Timing of female reproduction: the role of the suprachiasmatic nucleus

Palm, I.F.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
REFERENCES

3. Aiyer MS, Fink G 1974 The role of sex steroid hormones in modulating the responsiveness of the anterior pituitary gland to luteinizing hormone releasing factor in the female rat. J Endocrinol 62:553-572
33. Butcher RL, Collins WE, Fugo NW 1974 Plasma concentration of LH, FSH, prolactin, progesterone and estradiol-17β throughout the 4-day estrous cycle of the rat. Endocrinology 94:1704-1708
34. Cagampang FRA, Rattray M, Powell JF, Campbell IC, Coen CW 1996 Circadian changes of glutamate decarboxylase 65 and 67 mRNA in the rat suprachiasmatic nuclei. Neuroreport 7:1925-1928
49. Cheesman DW, Osland RB, Forsham PH 1976 Suppression of the preovulatory surge of luteinizing hormone and subsequent ovulation in the rat by arginine vasotocin. Endocrinology 101:1194-1202
REFERENCES

65. De La Iglesia HO, Blaustein JD, Bittman EL 1995 The suprachiasmatic area in the female hamster projects to neurons containing estrogen receptors and GnRH. Neuroreport 6:1715-1722
66. De La Iglesia HO, Blaustein JD, Bittman EL 1999 Oestrogen receptor-α-immunoreactive neurons project to the suprachiasmatic nucleus in the female syrian hamster. Journal of Neuroendocrinology 11:481-490
71. DePaolo LV, Berardo PV, Carrillo AJ 1986 Intraventricular administration of arginine vasopressin suppresses prolactin release via a dopaminergic mechanism. Peptides 7:541-544
76. Eskes GA 1984 Neural control of the daily rhythm of sexual behavior in the male golden hamster. Brain Res 293:127-141
78. Everett JW 1948 Progesterone and estrogen in the experimental control of ovulation time and other features of the estrous cycle in the rat. unknown
80. Everett JW, Sawyer CH, Markey Je 1949 A neurogenic timing factor in control of the ovulatory discharge luteinizing hormone in the cyclic rat. Endocrinology 44:234-250
82. Eskes GA 1984 Neural control of the daily rhythm of sexual behavior in the male golden hamster. Brain Res 293:127-141
84. Eskes GA 1984 Neural control of the daily rhythm of sexual behavior in the male golden hamster. Brain Res 293:127-141
87. Everett JW, Sawyer CH, Markey Je 1949 A neurogenic timing factor in control of the ovulatory discharge luteinizing hormone in the cyclic rat. Endocrinology 44:234-250
88. Everett JW, Tyrey L 1983 Comparable surges of luteinizing hormone induced by preoptic or medial basal tuberal electrical stimulation in spontaneously persistent estrous or cyclic proestrous rats. Endocrinology 112:2015-2020
REFERENCES

89. Fahrbach SE, Meisel RL, Pfaff DW 1985 Preoptic implants of estradiol increase wheel running but not the open field activity of female rats. Physiol Behav 35:985-992


111. Goldman BD 1999 The circadian timing system and reproduction in mammals. Steroids 64:679-685


125. Herbison AE, Theodosis DT 1992 Localization of oestrogen receptors in preoptic neurons containing neurotensin but not tyrosine hydroxylase, cholecystokinin or luteinizing hormone-releasing hormone in the male and female rat. Neurosci 50:283-298


REFERENCES

131. Horvath TL 1997 Suprachiasmatic efferents avoid fenestrated capillaries but innervate neuroendocrine cells, including those producing dopamine. Endocrinology 138:1312-1320

132. Horvath TL 1998 An alternate pathway for visual signal integration into the hypothalamic-pituitary axis: Retinorecipient intergeniculate neurons project to various regions of the hypothalamus and innervate neuroendocrine cells including those producing dopamine. J Neurosci 18:1546-1558


141. Ieiri T, Chen HT, Campbell GA, Meites J 1980 Effects of naloxone and morphine on the proestrus surge of prolactin and gonadotropins in the rat. Endocrinology 1568


146. Jacobson WJ, Kalra SP 1989 Decreases in mediobasal hypothalamic and preoptic area opioid ([3H]naloxone) binding are associated with the progesterone-induced luteinizing hormone surge. Endocrinology 124:199-206

147. Jamali KA, Tramu G 1999 Control of rat hypothalamic pro-opiomelanocortin neurons by a circadian clock that is entrained by the daily light-off signal. Neurosci 93:1051-1061


184. La Fleur SE, Kalsbeek A, Wortel J, Buijs RM 2000 Polysynaptic neural pathways between the hypothalamus, including the suprachiasmatic nucleus and the liver. Brain Res


189. Le WW, Attardi B, Berghorn KA, Blaustein JD, Hoffman GE 1997 Progesterone blockade of a luteinizing hormone surge blocks luteinizing hormone-releasing hormone Fos activation and activation of its preoptic area afferents. Brain Res 778:272-280

190. Le WW, Berghorn KA, Rassnick S, Hoffman GE 1999 Periventricular preoptic area neurons coactivated with luteinizing hormone (LH)-releasing hormone (LHRH) neurons at the time of the LH surge are LHRH afferents. Endocrinology 140:510-519


193. Lee W-S, Smith MS, Hoffman GE 1990 Luteinizing hormone-releasing hormone neurons express fos protein during the proestrous surge of luteinizing hormone. Proc Natl Acad Sci USA 87:5163-5167

194. Lee W-S, Smith MS, Hoffman GE 1990 Progesterone enhances the surge of luteinizing hormone by increasing the activation of luteinizing hormone-releasing hormone neurons. Endocrinology 127:2604-2606


201. Leranth C, MacLusky NJ, Shanabrough M, Naftolin F 1988a Catecholaminergic innervation of luteinizing hormone-releasing hormone and glutamic acid decarboxylase immunopositive neurons in the rat medial preoptic area. Neuroendocrinology 48:591-602


REFERENCES


211. Ma YJ, Kelly MJ, Rönnekleiv OK 1993 Pro-gonadotropin-releasing hormone (proGnRH) and GnRH content in the preoptic area and the basal hypothalamus of anterior medial preoptic nucleus/suprachiasmatic nucleus-lesioned persistent estrous rats. Endocrinology 127:2654-2664


238. Morin LP, Cummings LA 1982 Splitting of wheelrunning rhythms by castrated or steroid treated male and female hamsters. Physiol Behav 29:665-675
243. Murai I, Reichlin S, Ben-Jonathan N 1989 The peak phase of the proestrous prolactin surge is blocked by either posterior pituitary lobectomy or antiserum to vasoactive intestinal peptide. Endocrinology 124:1050-1055
244. Naftolin F, Mor G, Horvath TL, Luquin S, Fajer AB, Kohen F, Garciasegura LM 1996 Synaptic remodeling in the arcuate nucleus during the estrous cycle is induced by estrogen and precedes the preovulatory gonadotropin surge. Endocrinology 137:5576-5580
246. Neill JD, Freeman ME, Tillson SA 1971 Control of the proestrous surge of prolactin and luteinizing hormone secretion by estrogens in the rat. Endocrinology 89:1448-1453
REFERENCES


263. Petersen SL, McCrone S, Shores S 1993 Localized changes in LHRH mRNA levels as cellular correlates of the positive feedback effects of estrogen on LHRH neurons. Amer Zool 33:255-265


266. Ping L, Mahesh VB, Wiedmeier VT, Brann DW 1994 Release of glutamate and aspartate from the preoptic area during the progesterone-induced LH surge - In vivo microdialysis studies. Neuroendocrinology 59:318-324


274. Reinoso BS, Simerly RB, Hormone-sensitive sexually dimorphic neurons in the anteroventral periventricular nucleus project to the arcuate nucleus of the hypothalamus. Society for Neuroscience abstracts, 17, 1991, p 1229 (Abstract)
REFERENCES


281. Romijn HJ, Sluiter AA, Pool CW, Wortel J, Buijs RM 1996 Differences in colocalization between fos and PHI, GRP, VIP and VP in neurons of the rat suprachiasmatic nucleus after a light stimulus during the phase delay versus the phase advance period of the night. J Comp Neurol 372:1-8


REFERENCES


306. Shin SH, Reifel CW 1981 Adenohypophysis has an inherent property for pulsatile prolactin secretion. Neuroendocrinology 32:139-144


REFERENCES


330. Stefanick ML 1983 The circadian patterns of spontaneous seminal emission, sexual activity and penile reflexes in the rat. Physiol Behav 31:737-743

331. Stephan FK, Zucker I 1972 Circadian rhythms in drinking behavior and locomotor activity of the rat are eliminated by hypothalamic lesions. Proc Natl Acad Sci USA 69:1583-1586


348. Under R, Brann DW, Mahesh VB 1995 Progesterone suppression of glutamic acid decarboxylase (GAD(67)) mRNA levels in the preoptic area: Correlation to the luteinizing hormone surge. Neuroendocrinology 62:562-570
356. Van der Beek EM, Swarts HJM, Wiegant VM 1999 Central administration of antiserum to vasoactive intestinal peptide delays and reduces luteinizing hormone and prolactin surges in ovariectomized, estrogen-treated rats. Neuroendocrinology 69:227-237


373. Wiegand SJ, Terasawa E, Bridson WE 1978 Persistent estrus and blockade of progesterone-induced LH release follows lesions which do not damage the suprachiasmatic nucleus. Endocrinology 102 (5):1645-1648


REFERENCES


381. Wise PM, Rance N, Selmanoff M, Barraclough CA 1981 Changes in radioimmunoassayable luteinizing hormone-releasing hormone in discrete brain areas of the rat at various times on proestrus, diestrous day 1, and after phenobarbital administration. Endocrinology 108(6):2179-2185


392. Young WS, Kovács K, Lolait SJ 1993 The diurnal rhythm in vasopressin V1a receptor expression in the suprachiasmatic nucleus is not dependent on vasopressin. Endocrinology 133:585-590


394. Zhou Y, Shughrue PJ, Dorsa DM 1995 estrogen receptor protein is differentially regulated in the preoptic area of the brain and in the uterus during the rat estrous cycle. Neuroendocrinology 61:276-283


398. Richter, C.P. 1978 Dark-active" rat transformed to "light-active" rat by destruction of 24-hr clock: Function of 24-hr clock and synchronizers. Proc Natl Acad Sci USA 75, 6276-6280