and KAL1) analyses undertaken to determine the location of the Xp breakpoint in our patient

<table>
<thead>
<tr>
<th>Marker</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>XYqtel</td>
<td>+</td>
</tr>
<tr>
<td>XYptel</td>
<td>–</td>
</tr>
<tr>
<td>DXYS233</td>
<td>–</td>
</tr>
<tr>
<td>PABX</td>
<td>–</td>
</tr>
<tr>
<td>DXS996</td>
<td>–</td>
</tr>
<tr>
<td>DXS1118E</td>
<td>–</td>
</tr>
<tr>
<td>DXS6837</td>
<td>–</td>
</tr>
<tr>
<td>DXS1139</td>
<td>–</td>
</tr>
<tr>
<td>DXS6834</td>
<td>–</td>
</tr>
<tr>
<td>DXS1130</td>
<td>–</td>
</tr>
<tr>
<td>STS</td>
<td>–</td>
</tr>
<tr>
<td>DXS237</td>
<td>–</td>
</tr>
<tr>
<td>DXS278</td>
<td>+</td>
</tr>
<tr>
<td>KAL1</td>
<td>+</td>
</tr>
<tr>
<td>DXS987 (Xp22.2)</td>
<td>+</td>
</tr>
</tbody>
</table>

Figure 3  Chromosome analysis of our patient. (A) DAPI stained metaphase spread showing the presence of Y derived heterochromatin (arrow) on Xp. FISH analysis showing (B) the presence of the (red) XYqtel signal (arrow) at the tips of both arms of the derivative X chromosome and the (green) XYptel signal on the Y chromosome only, (C) the absence of STS signal on the derivative X chromosome, and (D) the presence of KAL1 signal (arrow) on the derivative X chromosome.

Figure 4  Schematic indication of the origin of the derivative X chromosome showing (A) the X and Y chromosome breakpoints and (B) the derivative X chromosome.
and EEG proved normal. Cytogenetic analysis, however, showed his karyotype to be 46,Y,der(X)t(X;Y)(p22.31;q11.21). The derivative X chromosome was found to lack the Xp tel and STS sequences but to contain a large region of Y long arm material, including the heterochromatic region and the Xq tel sequence (figs 3 and 4). Additional FISH and molecular analyses were carried out, localising the Xp breakpoint to between the STS and KAL1 genes (table 1). His mother is a carrier of the derivative X chromosome and has carrier levels of STS activity.

All FISH probes were used essentially according to the manufacturer’s instructions. Hybridisations were performed on metaphase chromosomes using STS or KAL1 Xp22.3 region probe with DZXL chromosome X control probe (ONCOR)15 or chromoprobe T XYptel/qtel (CYTOCELL).6

**Discussion**

While the boy’s short stature, craniofacial abnormalities, and ichthyosis are strongly heritable,7 these studies suggest that attention deficit and karyotype. Although both twin and adoption childhood was not readily predictable from his early activity which he exhibited in his early childhood was not readily predictable from his karyotype. Although both twin and adoption studies suggest that attention deficit and hyperactivity are strongly heritable,7 these complex disorders are likely to be multifactorial and genetically heterogeneous. The marked hyperactivity observed in this boy and the boy reported by Spranger et al9 might reflect the loss of an unidentified ADHD susceptibility gene in this Xp region, although we cannot exclude the possibility of the ADHD being an unrelated finding.

The results of the mapping studies (fig 1) have hitherto been interpreted as indicating that an XLMR gene is located between DXS31 and STS. These analyses have included a clinical and molecular study of 27 patients with deletions involving the distal short arm of the X chromosome,1 a description by Schaefer et al9 of several patients with LD and terminal and interstitial Xp deletions, and a two point linkage analysis with X chromosomal markers on a family in which five males in two generations showed mild to moderate LD.8

The boy reported by Spranger et al9 with an Xp terminal deletion with a breakpoint distal to the STS genes, was described as having LD in addition to short stature and chondrodysplasia punctata. Their molecular analysis would suggest that the putative MRX gene, MRX9, lies distal to GST1, which is consistent with the mapping data provided by Ballabio et al4 (fig 1). Furthermore, very recently, a gene which resides between markers DXS1139 and DXS6837, VCX-A, was identified by further deletion mapping of 15 males with Xp deletions.9 This gene was reported to be deleted or retained in all of the subjects who had LD or were of normal intelligence, respectively.7

The lack of LD in the boy described here would suggest, however, that the putative XLMR gene is located more proximally than previously considered or that if such a gene is located distal to STS, its deletion is alone insufficient to cause LD. The genotype-phenotype correlation is, therefore, much less straightforward than might have been inferred from previous reports. This has important implications for the accurate counselling of carriers of similar Xp chromosomal deletions.

Identification of a new TWIST mutation (7p21) with variable eyelid manifestations supports locus homogeneity of BPES at 3q22

Helene Dollfus, Govindasamy Kumaramanickavel, Partha Biswas, Corinne Stoetzel, Renaud Quillet, Michael Denton, Marion Maw, Fabienne Perrin-Schmitt

EDITOR—Blepharophimosis-ptosis-epicanthus inversus syndrome (BPES) is an autosomal dominant disorder of eyelid development defined by small palpebral fissures, epicanthus inversus, and ptosis.1,2 BPES type I (OMIM 110100) is characterised by female infertility, whereas BPES type II (OMIM 601649) is transmitted by both females and males. Most cases of BPES types I and II map to chromosome 3q22-q23 (BPES1).3–7 However, a second locus (BPES2) was reported in the chromosome 7p13-p21 region on the basis of patients presenting with eyelid anomalies carrying chromosomal abnormalities in the 7p21 region8–11 and the further linkage data of a large Indian family diagnosed initially with BPES type II.7 The TWIST gene, mapped on chromosome 7p21, codes for a transcription factor with a bHLH domain.12 TWIST mutations13–18 have been reported in the heterozygous state in patients presenting with the Saethre-Chotzen syndrome (SCS, OMIM 101400). This disorder is a common autosomal dominant form of syndromic craniosynostosis defined by craniosenosis, minor limb and ear abnormalities, and frequent ptosis of the eyelids.19 In the present study, molecular genetic analysis at TWIST and subsequent clinical re-evaluation of the Indian family were used to investigate the possibility that prominent eyelid malformations may represent a clinical variant in the spectrum of phenotypes associated with SCS.

The four generation Indian family originates from the Bihar region in the western part of India. The members of the family were initially referred in 1995 because of palpebral anomalies.7 Clinical re-evaluation of the family took place at the Anandalok Eye Hospital in Calcutta in June 2000. Nineteen members of the family, including 17 affected persons, were examined in detail (photographs and x rays available on request for all affected members).

DNA samples, extracted from Guthrie cards, were available from 31 members of the Indian family.7 These samples were PCR amplified for TWIST and PCR products were subjected to single strand sequence conformation polymorphism (SSCP) and direct sequencing analyses. The primer pair that allowed detection of the mutations reported here was forward primer, VB56 (5' - GAG GCGCCCCGCTCTTCTCCTCTG - 3') and reverse primer TQ 53 (5' - CGTCTGAAGAACGGCGCGAA - 3'). A specific migration pattern was observed after amplification of the DNA of all 16 members of the Indian family who were previously reported to have an abnormal clinical examination. In all cases, the abnormal SSCP pattern cosegregated with the previously reported haplotype of linked chromosome 7p markers7 (fig 1). Direct sequence analyses were performed on the PCR products of all 31 DNA samples. All 16 samples with an abnormal SSCP pattern showed the same heterozygous mutation, namely a C to T transition at position +82, changing a CAG codon to TAG, which is predicted to result in premature termination of the protein at codon 28 (28 C→T mutation).

Figure 1 Abnormal SSCP pattern and sequence analysis showing the TWIST mutation (identification of patients was done according to Maw et al). (A) Abnormal SSCP band (arrow) of affected patients (arrow heads) compared to unaffected members of the family. (B) Sequence analysis: antisense sequence of II.4, an unaffected member of the family, compared to IV.2, a patient carrying the mutation. All the patients with an abnormal SSCP band carried the 28 C→T mutation.
mutant allele and suggests that haploinsufficiency at the \textit{TWIST} locus is responsible for the phenotype in this Indian family.

The phenotype of family members carrying the mutation showed very mild clinical features of SCS in some subjects without evidence of obvious craniosenosis but more pronounced eyelid manifestation compared to other subjects with all the clinical and radiographic evidence of craniosenosis as well as brachyactyly and external ear anomalies (fig 2). Collectively, the phenotype of the affected members of this family was compatible with the diagnosis of SCS with variable expressivity and more pronounced eyelid manifestations in some of them.

Variable expressivity in SCS has been extensively underlined as a pitfall in the establishment of the diagnosis.\textsuperscript{10–21} In most cases, the details of the dysmorphic gestalt could not be correlated with the functional defects expected from the \textit{TWIST} mutations detected. That the clinical features of some members of the Indian family were easily confused with BPES indicates that palpebral anomalies may be the main manifestation of haploinsufficiency at the \textit{TWIST} locus in some SCS patients.

In conclusion, genetic and phenotypic assessment of the Indian family, previously reported as locus BPES2, now suggests that autosomal dominant BPES (types I and II) is probably a homogeneous disorder with a unique locus on chromosome 3q22-q23 (locus BPES1).

We are most grateful to RETINA France for supporting this project. We would like to thank Dr M Le Merrer, Dr J Kaplan, and Professor P Chambon for their continued support. We also thank S Vicaire and the oligonucleotide team from the IGIBM. R Quillet is recipient of a grant from le Ministere de l’Enseignement Supérieur et de la Recherche. This work was supported by grants from l’Association de la Recherche sur le Cancer (ARC), from the Faculté de Médecine de Strasbourg, from the Centre National de la Recherche Scientifique, from the Institut National de la Santé et de la Recherche Médicale, and from Les Hôpitaux Universitaires de Strasbourg.

Association between the defective Pro369Ser mutation and in vivo intrahepatic α1-antitrypsin accumulation

Susana Seixas, Ana Isabel Lopes, Jorge Rocha, Lidia Silva, Carlos Salgueiro, Jaime Salazar-de-Sousa, Amélia Batista

EDITOR—α1-antitrypsin (PI), the major inhibitor of neutrophil elastase in the lower respiratory tract, is a highly polymorphic glycoprotein synthesised in the liver that has several rare gene products in which serum protein levels are reduced or even undetectable. Early onset pulmonary emphysema, resulting from unopposed elastase activity, and neonatal cholestasis probably resulting from the retention of the defective protein in the liver, are the two most common clinical manifestations of PI deficiency and are mainly associated with PI*Z, the most common deficient allele. In addition, other rare alleles occasionally associated with liver injury have been shown to share with PI*Z an increased tendency for intracellular accumulation. Recently, a complete intracellular transport block has been reported for a newly identified defective Pro369Ser allele (Mwürzburg) by in vitro expression studies in human cell cultures. Adenovirus mediated transfer of the mutant gene into the mouse reproduced the consequences of this block and no traceable amounts of the variant protein could be detected in the plasma after in vivo recombinant expression. However, no detectable intrahepatic cytoplasmic PI inclusions were found in the mice expressing the Mwürzburg mutant and no liver biopsy material has yet been presented from patients with this defective allele.

Case report

We report a carrier of the Mwürzburg allele with evidence for in vivo intrahepatic accumulation of PI. The patient is a white Portuguese boy who presented at the age of 1.5 months with cholestasis associated with a recent cytomegalovirus (CMV) infection. A percutaneous liver biopsy performed at the age of 2.5 months showed significant portal fibrosis with porto-portal bridging, giant cell transformation, moderate cholestasis, and an intense portal-acinar inflammatory infiltrate. Periodic acid-Schiff staining after diastase treatment (PAS-D) additionally showed the presence of positive, diastase resistant, intracellular inclusions. Immunoperoxidase staining specific for PI was positive (fig 1). Serum PI concentration, determined by automated nephelometry (Behring), was found to be 92% of normal on admission and dropped to 45% of normal at the age of 24 months, after CMV serology (IgM) and antigens became negative and following progressive decline of transaminase levels to their normal upper limit. The PI...
concentration in the patient’s father was 49% of normal.

Isoelectric focusing analysis of PI types showed that the patient was heterozygous for the S allele and for a deficient variant gene product, inherited from his father, which has an isoelectric point identical to M1 and a band with decreased intensity (fig 2). These patterns were confirmed by printed immunofixation (not shown). DNA sequencing of all PI coding exons (II-V), performed as previously described, has shown that the patient and his father shared a C to T transition leading to a 369Pro (CCC) → Ser (TCC) substitution in the common M1 Val213 allele, as in the variant Mwürzburg. The presence of the Mwürzburg allele was also confirmed by partial PCR amplification of exon V with a mismatched primer that generates an 118 bp fragment: 5'-CCTGAGGTCAAAGTGTTCA CAAG-3' (bases 10049-10069, mismatched base in lower case); 5'- GAGGGCAGAGGC CATTATT-3' (bases 10166-10146). Thirty five cycles of PCR were performed for one minute at 94°C, one minute at 58°C, and one minute at 72°C. The mismatched primer artificially introduces a NdeI restriction site in the mutated Pro369Ser allele during PCR amplification (fig 3, lanes 1 and 2). In addition, the primer also generates a further HinfI restriction site in the presence of the Pro369Leu mutation (fig 3, lanes 3 and 4), which characterises the severely deficient variant Mheerlen.

Discussion
To our knowledge the present case represents the first reported association between the defective α1-antitrypsin Pro369Ser mutation and in vivo intrahepatic protein accumulation. Although the S variant has been found to show increased intracellular retention and the ability to form heteropolymers with Z, this increase is only marginal and no evident inclusions of S α1-antitrypsin have been found in most pathology samples observed so far. Therefore, the observation of PI liver inclusions in the Mwürzburg/S patient is most likely to be predominantly caused by the Mwürzburg variant and provides further in vivo evidence that the severe deficiency resulting from the Pro369Ser mutation is caused by protein accumulation, as in the case of the Z allele.

Since the patient's PI type would be expected to be similar to SZ, which is not associated with increased risk of liver disease in infancy, his liver injury is probably related more to the CMV infection than to the Mwürzburg variant. However, the similar behaviour of Mwürzburg and Z both in vitro and in vivo indicates that it may lead to liver disease in Mwürzburg homozygotes or in Mwürzburg/Z heterozygous combinations.

Contrary to previous observations, the present detection of a faint PI band with the same isoelectric point of M1, both in the patient and his father, indicates that Mwürzburg can still be secreted in limited amounts into the plasma. However, since the variant will remain unidentified in combination with the common normal M1 allele, the PCR introduction of a NdeI restriction site is a simple alternative tool to detect the Pro369Ser mutation, especially in cases where no unusual isoelectric focusing patterns are associated with decreased PI serum levels or with intrahepatic protein accumulation.

We thank Ms Lúcia Ramires and Ms Piedade Mendonça for technical assistance. This work was supported in part by Conselho de Prevenção do Tabagismo. Susana Seixas is supported by grant BD/13858/97 from Praxis XXI.

The androgen receptor and DXS15-134 markers show a high rate of discordance for germline X chromosome inactivation

Vikas Mahavni, Seung C Kim, Teresa A Benda, Linda Sanders, Richard E Buller

EDITOR—The process of X chromosome inactivation was identified as early as 1960 when Ohno and Hauschka described the presence of a pyknotic X chromosome in both benign and malignant cell lines. Mary Lyon formalised the role of X inactivation and its relationship to dosage compensation of X chromosome genetic material in a letter to Nature in 1961. This phenomenon, now known as the Lyon hypothesis, states that only one X chromosome is transcriptionally active in a given female cell. While the Lyon hypothesis dictates that the X inactivation process is random, skewing of this process to the point of non-random X chromosome inactivation is a known mechanism associated with the development of X linked genetic diseases in females.

Our laboratory has been interested in the association of non-random X chromosome inactivation (NRXI) with ovarian cancer. Not only does this process violate a basic biological principle, the Lyon hypothesis, but it also provides a mechanism to bypass one of two steps generally accepted as necessary for the development of a cancer phenotype, dictated by the Knudson two hit model. The process of X inactivation silences one of two alleles for a particular gene and hence creates a state of functional loss of heterozygosity. Thus, X linked tumour suppressor genes can require only a single mutational event (or “hit”) to contribute to the process of carcinogenesis. Furthermore, with NRXI, hypothetical germ-line mutation of tumour suppressor genes could contribute to early onset disease. We have hypothesised that the process of NRXI may provide a mechanism for some hereditary breast or ovarian cancers independent of BRCA1/BRCA2 associated disease because of its strong association with invasive ovarian cancers. More recently, data from our group suggest that this association extends to breast and endometrial, but not cervical or vulvar cancers.

The gold standard for assessment of X chromosome inactivation status has been the evaluation of the androgen receptor (AR) gene polymorphism(s). The AR gene, localised to Xq13, is characterised by a highly polymorphic trinucleotide repeat (CAG)\textsubscript{n} in the coding region of its first exon. This repeat sequence is preceded by target sequences for the methylation sensitive restriction enzymes HhaI and HpaII. The X chromosome inactivation mechanism results in site specific cytosine methylation of the inactive chromosome. This renders the methylated chromosome resistant to restriction enzyme digestion. In contrast, the active (unmethylated) X chromosome is sensitive to digestion by methylation specific restriction enzymes. Polymerase chain reaction (PCR) amplification of restriction digest can therefore be used to identify the active X chromosome. The majority of papers relating to X chromosome inactivation use the AR model. While other loci have been proposed, other potentially useful loci have primarily been studied only in small cohorts and these studies have been lacking in comparative analysis between the AR and the test locus.

In order better to understand NRXI and the extent to which it may occur throughout a given X chromosome, it would be useful to evaluate the degree of methylation of multiple X chromosome markers. In 1998, Okamoto et al published a report of 110 Japanese females evaluated for mononuclear cell clonality, using a unique short tandem repeat (STR) site at DXS15-134. This marker has been localised distal to the AR locus at Xq28 and is characterised by a pentameric repeat pattern flanked by HhaI and HpaII restriction enzyme target sequences. These authors reported the results of AR and DXS15-134 PCR analysis of germline DNA in 91 women. Eighteen of these 91 females were heterozygous at both loci. The results of the AR and DXS15-134 PCR analysis were completely concordant. We have therefore chosen to perform a similar comparative analysis at the AR and DXS loci using germline DNA samples from probands with breast or ovarian cancer and a cohort of healthy cancer free controls.

Material and methods
Blood samples were obtained in accordance with guidelines set forth by the Committee on Human Subjects at the University of Iowa Hospitals and Clinics (UIHC). Case selection was from the Surgical (breast cancer) and...
Gynecologic (ovarian) Cancer Oncology Clinics at UIH Clinical Cancer Center. Healthy controls were consenting paid volunteers. The cancer patients were selected based on consecutive patient visits to the clinic and were not enriched for known BRCA1/BRCA2 status or family history of breast/ovarian cancer. We used mononuclear cell DNA from 139 probands (76 healthy controls, 20 breast cancer, 43 ovarian cancer). Personnel trained in the collection and construction of cancer family pedigrees obtain all pedigrees at the UIHC.

DNA extractions followed a standard phenol/chloroform/isoamyl alcohol extraction protocol we have previously reported. Germline mononuclear cell DNA was subjected to restriction enzyme digestion by a combination of HhaI and HpaII (New England Biolabs, Boston, MA). Each sample was aliquotted to paired, digested, and sham digests (controls). Ten µl of germline DNA (40-80 ng of DNA) were combined with 13.7 µl of double deionised water (ddH2O), 3 µl of 10× concentration NEB4 buffer (New England Biolabs, Boston, MA), 0.3 µl of bovine serum albumin (New England Biolabs, Boston, MA), 1 µl (2 units) of HhaI, 2 µl (2 units) HpaII (New England Biolabs, Boston, MA) for a total volume of 50 µl. In the sham digest reaction, the combined volumes of restriction enzymes were substituted with a 50% glycerol solution (Fisher Scientific, Fairlawn, NJ). Samples were digested to completion at 37°C for 16 hours followed by heat inactivation of the restriction enzyme at 95°C for 30 minutes.

Both active and sham digested DNA (1.5 µl) were amplified at AR and DXS15-134 loci in 10 µl PCR reactions. Included in the reaction was 4.8 µl of ddH2O, 1 µl of 10× PCR buffer (Boehringer Mannheim, Germany), 1 µl dNTP (2 µmol/l), 0.5 pmol M, forward 29/IR 700 dye-tailed primer (LI-COR*, Lincoln, NE), 1 unit of Taq polymerase (Boehringer-Mannheim, Germany), and 0.5 µl each of the following primers: AR-F: 5'-CAGGACGTAGTAAACTGCATGCGCAAGTGTATCAGACGAAACGCAAGATCCAGCTCTGCTTGGCGCTTGGGM, AR-R: 5'-TACGATGGCGGCTTGGGGAGA. In the DXS15-134 reaction, the M, tail dxs15-134 primers were: DXS15-134F: 5'-CAGGACGTAGTAAACTGCATGCGCAAGTGTATCAGACGAAACGCAAGATCCAGCTCTGCTTGGCGCTTGGGM, DXS15-134R: 5'-TACGATGGCGGCTTGGGGAGA. Thermal cycler conditions followed a modified step down protocol. After an initial denaturing step at 95°C for five minutes, subsequent cycles included 45 second denaturation steps at this temperature. For the first five cycles, a five minute annealing step at 68°C was used to increase early amplification specificity. Next, a single 58°C step down with a two minute annealing time was followed by 25 cycles at 56°C steps with 60 second annealing time. All extensions were at 72°C for 60 seconds. The programme was completed by a final two minute extension time at 72°C. This unusual programme has been very useful in amplifying many different markers particularly in multiplex PCR reactions.

Two µl of PCR product were combined with 8 µl of LI-COR IR 2 STOP solution (LI-COR*, Lincoln, NE). The final two minute extension time at 72°C was heated to 95°C for four minutes before loading onto a 25 cm, 7% Long Ranger™ (FMC Bioproducts, Rockland, ME) acrylamide gel.

The samples were electrophoresed at 50°C, 40 volts, and 40 mA for 90 minutes (AR) to 120 minutes (DXS15-134) based on fragment size. Internal size standards (LI-COR*, Lincoln, NE) were loaded in every tenth well for base pair length determination. Electrophoresis gels were evaluated using LI-COR* based ImagIR 4.0 data collection software and image manipulator software (LI-COR*, Lincoln, NE).

LI-COR* sample interpretation was based on comparison of allele banding patterns and relative intensities from the gel image files. Informative samples contained two alleles in the control lanes. Non-random X chromosome inactivation was defined as a relative loss of one allele band intensity in the digested DNA lane while the second band was unchanged relative to the control. Confirmation of the NRXI designation was via interpretation of relative band optical densities as determined by the Scana-lytics GenelMagIR software (Scana-lytics, Bille-merica, MA). An optical density differential of ≥3:1 or ≤0.33 between bands as defined by Mutter et al was accepted as sufficient for defining NRXI. A designation of random X inactivation (RXI) was assigned when the two allele band intensities in the digest amplification maintained the same relative 1:1 ratio seen in the undigested control amplification. Occasional small differences (differential amplification) in allele intensity in the controls did not alter assignment in a sample with RXI. A reversal of the differential pattern between digest and controls necessitated a comparison of ratios between digested and control samples to determine X inactivation status in <5% of cases.

All statistical measures were performed using SPSS® 10.0 statistical software (SPSS® Inc, Chicago, IL). Comparisons of NRXI rates were performed using the chi-square test. Pearson’s r was used to measure correlation between the two loci and Cohen’s kappa (κ) was applied to assess agreement between the two loci. Comparison of mean optical density ratio for consistency analysis incorporated analysis of variance (ANOVA) with Bonferroni correction for multiple comparisons.

In order to validate the consistency of the assay, aliquots of DNA showing XSI from a single proband was subjected to five separate restriction digests. Multiple portions of each of these digested samples were then PCR amplified at the AR locus. These reactions generated 19 separate assays on DNA from the same proband. Analysis of the band ratios confirmed the reproducibility of the assay. The mean ratio and 95% confidence intervals were 3.7479 (3.5892-3.9065). The ratios were compared among groups via ANOVA analysis. There were no significant differences detected (0.248≤p≤1.0) between either the varying
Germline DNA from a total of 139 subjects was evaluated at both the AR and DXS15-134 loci. These included samples from 76 healthy, cancer free controls, 20 breast cancer probands, and 43 ovarian cancer probands. Results for X inactivation studies were considered informative if the DNA was heterozygous at the locus, that is, there were two alleles in the control lane.

Results

Fig 1 shows a Li-COR® gel image of five DNA samples from subjects analysed at the AR locus for X inactivation. All five were informative at this locus. The upper and lower bands are of equal intensity in both the control and digest lanes reflecting random X chromosome inactivation for subjects C3 and C5. This relationship is clear to the naked eye. Software analysis of these respective samples yielded optical density ratios of 1.94 and 1.13 for these subjects. These ratios confirmed classification of these samples to the random X inactivation group. For subjects C1, C2, and C9 the ratio of optical densities between the control and digest lanes are 3.02, >100, and 3.57, respectively. Hence, since these ratios were >3:1, the samples were designated examples of non-random X inactivation. At this locus, 122 (88%) DNA samples were informative. Seventeen (12.2%) of the DNA samples were homozygous at the AR locus and therefore were considered uninformative. Of the informative samples, 45 (37%) showed non-random X inactivation patterns, while 77 (63%) showed random X inactivation.

Fig 2 shows a Li-COR® gel image of five DNA samples from probands analysed at the DXS15-134 locus for X inactivation. Three of these five subjects (BR6, BR11, and BR21) were informative at this locus. Non-random X inactivation is seen for proband BR6 while random X inactivation is seen for probands BR11 and 21. Generally, the gel images at this locus are much clearer than for the AR locus, hence software analysis was unnecessary. Probands BR9 and 22 are homozygous at this locus and therefore were considered uninformative. Overall, 63 (45.3%) DNA samples were informative. Seventy six (54.7%) samples were homozygous at the DXS15-134 locus and therefore were uninformative at this locus for X inactivation. Of the informative samples, only one (1.6%) showed a non-random X inactivation pattern, while 62 (98.4%) showed random X inactivation.

Table 1 compares the X inactivation data between the two study loci. For informative samples, agreement between the two assays was achieved in only 33 of 54 cases for a concordance rate of 61.1%. Further, Pearson’s r calculation of correlation between loci was not significant (r=0.024, p=0.775). Interassay agreement was tested using Cohen’s kappa and was also found to be insignificant at k=−0.031 (p=0.475). Comparing the utility of the DXS15-134 assay to the AR result, the
sensitivity of the DXS15-134 locus to detect NRXI was only 4.3% while the negative predictive value of the test was 39.6%.

Discussion

The process of X chromosome inactivation occurs as early as the blastocyst stage of embryonic life and the inactive state of the chromosome is stably maintained through subsequent cell divisions. X inactivation results in equalisation of X chromosome gene expression between male and female cells and is therefore considered a mechanism for dosage compensation. The inactivation process has been well documented in mice and is beginning to be understood in humans. A cis acting RNA transcript known as XIST (X inactivation sequence transcript) is coded from the XIC (X inactivation centre) localised to Xq13. The XIST molecule is not translated to a protein product, but rather is distributed along the length of the X chromosome to form a complex with DNA and the histone variant MacroH2A conformational shape changes to the DNA in proximity to XIST. The final step of inactivation is site specific methylation of cytosine bases.

The end result of the inactivation process is to abrogate gene expression from the inactive X chromosome. This mechanism does not inactivate all genes on the inactive X chromosome. A number of genes localised to a limited number of sites have been shown to escape the inactivation process; these include ARSD, ARSE, G51, STS, KAL, ANT3, XEF, MIC2, and others. Initially, loci shown to escape X inactivation were localised to the pseudoautosomal region of the X chromosome, frequently had Y chromosome homologues, and appeared to cluster on the p arm of the X chromosome. Now it is known that additional genes, both with and without Y chromosome homologues, and on the q arm of the X chromosome can also escape inactivation.

Studies of X chromosome inactivation were initially based upon electrophoretic analysis of the glucose-6-phosphate dehydrogenase protein. This technique pioneered by Fialkow was unfortunately limited by its lack of informative results. Other markers and techniques were also limited by a lack of informative sites. However, since the development of the AR assay by Allen et al., this technique has gained widespread acceptance and has been used in many studies of tumour clonality as well as X chromosome inactivation. The AR gene (CAG), trinucleotide repeats fall within exon 1 and are polymorphic in 90% of females from all racial groups. The utility of the AR assay is occasionally limited by difficulty in interpretation of results owing to stutter bands (as in fig 1) and software problems associated with optical scanning of gels using isotopic methods. Although trinucleotide repeats are usually much clearer on gel electrophoresis than dinucleotide repeats, the relatively high GC content of the AR repeat can potentially result in amplification difficulties. There is also a fair amount of subjectivity in the interpretation of the banding patterns that determine inactivation status. In contrast, the pentameric character of the DXS15-134 locus contributed to the ease of amplification of two unique alleles with clear and distinct banding patterns. Theoretically, DXS15-134 X inactivation patterns should supplement an AR analysis. Unfortunately, we found that results from the two assays were discordant in 38.9% of cases. At present, it is difficult to know which of the assays is more reliable. The overall incidence of NRXI, 37% of the informative cases, as determined by the AR assay was driven by the difference in rates between cancer probands (52.7%) and healthy controls (23.9%). Comparison of NRXI rates between several different cancers and the influence of age on this process forms the basis of another study (Mahavni et al., unpublished data). Results from several cases of X linked diseases, expressed in females, can readily be explained by and are consistent with NRXI results obtained at the AR locus. Correlative studies of other X linked loci including the MAOA locus and several single nucleotide polymorphisms (SNPs) are currently under way in our laboratory. One possible explanation of our results is that the DXS15-134 locus escapes X inactivation.

Three lines of evidence support the concept that the DXS15-134 locus is transcribed: (1) the study of Okamoto et al., (2) the single case (BR6) with NRXI, and (3) our laboratory has been able to apply our current DXS15-134 primers to a cDNA template and obtain PCR products, suggesting that the DXS15-134 locus is transcribed (data not shown). The poor sensitivity and predictive value of the locus to detect NRXI probably limit its use as a marker for X inactivation studies. Additional support for the hypothesis that the Xq28 region containing DXS15-134 escapes X inactivation was presented by Bailey et al. who reported on the variable clustering of Line-1 (L1) elements in selected human chromosomal. The L1 content of genomic segments that carry genes capable of escaping X inactivation was significantly lower ($p=4.8 \times 10^{-10}$) than the X chromosome average of those genes subject to inactivation ($p=0.004$). The region of Xq28 contained a relatively low base pair fraction (0.2%) of L1 elements. This may provide support to the idea of DXS15-134 generally escaping the X inactivation process, but clearly additional studies will be required to resolve these questions.

This research was supported in part by the Florence and Marshall Schweid Award to Dr Richard E Buller from the Gynecologic Cancer Foundation. Dr Vikas Mahavni was supported by a Department of Health and Human Services, Public Health Service-National Institute of Health training grant T32 HL07344.

Evaluation of the ELOVL4 gene in families with retinitis pigmentosa linked to the RP25 locus

Yang Li, Irene Marcos, Salud Borrego, Zhengya Yu, Kang Zhang, Guillermo Antiñolo

EDITOR—Retinitis pigmentosa (RP) is the most common form of retinal dystrophy. Patients present with night blindness and progressive narrowing of the visual field, eventually leading to central vision loss. Fundus examination usually shows bone spicula pigmentation, atrophy of blood vessels in the retina, and waxy pallor of the optic disc. Typically, the electroretinogram is notably diminished or even abolished.1 RP shows important allelic and non-allelic genetic heterogeneity (RET-GEN-NET) with different modes of inheritance, including autosomal dominant (AD), autosomal recessive (AR), X linked, and digenic.2 ARRPs are the most common form of RP. A locus for ARRPs, RP25, was mapped in 1998 to the long arm of chromosome 6 between microsatellite markers D6S257 and D6S1644 (MIM 602772).3 Recently, we have excluded two candidate genes, GABRR1 and GABRR2, as the disease causing gene.3 Several loci with retinal dystrophy phenotypes have been mapped to the pericentromeric region of chromosome 6. They include autosomal dominant Stargardt-like disease (STGD3), autosomal dominant macular atrophy (ADMD), autosomal dominant cone-rod dystrophy (CORD7), and Leber congenital amaurosis (LCA5).4 Recently, the gene responsible for STGD3 and ADMD has been identified.5 All affected members in four independent families with STGD3 and one family with ADMD shared a common founder haplotype, indicating a single ancestral disease specific mutation. A single 5 bp deletion of a novel gene called ELOVL4 was identified, which segregates with all affected members of the STGD3 and ADMD families.6 ELOVL4 shows cone and rod photoreceptor expression in the eye, is composed of six exons, and encodes a putative transmembrane protein of 314aa with similarities to the ELO family of members of the STGD3 and ADMD families. ELOVL4 has been suggested that this protein is involved in lipid metabolism. The high level of PUFA, such as DHA (docosahexaenoic acid), represents 50% of the retina, such as DHA (docosahexaenoic acid).7 It is well known that one gene can cause distinct disease phenotypes with retinal degeneration.8–9 For example, A BCR (also called ABCA4), the gene responsible for recessive Stargardt macular dystrophy (STGD1), can cause either ARRPs or autosomal recessive cone-rod dystrophy.4–9 It has been known for a long time that the retina possesses unique properties in lipid metabolism. The high level of PUFA, such as DHA, in the photoreceptors is thought to form an essential lipid environment for the phototransduction function. In addition, DHA is known to be lower in the serum of patients with retinitis pigmentosa. This evidence suggests that lipid metabolism may play a role in the pathogenesis of RP.24–26

2. Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA.
3. Y Li, Z Yu, K Zhang
5. I Marcos & Borrego G Antiñolo
6. Correspondence to: Dr Antiñolo, gantiñolo@hsv.sas.cica.es
ELOVL4 maps within the critical RP25 region and has a potential role in DHA synthesis. We therefore considered ELOVL4 to be a good candidate for the RP25 gene and performed mutational analysis of ELOVL4 in RP families linked to this locus. Eight families with 18 patients were included in these studies. Each exon of the ELOVL4 gene was amplified from genomic DNA derived from the index patients of the eight families using intronic primers (table 1). These PCR products were purified, analysed by EMDS (enamyl mutation detection), and automatically sequenced as previously described. Only two heterozygous variations were identified, both of which (IVS2-99T→C and M299V) have been previously described by Zhang et al. as non-pathogenic polymorphisms. These variants have been found in one family linked to RP25. In this particular family, there are two patients, both heterozygous for IVS2-99T→C and M299V. However, we did not detect any pathogenic variation in the ELOVL4 gene in the RP patients. Therefore, we excluded ELOVL4 as the gene responsible for RP25. Thus, our data indicate that at least two different genes involved in retinal degeneration are located in this region of the long arm of chromosome 6.

In conclusion, we have conducted a mutational screen in ELOVL4, the gene responsible for STGD3 and ADMD in ARRP families linked to RP25. After direct molecular analysis of the coding sequence and the intron-exon boundaries of ELOVL4, we did not find any pathogenic variant. Our results indicate that the ELOVL4 gene seems not to be involved in the pathogenesis of RP25 and STGD3/ADMD and RP25 are not allelic variants of the same gene. Nevertheless, a role for ELOVL4 in other inherited forms of RP needs to be elucidated.

5 Griesinger IB, Sieving PA, Ayyarag R. Autosomal dominant macular atrophy at 6q14 excludes CORD7 and MCDR1/Peripherin retinal degeneration. Hum Genet 1998;103:488-93.
PTEN mutations are uncommon in Proteus syndrome

K Barker, A Martinez, R Wang, S Bevan, V Murday, J Shipley, R Houlston, J Harper

Editor—Proteus syndrome (MIM 176920) is a rare, congenital, hamartomatous disorder, which is a member of a group of local overgrowth diseases. Happle proposed that some of these disorders are the result of the action of a lethal gene that can only survive in the mosaic state, which arises from an early somatic mutation or from a half chromatic mutation. Such a mechanism has been shown to be the underlying basis of McCune-Albright syndrome.1

One of the mandatory diagnostic criteria for Proteus syndrome is a mosaic distribution of lesions and sporadic occurrence, entirely consistent with Happle's hypothesis.

Currently, little is known about the molecular causes of Proteus syndrome. It is, however, likely that the overgrowth of tissue involves all germ layers. This may be because of hyperproliferation, an absence of appropriate apoptosis, or alternatively cellular hypertrophy. There have been few investigations into the molecular basis of Proteus syndrome. Zhou et al.2 recently identified PTEN mutations in a patient with a Proteus-like syndrome. Germline PTEN mutations are found in a high proportion of patients with Cowden (MIM 158350) and Bannayan-Riley-Ruvalca (BRR) syndromes (MIM 174800).2,3 One of the mandatory diagnostic criteria for Proteus syndrome is a mosaic distribution of lesions and sporadic occurrence, entirely consistent with Happle's hypothesis.

In our study we did not detect PTEN mutations in any of the Proteus syndrome patients we examined. Zhou et al. similarly failed to detect any PTEN mutations in five patients with classical Proteus syndrome; their patient with PTEN mutations did not fulfil the stringent diagnostic criteria for Proteus syndrome.

Mutations in the coding region of PTEN do not appear to be implicated in classical Proteus syndrome. PTEN may still be involved, as our finding does not preclude the possibility that it may be aberrantly imprinted in Proteus syndrome, for example by promoter methylation,13 leading to reduced PTEN expression. Given the innumerable possibilities for a molecular basis of Proteus syndrome, the identification of which genes are disrupted will prove difficult. One strategy for dissecting the molecular pathways of Proteus and other overgrowth syndromes is through examining the expression patterns of genes in affected and unaffected tissues, which is becoming feasible with the advent of microarray technology.11
The first two authors contributed equally to the study. Part of this work was undertaken in The Cancer Gene Cloning Laboratory. We would like to thank the patients who took part in this study.


Limited contribution of interchromosomal gene conversion to NF1 gene mutation

M Luijten, R Fahsold, C Mischung, A Westerveld, P Nürnberg, T J M Hulsebos

Editor.—Neurofibromatosis type 1 (NF1) is one of the most common autosomal dominant disorders with a population frequency of 1 in 3500. The disease is clinically characterised by multiple neurofibromas, café au lait spots and Lisch nodules of the iris. The NF1 gene, a tumour suppressor gene, resides on the proximal long arm of chromosome 17 (17q11.2). It spans approximately 350 kb of genomic DNA and, comprising 60 exons, encodes the protein neurofibromin. This protein, consisting of 2818 amino acids, contains a central domain that has homology with GTPase activating proteins (GAPs).

A distinct feature of the NF1 gene is the very high spontaneous mutation rate (1 × 10-7 per gamete per generation), which is about 100-fold higher than the usual mutation rate for a single locus. Up to 50% of all NF1 cases are thought to result from de novo mutations. The NF1 gene provides a large target for mutations because of its relatively large size, but this may only account for a factor of 10 in terms of increase in mutation rate.

The presence of numerous NF1 pseudogenes has been proposed as an explanation for the high mutation rate in NF1. In the human genome, at least 12 different NF1 related pseudogenes have been identified on chromosomes 2, 12, 14, 15, 18, 19, 21, and 22. Most of the NF1 pseudogenes have been mapped in pericentromeric regions. The chromosome 2 NF1 pseudogene has been localised to region 2q21, which is known to contain the remnant of an ancestral centromere. Owing to the absence of selective pressure, mutations may accumulate in the NF1 pseudogenes. Consequently, the pseudogenes could act as reservoirs of mutations, which might be crossed into the functional NF1 gene by interchromosomal gene conversion. Gene conversion, the non-reciprocal transfer of genetic information between two related sequences, has been recognised as a mutational mechanism for several human genes. In all these cases, the conversions occurred between gene and pseudogene on the same chromosome. For NF1, interchromosomal gene conversion is required as none of the NF1 pseudogenes is located on chromosome 17. Interchromosomal gene conversion has been reported to occur between the von Willebrand factor gene on chromosome 12 and the von Willebrand pseudogene on chromosome 22.

Gene conversion requires close contact between the functional gene and the corresponding pseudogene. The pericentromeric location of the functional NF1 gene and its pseudogenes may enable this close contact since centromeres tend to associate with each other in a non-random fashion. This is underlined by our finding that the NF1 pseudogenes on chromosomes 2, 14, and 22 have arisen by repeated transposition events between (peri)centromeric locations on these chromosomes (Luijten et al, submitted).

However, the high mutation rate in NF1 cannot be explained exclusively by interchromosomal gene conversion. Only a small part of the functional NF1 gene is represented in the NF1 pseudogenes (see below), while NF1 gene mutations are scattered over the entire gene. In this study, we investigated whether interchromosomal gene conversion contributes to the mutation rate in NF1.
First, we inventoried all available NF1 pseudogene sequences (Table 1). These included not only the published NF1 pseudogene sequences, but also so far unidentified NF1 pseudogene sequences present in the first draft sequence of the human genome. The latter were detected by performing a BLAST search using the complete cDNA sequence of the NF1 gene (http://www.nf.org/nf1gene/nf1gene.cDNAtext.html). In a previous study, we elucidated the complete nucleotide sequence of the NF1 pseudogene on chromosome 22.13 Analysis of this sequence showed that sequences homologous to exons 10b, 12a–19a, and 27b were sequenced. The maximum length of the corresponding segments of the functional NF1 gene on chromosomes 2 and 14 is denoted by a dashed line. The actual size of the represented segment of the chromosome 12, 15, 18, 21, and 22 NF1 pseudogenes is indicated by an unbroken line. The multiple variants of the chromosome 14 and 15 NF1 pseudogenes have the same genomic organisation.

<table>
<thead>
<tr>
<th>Chromosome</th>
<th>Variant</th>
<th>Exons</th>
<th>Accession No</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>A</td>
<td>10b, 12a–19a, 27b</td>
<td>AF232292-AF232302</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>12b-19a, 27b</td>
<td>AC0009477</td>
<td>23</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>13–15*</td>
<td>Y07858</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>13</td>
<td>U35697</td>
<td>8</td>
</tr>
<tr>
<td>12</td>
<td>E</td>
<td>16*</td>
<td>U35686</td>
<td>8</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>16, 17</td>
<td>AC024000</td>
<td>Birren et al, unpublished‡</td>
</tr>
</tbody>
</table>

Table 1  Publicly accessible NF1 pseudogene sequences

<table>
<thead>
<tr>
<th>Chromosome</th>
<th>Variant</th>
<th>Exons</th>
<th>Accession No</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 A</td>
<td>A</td>
<td>10b, 12a–19a, 27b</td>
<td>AF232248-AF232258</td>
<td>13</td>
</tr>
<tr>
<td>14 B</td>
<td>B</td>
<td>10b, 12a–19a, 27b</td>
<td>AF232259-AF232269</td>
<td>13</td>
</tr>
<tr>
<td>14 C</td>
<td>C</td>
<td>10b, 12a–19a, 27b</td>
<td>AF232270-AF232280</td>
<td>13</td>
</tr>
<tr>
<td>14 D</td>
<td>D</td>
<td>10b, 12a–19a, 27b</td>
<td>AF232281-AF232291</td>
<td>13</td>
</tr>
<tr>
<td>14 E</td>
<td>E</td>
<td>10b, 12a–19a, 27b</td>
<td>AL512624</td>
<td>Genoscope§</td>
</tr>
<tr>
<td>14 F</td>
<td>F</td>
<td>12b-19a, 27b</td>
<td>AL512310</td>
<td>Genoscope§</td>
</tr>
<tr>
<td>14 A, B</td>
<td>A, B</td>
<td>13–15*</td>
<td>Y07854, Y07855</td>
<td>12</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>13, 15, 16f, 18</td>
<td>U35696, U35684, U35687, U35690</td>
<td>8</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>13–15*</td>
<td>Y07856, Y07857</td>
<td>12</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>14</td>
<td>AF011743</td>
<td>11</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>15</td>
<td>U35685</td>
<td>8</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>15</td>
<td>AF011746, AF011744</td>
<td>11</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>18</td>
<td>U35691</td>
<td>8</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>19b</td>
<td>U35693</td>
<td>8</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>20–22</td>
<td>M84131</td>
<td>6</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>21</td>
<td>AF011748</td>
<td>11</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>23-1</td>
<td>U35694</td>
<td>8</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>24</td>
<td>U35695</td>
<td>8</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>24</td>
<td>AF011747, AF011745, AF011749</td>
<td>11</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>25–27b</td>
<td>M84131</td>
<td>6</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>13–23–1, 24–27b</td>
<td>AC021585, AC023191, AC037471</td>
<td>Birren et al, unpublished‡</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>13–23–1, 24–27b</td>
<td>AC020679</td>
<td>Birren et al, unpublished‡</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>24–27b</td>
<td>AC060814</td>
<td>Birren et al, unpublished‡</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>8</td>
<td>U35688</td>
<td>8</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>9</td>
<td>U35689</td>
<td>8</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>7–9, 11</td>
<td>D26141, AC004527</td>
<td>7; Weiss et al, unpublished**</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>10b, 12a–19a, 27b</td>
<td>AC002471, AC003064, AC005374</td>
<td>13</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>13–15*</td>
<td>Y07859</td>
<td>12</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>18</td>
<td>U35692</td>
<td>8</td>
</tr>
</tbody>
</table>

*Sequences of the last part of exon 13, of the complete exon 14, and of the first part of exon 15 have been determined.
†The sequence of only part of exon 16 has been determined.
‡Birren B, Linton L, Nusbaum C, Lander E, unpublished data.
§Genoscope, Centre National de Sequencage (www.genoscope.cns.fr).

First, we inventoried all available NF1 pseudogene sequences (Table 1). These included not only the published NF1 pseudogene sequences, but also so far unidentified NF1 pseudogene sequences present in the first draft sequence of the human genome. The latter were detected by performing a BLAST search using the complete cDNA sequence of the NF1 gene (http://www.nf.org/nf1gene/nf1gene.cDNAtext.html). In a previous study, we elucidated the complete nucleotide sequence of the NF1 pseudogene on chromosome 22.13 Analysis of this sequence showed that sequences homologous to exons 10b, 12a–19a, and 27b were sequenced. The maximum length of the corresponding segments of the functional gene of the NF1 pseudogenes on chromosomes 2 and 14 is denoted by a dashed line. The actual size of the represented segment of the chromosome 12, 15, 18, 21, and 22 NF1 pseudogenes is indicated by an unbroken line. The multiple variants of the chromosome 14 and 15 NF1 pseudogenes have the same genomic organisation.

**Letters**

Figure 1  Overview of the exons maximally represented in the various NF1 pseudogenes. Exons and introns of the functional NF1 gene are denoted by black and white boxes, respectively. For the NF1 pseudogenes, black boxes indicate exons that have been sequenced. The maximum length of the corresponding segments of the functional gene of the NF1 pseudogenes on chromosomes 2 and 14 is denoted by a dashed line. The actual size of the represented segment of the chromosome 12, 15, 18, 21, and 22 NF1 pseudogenes is indicated by an unbroken line. The multiple variants of the chromosome 14 and 15 NF1 pseudogenes have the same genomic organisation.
Table 2  Disease causing NF1 gene mutations congruous to NF1 pseudogene sequences

| Location | Mutation | Reference | Pseudogene | NF1 gene in patient—NF1 pseudogene†
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Exon 7</td>
<td>910C&gt;T†</td>
<td>24</td>
<td>ψNF1-18</td>
<td>TATTTCCT(10nt)TGA—TGTTTCC(10nt)TGA</td>
</tr>
<tr>
<td>Exon 7</td>
<td>910C&gt;T†</td>
<td>24</td>
<td>ψNF1-21</td>
<td>TGA—TGG</td>
</tr>
<tr>
<td>Exon 10b</td>
<td>1466A&gt;G</td>
<td>25</td>
<td>ψNF1-2</td>
<td>ACAAGAAGCTGT—ACGGAGGCCTGT</td>
</tr>
<tr>
<td>Exon 10b</td>
<td>1466A&gt;G</td>
<td>25</td>
<td>ψNF1-14A/B</td>
<td>AGAAGCTGT—GAAGAAGCTGT</td>
</tr>
<tr>
<td>Exon 10b</td>
<td>1466A&gt;G</td>
<td>25</td>
<td>ψNF1-14D/E</td>
<td>GAC(15nt)TGT—GGC(15nt)TGT</td>
</tr>
<tr>
<td>Exon 10b</td>
<td>1466A&gt;G</td>
<td>25</td>
<td>ψNF1-22</td>
<td>GACCTGT(12nt)TGT—GGCTGT(12nt)TGT</td>
</tr>
<tr>
<td>Exon 13</td>
<td>2033-2034insC*</td>
<td>27</td>
<td>ψNF1-15</td>
<td>ATGA(24nt)AGAG—AGAG(24nt)AGAG</td>
</tr>
<tr>
<td>Exon 13</td>
<td>2033-2034insC*</td>
<td>27</td>
<td>ψNF1-15</td>
<td>GGAACCCCCCCCG—GGA(1n4m)CCCTCCCCCG</td>
</tr>
<tr>
<td>Exon 14</td>
<td>2842C&gt;T</td>
<td>25</td>
<td>ψNF1-14A/B/D/E, unpublished</td>
<td>ATTTGCTGA—AGTCTGCA</td>
</tr>
<tr>
<td>Exon 14</td>
<td>2887T&gt;G</td>
<td>ψNF1-15</td>
<td>GCGG(6nt)ATTTG—GGCGG(6nt)ATTTG</td>
<td></td>
</tr>
<tr>
<td>Exon 14</td>
<td>2887T&gt;G</td>
<td>ψNF1-15</td>
<td>AAATCC(21nt)TAA—AAAGCCGC(21nt)TAA</td>
<td></td>
</tr>
<tr>
<td>Exon 14</td>
<td>2887T&gt;G</td>
<td>ψNF1-15</td>
<td>AATACC(21nt)TAA—AAAGGCGC(21nt)TAA</td>
<td></td>
</tr>
<tr>
<td>Exon 16</td>
<td>2882C&gt;T</td>
<td>25</td>
<td>ψNF1-14F</td>
<td>GTTACA(13nt)ACA—G—GGTACTA(13nt)ACA—G</td>
</tr>
<tr>
<td>Exon 16</td>
<td>2882C&gt;T</td>
<td>25</td>
<td>ψNF1-15</td>
<td>CTAGCTTGA—CTGGGCTTGA</td>
</tr>
<tr>
<td>Exon 20</td>
<td>3467A&gt;Gt</td>
<td>25</td>
<td>ψNF1-15</td>
<td>TCTC(12nt)CAG—CTCC(12nt)CAG</td>
</tr>
<tr>
<td>Exon 21</td>
<td>3526-3528delAGA</td>
<td>ψNF1-15</td>
<td>ψNF1-15</td>
<td>ψNF1-15</td>
</tr>
<tr>
<td>Exon 22</td>
<td>3721C&gt;T†</td>
<td>25</td>
<td>ψNF1-15</td>
<td>TTTGAAATTTT—TTCTAAATTTT</td>
</tr>
<tr>
<td>Exon 22</td>
<td>3721C&gt;T†</td>
<td>25</td>
<td>ψNF1-15</td>
<td>TTTGAAATTTT—TTCTAAATTTT</td>
</tr>
<tr>
<td>Exon 27a</td>
<td>4537C&gt;T†</td>
<td>8</td>
<td>ψNF1-15</td>
<td>TGA(9nt)AAGATG—TGA(9nt)AAGATG</td>
</tr>
</tbody>
</table>

*Mutations recurrently found in the NF1 gene of NF1 patients.
†Mutations with a pseudogene equivalent as reported in reference 25.
‡Disease causing mutations identified in the NF1 gene of NF1 patients and their pseudogene equivalents are indicated in italics; additional mutations in the pseudogenes compared with the functional NF1 gene are indicated in bold.

are present in the chromosome 22 NF1 pseudogene. The same exons are represented in the NF1 pseudogenes on chromosomes 2 and 14. Chromosome 14 contains several NF1 pseudogenes. Sequence analyses of all exons present in four chromosome 14 NF1 pseudogene variants and in the one on chromosome 2 have been performed. The BLAST search yielded two clones each containing an additional pseudogene variant on chromosome 14. In one of them, sequences corresponding to exons 10b, 12a-19a, and 27b are present, while in the other only exons 12b-19a and 27b are represented. The chromosome 2 NF1 pseudogene was also found among the results from the BLAST search. In the NF1 pseudogene present in this particular clone, exons 12b-19a, and 27b are represented.

The complete sequence of the chromosome 21 NF1 pseudogene has been determined (Weiss et al, unpublished data). In this pseudogene, exons 7-9 and 11 are represented. For chromosome 15, three different NF1 pseudogenes have been reported. A fourth locus may be present on chromosome 15, but this could not be substantiated. The presentation of the chromosome 15 NF1 pseudogenes starts in intron 12b and ends in intron 27b. These pseudogenes are the only NF1 pseudogenes known so far with a nearly complete representation of the GAP related domain, which is encoded by exons 20-27a. Three chromosome 15 clones were found as a result of the BLAST search. Only one of them contains sequences corresponding to exons 24-27b, whereas in both the other two clones exons 13-23-1 and 24-27b are represented. The latter two clones contain the same NF1 pseudogene variant, but differ from the NF1 pseudogene present in the former. The BLAST search also yielded two unmapped clones, in which exons 13-23-1 and 24-27b are represented. The NF1 pseudogene present in one of these unmapped clones is, with the exception of two nucleotides, identical to the NF1 pseudogene variant present in the two clones that have been mapped to chromosome 15. Considering this and the fact that in both the unmapped clones exons 20-23-1 and 24-27b are represented, we presume these NF1 related sequences to originate from chromosome 15. A number of exons of the published chromosome 15 NF1 pseudogene variants have been sequenced. None of the three pseudogene variants that were identified in the BLAST search is identical to the sequences available from the published chromosome 15 NF1 pseudogene variants. The chromosome 12 NF1 pseudogene maximally contains exons 12b-23-1, of which only exon 16 has been partially sequenced. One of the NF1 pseudogenes that resulted from the BLAST search contains sequences corresponding to exons 16 and 17. The clone containing this pseudogene was derived from chromosome 6. However, alignment of exon 16 of this pseudogene to other NF1 pseudogenes showed a difference of only one nucleotide with the exon 16 sequence of the chromosome 12 NF1 pseudogene. Since no indications for a chromosome 6 NF1 pseudogene exist so far, we assume this NF1 related sequence to originate from chromosome 12 rather than from chromosome 6. The NF1 pseudogene on chromosome 18 consists at the most of exons 7-13. Sequences of exons 8 and 9 have been reported. The BLAST search yielded an NF1 pseudogene, mapped to chromosome 18p11.2, in which exons 7-9 and 11 are represented. An overview of the exons represented in the various NF1 pseudogenes is given in fig 1 and all accessible NF1 pseudogene sequences are listed in table 1. When compared to the functional NF1 gene, substitutions, deletions, and insertions are present in all NF1 related sequences.

We continued by collecting all point mutations and/or minor lesions in the NF1 gene. In total, we found 225 different disease causing mutations in exons 7-9, 10b, 11-23-1, and 24-27b of the functional gene, the four regions known to be represented in the pseudogenes. These mutations included 30 novel disease
causing mutations that were taken from our own data (Fahsold et al, unpublished data; Nürnberg et al, unpublished data). Only a very limited number (13 of 225, 5.8%) of these disease-causing mutations appears to have a pseudogene equivalent (table 2). In every pseudogene involved, we detected within a short distance (ranging from 2 to 25 nucleotides) from the disease causing mutation at least one extra mutation compared with the functional NFI1 gene (table 2). If the 13 mutations had been generated by interchromosomal gene conversion, it is likely that these extra mutations would also have been transposed into the functional gene of the NFI1 patients. However, none of them has been identified in the NFI1 gene of these NFI1 patients. Of the 13 mutations found, six reside in CpG sites resulting in C to T transitions. About 32% of all single base pair substitutions causing human genetic disease occur in CpG dinucleotides. As CpGs of the NFI1 coding region are subject to methylation, these six C to T transitions are probably the result of spontaneous deamination of 5-methylcytosine rather than of interchromosomal gene conversion. This susceptibility for C to T transitions is substantiated by the fact that the six mutations found in both the functional gene and pseudogenes include four recurrent mutations of the NFI1 gene (indicated in table 2). Taken together, these results imply that the contribution of interchromosomal gene conversion to the high mutation rate in NFI1 is, at best, limited.

A clinical study of patients with multiple isolated neurofibromas

Patricia Blakley, David N Louis, M Priscilla Short, Mia MacCollin

Table 1 Clinical characteristics of patients with multiple isolated neurofibromas. Tumour distribution includes both surgically removed tumours and those still in place

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age (y)</th>
<th>Sex</th>
<th>Age at onset (y)</th>
<th>First symptom</th>
<th>Distribution of tumours</th>
<th>Findings associated with NF1</th>
<th>Tumour pathology (No of tumours)</th>
<th>Family history</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNF1</td>
<td>44</td>
<td>F</td>
<td>35</td>
<td>Painless mass</td>
<td>Brachial plexus and chest (bilateral)</td>
<td>Single CAL, migraine</td>
<td>Neurofibroma and plexiform neurofibroma (2)</td>
<td>Brother, osteosarcoma</td>
</tr>
<tr>
<td>BNF2</td>
<td>36</td>
<td>F</td>
<td>18</td>
<td>Abdominal pain</td>
<td>Scalp, spine and pelvis</td>
<td>Learning disability, migraine, single CAL</td>
<td>Neurofibroma (2)</td>
<td>Daughter, four subcutaneous masses</td>
</tr>
<tr>
<td>BNF3</td>
<td>39</td>
<td>F</td>
<td>6</td>
<td>Painless mass</td>
<td>Head and neck, spine, extremities, torso</td>
<td>Leg length discrepancy</td>
<td>Neurofibroma and plexiform neurofibroma (5)</td>
<td>None</td>
</tr>
<tr>
<td>BNF4</td>
<td>44</td>
<td>F</td>
<td>16</td>
<td>Facial palsy</td>
<td>Shull base, brachial plexus, spine, chest, pelvis, extremities</td>
<td>None</td>
<td>Neurofibroma (2)</td>
<td>None</td>
</tr>
<tr>
<td>BNF9</td>
<td>49</td>
<td>F</td>
<td>48</td>
<td>Chest pain</td>
<td>Brachial plexus (bilateral)</td>
<td>Migraine</td>
<td>Neurofibroma (1)</td>
<td>None</td>
</tr>
<tr>
<td>BNF10</td>
<td>47</td>
<td>M</td>
<td>33</td>
<td>Spastic gait</td>
<td>Spine</td>
<td>Neurofibroma (2)</td>
<td>Neurofibroma (2)</td>
<td></td>
</tr>
<tr>
<td>BNF11</td>
<td>65</td>
<td>M</td>
<td>53</td>
<td>Painless mass</td>
<td>Shoulder, chest, arm (all cutaneous)</td>
<td>Three CAL</td>
<td>Neurofibroma (7)</td>
<td>Son, NF2</td>
</tr>
<tr>
<td>BNF12</td>
<td>62</td>
<td>F</td>
<td>20</td>
<td>Painless mass</td>
<td>Face, extremities (all cutaneous)</td>
<td>Three CAL</td>
<td>Neurofibroma (2)</td>
<td>Multiple relatives with “tumours”, none confirmed</td>
</tr>
<tr>
<td>BNF14</td>
<td>48</td>
<td>F</td>
<td>18</td>
<td>Facial pain</td>
<td>Head and neck (R greater then L)</td>
<td>Single GTC, hypertension</td>
<td>Neurofibroma (4)</td>
<td>None</td>
</tr>
<tr>
<td>BNF15</td>
<td>39</td>
<td>F</td>
<td>31</td>
<td>Hip pain</td>
<td>R hip and buttock</td>
<td>None</td>
<td>Neurofibroma with marked collagen deposition (2)</td>
<td>None</td>
</tr>
</tbody>
</table>

F = female, M = male, R = right, L = left, CAL = café au lait macules, GTC = generalised tonic clonic seizure, NF = neurofibromas.

Material and methods
The criteria for inclusion in the study were multiple, pathologically proven neurofibromas, without other defining features of NF1. Careful family histories were obtained in order to document other family members potentially affected, extending to all second degree relatives. Each participant underwent a clinical examination by one or more of the authors (PB, MM, MPS), which included a detailed neurological evaluation and inspection of the skin with a Wood’s lamp. For patients who gave a positive family history, medical records from the potentially affected family member and tumour specimens were reviewed to confirm the diagnosis. Blood samples were collected and immortalised cell lines created for future studies.

Results
A total of 10 adult probands were identified who met our criteria of multiple neurofibromas without other stigmata of NF1 (table 1). Age of onset ranged from 6 to 53 years (mean 27.8 years). An
initial diagnosis of neurofibromatosis was made in only two patients. All patients reported an increase in the size and number of tumours since diagnosis. Seven patients reported increased pain in association with the increase in tumour size. In five cases, the pain had been unresponsive to medical management and had necessitated a reduction or discontinuation of employment. Decreasing neurological function was reported by three patients. A total of 41 surgical procedures had been performed on these patients for pain, increasing tumour size, or cosmetic disfigurement. A single patient received radiation therapy because of aggressive growth of her tumours associated with bony erosion.

Four patients gave a history of relatives potentially affected by NF. In one case (patient BNF12), none of the potentially affected relatives nor their records were available for study. In a second case (patient BNF11), the proband’s son had typical neurofibromatosis 2. Molecular genetic analysis of the son’s tumour showed a typical truncating mutation of the NF2 gene and loss of the paternal allele. Examination of genomic DNA extracted from peripheral blood lymphocytes from patient BNF11 showed that the NF2 gene mutation seen in the son’s tumour was not present. Two patients had first degree affected relatives with pathologically proven neurofibromas (BNF2 and 10). These 10 patients had a total of 15 children ranging in age from 9 to 40 years. Three of 15 were affected by the proband’s report and one (child of BNF2) had been examined and found to have four subcutaneous tumours and no café au lait macules at age 9.5 years. The mean age at referral to our clinic was 42.7 years.

Examination of these patients showed that four had readily visible, firm, subcutaneous tumours and two had typical cutaneous tumours indistinguishable from those seen in NF1 (fig 1). Detailed skin inspection using a Wood’s lamp showed that no patient had six or more café au lait macules (CAL) and no patient had skin fold freckling. Neurological examination was abnormal in four with weakness, sensory change, or Horner’s syndrome that could be attributed to the tumours or to postoperative change. Slit lamp examination was performed in all patients and failed to show Lisch nodules, cataract, or retinal changes. A single patient had abnormalities of the fingernails (fig 2); no other dysomorphic features were seen.

MR imaging studies of the tumours showed T2 bright and T1 isointense masses which were often poorly or irregularly enhancing (fig 3). Radiographic progression of tumours was documented in seven patients. Cranial MRI scan was performed in seven patients and thin cuts through the skull base were performed in four patients. A single patient (BNF4) had enhancement along cranial nerves consistent with tumour formation (fig 4).

Pathological review was conducted on archival material from 23 of the 41 surgical procedures, including two specimens from potentially affected relatives. All specimens were neurofibromas (table 1). Two patients (BNF1 and BNF3) had neurofibromas that were classically plexiform (fig 5A), in addition to having typical non-plexiform neurofibromas. Two patients (BNF4, BNF15) and two affected relatives (the mother of BNF2 and the brother of BNF10) had diffusely infiltrative neurofibromas that were suggestive, but not diagnostic, of plexiform neurofibroma. All tumours were characterised by elongated, wavy nuclei, often in a prominent myxoid background (fig 5B). Both tumours from one patient (BNF15) had marked collagen

Figure 1  Multiple masses in the right supraclavicular area in patient BNF1. A surgical scar from a debulking procedure is present.

Figure 2  Right arm and hand of patient BNF3 showing nearly contiguous involvement of the forearms by tumour masses and abnormal nail beds.

Figure 3  Coronal MRI of the cervical spine in patient BNF10 shows multiple poorly enhancing tumours (*) with significant mass effect on the cord. Contrast enhanced T1 weighted image.
None of the tumours had defined capsules and many diffusely involved the affected nerves. Mitotic activity or necrosis was not noted in any specimen. None of the tumours had cytological or architectural features suggestive of schwannoma, such as Antoni A and B areas or Verocay bodies.

**Discussion**

In this report, we describe the clinical characteristics of 10 subjects with multiple, pathologically proven neurofibromas who do not have other diagnostic features of NF1 or NF2. These patients presented with a combination of pain and neurological disability that required frequent intervention and often prevented them from working. There was clear heterogeneity in tumour distribution, with five patients having anatomically localised tumours, and two patients having only cutaneous tumours. Detailed physical examination and imaging studies confirmed the lack of other features of the commonly recognised forms of NF. Pathological examination failed to show any distinguishing characteristics of their tumours; both plexiform and non-plexiform neurofibromas were seen. By the patients' reports, affected relatives were rare, and we were able to confirm a similarly affected relative in only two cases.

Careful classification of the neurofibromatosis has been essential to both natural history studies and the successful cloning and characterisation of the disease causing genes. Because of the pathology of their tumours, these patients were closely evaluated for the possibility of NF1. They met neither the original NIH diagnostic criteria nor the proposed revision. Especially remarkable is the lack of CAL spots (seen or reported in nearly 100% of adults with NF1), skin fold freckling (seen in 90%), and Lisch nodules (seen in 96%). Neurofibromas are only rarely associated with NF2, and none of our patients had features suggestive of NF2, such as vestibular schwannoma, meningioma, or cataract. A single patient had an NF2 affected child, but we were able to exclude the diagnosis of NF2 in the patient using molecular methods.

In addition to NF1 and NF2, a number of variant forms of neurofibromatosis have been identified. Patients with marked anatomical and often dermatomal limitation of their tumours may represent segmental inactivation of the NF1 tumour suppressor. Although we did not observe any patient with strict dermatomal limitation, our patients BNF1, BNF9, BNF14, and BNF15 did show a localisation that suggests mosaicism. Several reports have been made of persons with anatomically limited tumours, which are all cutaneous and appear late in life. Interestingly, two of our patients had only cutaneous tumours (BNF11 and BNF12), though neither had obvious anatomical limitation. The remainder of our patients had no cutaneous tumours, suggesting that cutaneous tumour formation may represent a distinct pathophysiological pathway. Finally, sporadic plexiform neurofibroma (in presumed genetically normal subjects) may adopt a complex anatomy which mimics multiple tumour masses. Without molecular analysis, we cannot completely exclude a single tumour in patients BNF1, BNF9, BNF14, and BNF15. However, we feel this is unlikely based on the radiographic appearance of the tumour burden.

There have been a number of recent studies suggesting that spinal neurofibromatosis is a separate entity. Closer evaluation of the families, however, suggests that many meet the diagnostic criteria for NF1. Pulst et al. reported two families with multiple spinal neurofibromas in the absence of cutaneous tumours, vestibular schwannomas, and Lisch nodules. In one of the families, however, all of the affected members had more than six CAL macules in association with their spinal neurofibromas. A similar family with spinal neurofibromas and CAL macules was reported by Poyhonen et al. The three generation family reported by Ars et al. also meets the criteria for a diagnosis of NF1 and was found to have a typical truncating mutation of the NF1 gene. All affected family members had spinal neurofibromas, CAL macules, and either Lisch nodules or cutaneous neurofibromas. Spinal neurofibroma may, in fact, not be unusual in NF1 patients with or without symptoms.

Careful pathological review is especially important in the classification of the neurofibromatoses. This is perhaps best illustrated by the observation that NF1 patients rarely, if ever, develop benign schwannomas and NF2 patients rarely develop neurofibromas. In our review of the pathology of these patients and their affected family members, we found no patient with a schwannoma and no patient with malignant elements in their tumours. In clinical practice, pathological review of tumours in these patients was essential because their presentation was similar to those of patients with schwannomatosis (tumours often in an anatomically limited distribution and pain greater than neurological disability). Interpretation of published reports of unusual NF phenotypes should be made with caution if detailed pathological descriptions are not given.

In summary, we present the clinical findings of 10 patients whose unifying feature is the presence of multiple neurofibromas without other stigmata of NF1. Those patients most severely affected have a unique, generalised
We report on a three generation family with four affected members presenting with a combination of B cell immunodeficiency, distal limb abnormalities, and urogenital malformations in a three generation family: a novel autosomal dominant syndrome?

Patrick Edery, Françoise Le Deist, Marie-Louise Briard, Marianne Debré, Arnold Munnich, Claude Griscelli, Alain Fischer, Stanislas Lyonnet

We report on a three generation family with four affected members presenting with a combination of B cell immunodeficiency, distal limb abnormalities, genitourinary malformations, and mild dysmorphic features. All affected patients had normal intelligence and growth. No chromosomal abnormalities were observed using both standard and high resolution banding methods on the patients' lymphocytes. The observation of affected subjects of both sexes along with the occurrence of one male to male transmission suggests autosomal dominant inheritance of the trait with marked intrafamilial variable expression of the disease. While several multiple congenital anomalies (MCA) syndromes include both skeletal dysplasia and immune deficiency, the striking combination of congenital anomalies presented here, for which we propose the acronym BILU (B cell Immunodeficiency, Limb anomalies, Urogenital malformations) phenomenon that at times was familial. Other patients may represent a mosaic form of NFI with either localised manifestations or a generalised but attenuated form of the disease. Our current work is focused on identifying additional patients, clarifying the natural history of this phenotype, and studying patients’ blood and tumour specimens in an effort to determine its molecular genetic aetiology.

We thank the patients and families for their participation in this work, and Dr Kevin Ruggles for his help with the evaluation of patient BNF4. This work was supported by National Institutes of Health grants R01 NS35878-02 (MM) and R01 NS24279 (DNL) and was presented in part at the 49th Annual Meeting of the American Society of Human Genetics, San Francisco, California, October 1999.


and Urogenital malformations), is likely to represent a novel MCA syndrome.

Case reports
The proband (case 1, IV.1, fig 1) is an only child, born to unrelated parents. He was born at term by caesarian section with normal measurements (weight 3620 g, length 50 cm, and OFC 37 cm). Genital anomalies noted at birth included micropenis, scrotal hypospadias, and bilateral cryptorchidism, which required multiple surgical corrections. Despite testosterone substitution therapy, the size of the testes and penis only increased during puberty. Endocrine investigations including basal state testosterone, dihydrotestosterone, adrenal hormones, gonadotrophin plasma levels, gonadotrophin response to LHRH, and testosterone response to HCG were normal. Ultrasonography of the urinary system showed bilateral hydronephrosis.

Urography (IV) showed right hydronephrosis, ureteral stenosis, and vesicoureteral reflux. As shown in fig 3, the proband also had bilateral distal limb abnormalities including short digits, thenar hypoplasia, bilateral palmar creases, brachymesophalangism of both fifth fingers, congenital flexion contractures of the interphalangeal joints of both thumbs and both big toes, skin syndactyly of toes 3–4, and clinodactyly of the fourth toes. X-rays showed bilateral brachymesophalangism of toes 3–5 and short articular distances between phalanges P1 and P2 of the fourth toes. Mild dysmorphic features were noted including mild hypertelorism and fullness of the periorbital regions (fig 1).

A history of respiratory infections led us to investigate the haematological and immunological status of the proband. He had marked hypogammaglobulinaemia involving at least IgG and IgA (table 1). Anti-polio virus antibodies I, II, and III and anti-B allohaemagglutinins were undetectable in the plasma. No CD19 and no surface IgM could be detected in blood, indicating the absence of B cells. In contrast, other blood cell counts were repeatedly normal, as were T cell numbers when expressed as absolute values or ratios (CD3=85%, CD4=45%, CD8=35% (proband aged 13 months)) and T cell functions (PHA, candidin, and tetanus toxoid proliferation assays, mixed leucocyte reaction, natural killer (NK) activity, and cell mediated cytotoxicity).
subclasses (data not shown). Immunoglobulin perfusions were required every three weeks with a very good effect on respiratory infections. Unfortunately, we have not been able to perform a bone marrow biopsy as the proband has refused it so far, thus preventing the study of B lymphocyte precursors.

The proband had normal intelligence and growth until the age of 6 years when increased weight gain led to obesity (weight 113 kg, height 166 cm aged 15 years) and triggered or worsened psychological problems. Standard and high resolution banding karyotypes showed normal lymphocyte chromosomes.

The proband’s father (case 2, III.2, fig 1) had recurrent episodes of respiratory infections, and had *Streptoccocus pneumoniae* meningitis at the age of 22, which led to investigation of his immune status (table 1). He had dissociated hypogammaglobulinaemia involving mainly IgG, IgA, and IgM with IgG1, IgG2, and IgG4 deficiency. Very few B cell lymphocytes could be detected using a CD19 specific antibody. He had normal T cell lymphocyte counts and functions. IV immunoglobulin substitution was initiated.

Fig 4 shows distal limb abnormalities including bilateral flexion contractures of the interphalangeal joints of the thumbs, hypoplasia of the thumbs, overlapping first and second toes, and skin syndactyly of toes 3-4. X rays showed brachymesophalangism of toes 2-5 with only two phalanges on the fifth toes and short metacarpophalangeal and interphalangeal articular distances of fingers (not shown). He had epispadias and his son (case 1) was born using artificial insemination.

Dysmorphic features consisted of mild hypertelorism (interpupillary distance of 6.5 cm), deep periorbital ridges, fullness of periorbital regions, mandibular hypoplasia, and a thin chin (fig 1). He had severe, non-progressive, bilateral, sensorineural deafness considered to be a consequence of his meningitis. Intelligence, height, and weight were

### Table 1: Results of significant haematological and immunological investigations in affected subjects

<table>
<thead>
<tr>
<th>Affected subjects</th>
<th>II.1 (Proband aged 6 months)</th>
<th>III.2 (father)</th>
<th>III.4 (uncle)</th>
<th>II.2 (grandmother)</th>
<th>Control ranges in adults</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunoglobulin values (mg/dl)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgG (total) 150 (control ranges: 280–680)</td>
<td>252 245 588</td>
<td>1410 ± 250</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgG1 ND</td>
<td>75 77 350</td>
<td>940 ± 190</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgG2 ND</td>
<td>15 13 287</td>
<td>320 ± 130</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgG3 ND</td>
<td>162 155 40</td>
<td>100 ± 45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgG4 ND</td>
<td>0 0 11</td>
<td>62 ± 48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgM 36 (control ranges: 40–84)</td>
<td>5.6 2.2 ND</td>
<td>53 ± 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgA 8 (control ranges: 10–58)</td>
<td>38 38 ND</td>
<td>194 ± 58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgD &lt;2 (low)</td>
<td>2.2 1.8 ND</td>
<td>&gt;3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD19 (B cells) % 0</td>
<td>1 (low) 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface IgM (%) 0</td>
<td>&lt;1 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ND: not determined.
normal. Standard chromosome studies on blood lymphocytes showed no anomalies.

The proband’s paternal uncle (case 3, III.4, fig 1) had a similar disease history to his brother (case 2) with recurrent respiratory infections and a Streptococcus pneumoniae meningitis. He had dissociated hypogammaglobulinaemia with marked deficiency of IgG, IgA, and IgM and IgG1, IgG2, and IgG4 subclasses. No B cell lymphocytes could be detected (table 1). Bilateral symphalangism of the thumbs, epispadias which required surgical correction, and hypertelorism were noted. He had bilateral deafness considered to result from his meningitis, but which was not further investigated. He died from post-hepatitis cirrhosis. His blood lymphocytes showed no anomalies.

The paternal grandmother of the proband (case 4, II.2, fig 5) also had deafness (fig 5), but no urogenital anomalies. She had bilateral shortening of the thumbs and symphalangism of the bilateral contractures of the interphalangeal joints of the thumbs as shown by arrows. (Bottom) Absence of flexion crease of thumbs.

The proband’s paternal uncle (case 3, III.4, fig 1) had a similar disease history to his brother (case 2) with recurrent respiratory infections and a Streptococcus pneumoniae meningitis. He had dissociated hypogammaglobulinaemia with marked deficiency of IgG, IgA, and IgM and IgG1, IgG2, and IgG4 subclasses. No B cell lymphocytes could be detected (table 1). Bilateral symphalangism of the thumbs, epispadias which required surgical correction, and hypertelorism were noted. He had bilateral deafness considered to result from his meningitis, but which was not further investigated. He died from post-hepatitis cirrhosis. His blood lymphocytes showed no anomalies.

The proband’s paternal uncle (case 3, III.4, fig 1) had a similar disease history to his brother (case 2) with recurrent respiratory infections and a Streptococcus pneumoniae meningitis. He had dissociated hypogammaglobulinaemia with marked deficiency of IgG, IgA, and IgM and IgG1, IgG2, and IgG4 subclasses. No B cell lymphocytes could be detected (table 1). Bilateral symphalangism of the thumbs, epispadias which required surgical correction, and hypertelorism were noted. He had bilateral deafness considered to result from his meningitis, but which was not further investigated. He died from post-hepatitis cirrhosis. His blood lymphocytes showed no anomalies.

The proband’s paternal uncle (case 3, III.4, fig 1) had a similar disease history to his brother (case 2) with recurrent respiratory infections and a Streptococcus pneumoniae meningitis. He had dissociated hypogammaglobulinaemia with marked deficiency of IgG, IgA, and IgM and IgG1, IgG2, and IgG4 subclasses. No B cell lymphocytes could be detected (table 1). Bilateral symphalangism of the thumbs, epispadias which required surgical correction, and hypertelorism were noted. He had bilateral deafness considered to result from his meningitis, but which was not further investigated. He died from post-hepatitis cirrhosis. His blood lymphocytes showed no anomalies.

Discussion
Here, we report on a striking combination of congenital anomalies, including B cell immunodeficiency, distal limb malformations, urogenital anomalies, and mild dysmorphic features in four members of a single three generation family. We propose the acronym BILU (B cell Immunodeficiency, Limb anomalies, and Urogenital malformations) as a means to make this association of signs easier to remember. Two of the four affected subjects (cases 2 and 3) also had deafness and one was obese (the proband, case 1). However, deafness started after a Streptococcus pneumoniae meningitis in both cases and the type of deafness was sensorineural and non-progressive in case 2 (not studied in case 3), suggesting that this feature may not be part of the BILU syndrome.

Also, obesity in case 1 was associated with an unfavourable psychosocial status and, in our opinion, should not be considered as a specific sign. The occurrence of one male to male transmission together with the intrafamilial variability in phenotypic expression of the disease suggests autosomal dominant inheritance of the trait. Alternatively, an infracytogenetic chromosomal rearrangement might be responsible for the disease phenotype. However, the latter hypothesis is unlikely since neither mental retardation nor growth delay was observed in the affected subjects. This combination of congenital anomalies including B cell immunodeficiency appears unique and thus may represent an as yet undescribed autosomal dominant MCA syndrome.

Several short limbed dwarfisms/skeletal dysplasias (SLSD) have been found to be associated with immunodeficiency.1 Ammann et al1 proposed a classification based on the immune defect. Type 1 includes early lethal SLSD with combined humoral (B cell) and cell mediated (T cell) immunodeficiency. Patients with type 1 SLSD appear to form a heterogeneous group.3 Some have adenosine deaminase (ADA) deficiency.5 Several reports have described type 1 SLSD cases associated with features of Ommen syndrome, namely eosi
tonphilia, reticuloendotheliosis, alopecia, and ichthyosiform skin lesions.3 5–7 Type 2, less common than type 1, includes SLSD and T cell immunodeficiency, an association reminiscent of the cartilage-hair hypoplasia syndrome (CHH, MIM 250250), a metaphyseal dysplasia with short stature, fine and sparse blond hair, chronic neutropenia, and abnormal cellular immunity.6 7 This autosomal recessive condition has been mapped to chromosome 9p13.10 Type 3 (two sibs reported by Ammann et al11) comprises SLSD with antibody mediated immunity. The occurrence of one male to male transmission together with the intrafamilial variability in phenotypic expression of the disease suggests autosomal dominant inheritance of the trait. Alternatively, an infracytogenetic chromosomal rearrangement might be responsible for the disease phenotype. However, the latter hypothesis is unlikely since neither mental retardation nor growth delay was observed in the affected subjects. This combination of congenital anomalies including B cell immunodeficiency appears unique and thus may represent an as yet undescribed autosomal dominant MCA syndrome.

In this family presented here, the diagnosis of SLSD can easily be excluded since the patients do not have short stature. Moreover, urogenital anomalies are not commonly observed in SLSD. The pattern of congenital anomalies reported here shows some overlap with that of a 6 year old boy born to first cousin parents of Turkish origin described by Braegger et al.11 This patient had panhypogammaglobulinemia, hypospadias, bilateral cryptorchidism, and distal limb anomalies comprising short hands and digits, short middle phalanges of the fifth fingers, and mild skin syndactyly of the toes. However, we believe that we are dealing with a different condition since this boy also displayed...
mental retardation, ichthyoid hypoplasia, renal dysfunction without any obstructive uropathy, and marked facial dysmorphism. He had neither symphalangism nor limitation of flexion of the thumbs.

We will briefly describe other immunooosseous syndromes with short stature. Each of these conditions also appears to be different from the BILU syndrome. Schimke immunooosseous dysplasia (MIM 242900) includes short trunk skeletal dysplasia, glomerulonephritis with immune complex formation, and a defect of T-cell maturation.15 16 Ainsworth et al.16 reported a syndrome of selective IgG2 deficiency with severe growth retardation of prenatal onset, developmental delay, distal limb hypotrophy, dental anomalies, and eczematous skin.16 The Say-Barber-Miller syndrome includes B-cell deficiency, short stature, hypoplastic patellae, multiple joint anomalies, microphalpy, mental retardation, hypogonadism, and unusual facies.15 Two female sibs with craniocephaly, mental retardation, hypogonadism, includes B cell deficiency, short stature, hypogamgamglobulinemia associated with a distinctive form of short-limbed dwarfism and ectodermal dysplasia. J Pediatr 1969;75:675-84.

We thank Mrs A Reumert-Kazès for her help with writing this manuscript.
Chromosome 2 interstitial deletion (del(2)(q14.1q21)) associated with connective tissue laxity and an attention deficit disorder

K L Baker, M I Rees, P W Thompson, R T Howell, T R Cole, H E Hughes, M Upadhyaya, D Ravine

Editor—Reports of interstitial deletions involving the long arm of chromosome 2 are uncommon.1–10 Among these, there are only four which involve the region q14q21. We report a further case with a paternally derived de novo interstitial deletion of chromosome 2q14.1q21.

Case report
The proband was a male born by spontaneous vaginal delivery at term following an uneventful pregnancy. The parents are healthy, unrelated, and white. Birth weight was 4140 g (97th centile). Early childhood was complicated by hypotonia and recurrent sleep apnoea which resolved following adenoidectomy at 2 years of age. Otherwise, his medical history showed the normal range of intercurrent childhood viral illnesses. While childhood linear growth was rapid, during the second year there was considerable concern about poor weight gain. At 6 years of age he was noted to have a high, bossed forehead with a large head circumference (90-97th centile). A thoracolumbar kyphoscoliosis and a mild sternal depression was noted. He attended normal school although moderate learning difficulties were experienced. An attention deficit defect was identified and managed with the aid of methylphenidate hydrochloride. At 15 years of age, he was tall and thin (height 176 cm, 80th centile; weight 43.3 kg, 5th centile) with an associated moderate thoracolumbar kyphoscoliosis and pectus carinatum deformity. While the upper segment:lower segment ratio was 0.804, it was apparent that spinal height was somewhat reduced by the curvature of the scoliosis. The span measurement was 175 cm and head circumference was 56.0 cm (60th centile). He was a generally thinly muscled adolescent with little subcutaneous tissue. Some mild proximal upper limb weakness was detected and winging of the scapulae was evident, particularly on the right side. Examination of the musculature around the scapulae showed that the trapezius muscles were absent or possibly extremely hypoplast. Ophthalmic examination showed normal fundi with no evidence of corneal or anterior chamber abnormalities, lens opacities, or dislocation. Other than findings of brisk lower limb reflexes, no other neuromuscular signs were present. No striae were evident. The forehead was high and the mandible was prominent owing to obtuse angulation. The ears were low set and dysplastic with some overfolding of the pinnae. The palate was high arched. Puberty had started, with stage 4 pubic hair development and a testicular volume of 25 ml. Cardiac echocardiography showed a mild degree of aortic root dilatation (aortic diameter 2.9 cm, calculated body surface area of 1.5 m²) but otherwise normal cardiac anatomy. Cytogenetic studies showed a small proximal interstitial deletion on the long arm of chromosome 2 (46,XY,del(2)(q14.1-21)). Before this result, no syndromic diagnosis was immediately apparent, although the occurrence of a high birth weight, a markedly prominent forehead in early childhood (fig 1A, B), and later development of mandibular prominence, hypotonia, and disproportionately long limbs had raised the question of Sotos syndrome.11 No bone age assessments were performed earlier in childhood and it was concluded that there were insufficient features present to confirm this diagnosis. Later photographs taken in mid childhood (fig 1C-F) were not supportive of the diagnosis.

In view of the phenotype observed in this child and the rarity of interstitial deletions within this region of chromosome 2, it was decided to delineate the breakpoints of the deletion further by both fluorescence in situ hybridisation and microsatellite analysis. FISH analysis with three YACS identified a region of deletion defined by YAC694-d-4. The deleted YAC contains marker D2S110 which provided an anchor point for the microsatellite work. Microsatellite markers (Genethon map) were selected and loss of heterozygosity analysis further defined the deletion within a genetic distance of approximately 10-12 cM and involves markers ranging from 2q14.1 to 2q21.1 (fig 2). The loss of alleles was present for all markers and the patient displayed only the maternal alleles for the deleted region.

Discussion
Common clinical features among the few reports of proximal interstitial deletions of chromosome 2 involving the region q14.1q21 include developmental delay, microcephaly, defects of the corpus callosum, prominence of the forehead, low set and malformed ears, cardiac anomalies, and a tendency to recurrent, severe infections (table 1). Our case has some...
of the characteristics reported in these earlier cases, including a prominent forehead and low set and malformed ears. Like the case reported by Frydman et al., the birth weight of our case was unusually high. The older age of our patient, compared with those in earlier reports, provided an opportunity to document a more extensive medical history than has been recorded previously.

Weight gain was disproportionately poor from early childhood onwards, despite linear growth remaining above the 50th centile. In contrast to the earlier reports of marked microcephaly, head growth in the case reported here was proportionate to linear growth. Similarly, the occurrence of moderate learning difficulties is in contrast to the severe developmental delay reported in the case of Frydman et al.

The presence of kyphoscoliosis with pectus carinatum deformity and mild aortic root dilatation suggests an abnormality involving connective tissue. Although these features occur commonly in Marfan syndrome, there

Figure 1  The facial features of the proband at (A) 18 months; (B) 3 years; (C) 6 years; (D) 9 years; (E) 15 years, trunk and upper limbs; (F) 15 years, front facial view; (G) 15 years, lateral facial view; (H) 17 years, front facial view.
were insufficient other physical features present to support this diagnosis. Nevertheless, there are some similarities, which raise the interesting possibility of another potential FBN gene within the chromosome 2 deleted region. Similarly, the associated occurrence of a moderate learning disability, together with an attention deficit defect, suggests that genes involved with higher level cerebral function are located within the deleted region. Occurrence of callosal defects among the other cases with interstitial deletions of this chromosomal region points to an abnormality of neuronal migration. Unfortunately, it was not possible to arrange neuroimaging in our own case. Nevertheless, the more moderate neurodeficit in our case contrasted with the earlier case reports of proximal 2q deletions and indicates that a variable CNS phenotype is associated with interstitial deletions in this region.

Haploinsufficiency involving one or more genes is a likely explanation for the observed phenotype. There are a number of genes within or close to the deleted region that are determinants for growth and development. Genes that could contribute to the phenotypes observed among those with interstitial deletions in this region include GLI2 and the interleukin 1 genes and their receptors (IL1A, IL1B, IL1RN, and IL1R2). Gli2, a zinc finger transcription factor whose human homologue GLI2 is positioned at 2q14, has been shown to have overlapping functions with Gli3 in Shh signalling.12 It is of interest that the most proximal 2q interstitial deletion (q12-q14) has lower limb postaxial hexadactyly4 in keeping with the polydactyly observed with GLI3 mutations in Greig cephalopolysyndactyly syndrome, Pallister-Hall syndrome, and postaxial polydactyly type A syndrome.13 The occurrence of severe childhood infections, and unexplained febrile episodes as well as leukaemoid reactions among many of these cases with interstitial deletions in this proximal region of 2q is of interest. In this context, it is notable that our case did not have such a history. Candidate genes for these features include the interleukin-1 (IL-1) gene cluster and the IL-1 receptor gene cluster which map in the region of chromosome 2q12 to 2q13.14 15

Other genetic explanations for the observed phenotype include the unmasking of autosomal recessive disease owing to hemizygosity, or a parent of origin, or imprinting, effect contributing in part or in whole to the observed differences. While microsatellite analysis showed that the deletion in this case was of paternal origin, the parental origins of the previously reported deletions were not determined. Interestingly, the father of the case with an interstitial deletion of the region q13q21, reported by Davis et al8 had a balanced translocation involving chromosome 2 as well as a pericentric inversion of chromosome 9 (46,XY,inv(9),t(2,7)(q32.2;p11). Other than this unusual report of co-occurrence of two chromosomal rearrangements involving the long arm of chromosome 2 in parent and child, there is insufficient evidence arising from earlier reports to determine whether a parent of origin effect occurs in this chromosomal region. Should such an effect occur, the paternal origin of the deletion reported here makes it possible to predict that maternal imprinting is involved. While reports of maternal disomy of chromosome 2 associated with phenotypic abnormalities is supportive of this concept,16 a report of maternal isodisomy 2 owing to the de novo inheritance of two isochromosomes for chromosome 2 in a normal healthy female, karyotyped because of recurrent spontaneous abortions,17 is strong evidence against.

To conclude, this case provides some additional insights into the effects of haploinsufficiency arising from a deletion of paternal origin in the proximal region of the long arm of chromosome 2.

Figure 2 Deleted region at 2q14.1-q21. Markers proximal to D2S2224 and distal to D2S2385 were consistently biallelic. Grey portions of the del(2) chromosome represents the areas on which the deletion breakpoints can be localised.
Table 1: Reports of proximal deletions of chromosome 2

<table>
<thead>
<tr>
<th>Parental origin of deletion</th>
<th>Pregnancy outcome</th>
<th>Sex</th>
<th>Birth weight (g)</th>
<th>Age</th>
<th>Developmental delay/learning difficulties</th>
<th>Attention deficit disorder</th>
<th>Developmental delay/learning difficulties</th>
<th>Head circumference</th>
<th>Other anomalies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown</td>
<td>Unknown</td>
<td>Paternal karyotype</td>
<td>46,XY, inv (9), t(2,7)(q32.2;p11)</td>
<td>8 mth†</td>
<td>Severe</td>
<td></td>
<td>Severe</td>
<td>90–97th centile</td>
<td>Microcephaly</td>
</tr>
<tr>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>46,XY,del(2)(q12q14)</td>
<td>30 mth</td>
<td>Severe</td>
<td></td>
<td>Severe</td>
<td>72 cm (50th centile)</td>
<td>Microcephaly</td>
</tr>
<tr>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>46,XY,del(2)(q12q14)</td>
<td>29 mth†</td>
<td>Severe</td>
<td></td>
<td>Severe</td>
<td>41 cm (&lt;3rd centile)</td>
<td>Microcephaly</td>
</tr>
<tr>
<td>Unknown</td>
<td>Unknown</td>
<td>Female</td>
<td>46,XX,del(2)(q12q14)</td>
<td>17 y</td>
<td>Severe</td>
<td></td>
<td>Severe</td>
<td>32 cm (&gt;95th centile)</td>
<td>Microcephaly</td>
</tr>
<tr>
<td>Unknown</td>
<td>Unknown</td>
<td>Female</td>
<td>46,XX,del(2)(q12q14)</td>
<td>11 mth</td>
<td>Severe</td>
<td></td>
<td>Severe</td>
<td>36 cm (&gt;95th centile)</td>
<td>Microcephaly</td>
</tr>
<tr>
<td>Unknown</td>
<td>Unknown</td>
<td>Female</td>
<td>46,XX,del(2)(q12q14)</td>
<td>2 mth†</td>
<td>Severe</td>
<td></td>
<td>Severe</td>
<td>32 cm (&gt;95th centile)</td>
<td>Microcephaly</td>
</tr>
<tr>
<td>Unknown</td>
<td>Unknown</td>
<td>Female</td>
<td>46,XX,del(2)(q12q14)</td>
<td>Newborn†</td>
<td>Severe</td>
<td></td>
<td>Severe</td>
<td>32 cm (&gt;95th centile)</td>
<td>Microcephaly</td>
</tr>
</tbody>
</table>

Cases with deleted regions which overlap that of the present case.

14. Nothwang HG, Strahm B, Denich F, Kubler M, Schwabe J, Luecke H, Hildebrandt F. Molecular cloning of the interleukin-1 gene organization of IL1R2, IL1R1, IL1RL1 (IL-1Rrp), IL1RL2 (IL-1Rrp2), and IL18R1 (IL-1Rrp2) on human chromosome 2q. Genomics 1997;41:370-8.
15. Dale M, Nicklin MJ. Interleukin-1 receptor cluster: gene organization of IL1R2, IL1RL1, IL1RL2 (IL-1Rrp2), IL1RL1 (T1/ST2), and IL1R1 (IL-1R) on human chromosome 2q. Genomics 1999;37:177-9.