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We	 have	 investigated	 two	 common	 questions	 related	 to	 estimating	 graphical	 VAR	

models.	 First,	 we	 have	 investigated	 if	 linear	 detrending	 of	 data	 prior	 to	 analyzing	

network	 models	 should	 be	 conducted,	 and	 second	 we	 have	 investigated	 how	 to	 best	

handle	 irregular	 spacing	 of	 observations	 due	 to	missing	 observations	 throughout	 the	

nights.	In	both	simulation	studies,	graphical	VAR	models	with	7	nodes	were	generated	

as	 detailed	 by	 Yin	 &	 Li	 (2011,	 page	 8),	 using	 a	 constant	 of	 1.1	 instead	 of	 1.5	 and	

simulating	 temporal	 and	 contemporaneous	 networks	 that	 were	 75%	 sparse	 (In	 both	

networks	each	possible	edge	had	a	probability	of	25%	to	be	included).	Generating	such	

models	 can	 be	 done	 using	 the	 R	 function	 randomGVARmodel from the graphicalVAR 

package (Epskamp, 2017). Subsequently the VAR model can be simulated using the 

graphicalVARsim function. All simulations were performed using graphicalVAR version 

0.2.1 and R version 3.3.1 on a Linux high performance cluster. We investigate the sensitivity 

(true positive rate), specificity (true negative rate) and correlation between network 

parameters, as is common in simulation studies on network estimation (Epskamp & Fried, 

2017; van Borkulo et al., 2014). If sensitivity is low, edges are not picked up well, if 

specificity is low, spurious edges are detected, and if the correlation is low the estimated 

networks poorly reflect the true network structures. 

 

Simulation study 1: Detrending data 

In the first simulation study, we simulated responses from a graphical VAR model, and 

subsequently added a linear trend to each variable. Linear trends were generated for each 

variable from a normal distribution with mean 0 and standard deviation 0, 0.01, 0.1 or 1. As 

such, in the condition with a standard deviation of 0 there was no linear trend, and in the 

condition with a standard deviation of 1 we would expect strong linear trends for most 

variables. Sample size was varied between 100, 250 and 500 and detrending method was 

varied between no detrending, detrending only significant effects and detrending all variables. 

Linear detrending was performed as described by Fisher, Reeves, Lawyer, Medaglia, & Rubel 
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(2017). Each condition was replicated 100 times, leading to a total of 3,600 simulated 

datasets.  

 Figure S1 shows the results of the first simulation study. It can be seen that 

detrending all variables or only variables with a significant trend performed comparably, and 

have no effect when there is no true trend. Notably, not detrending leads to problematic 

networks when there are true trends: spurious edges are included in the temporal network 

(low specificity) and less true edges are detected in the contemporaneous network (low 

sensitivity). These results led to the decision of detrending variables with a significant trend 

in the paper. 

 

	

Figure	S1.	Results	of	the	first	simulation	study.		
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Simulation study 2: Night effects 

A	second	question	we	investigated	was	how	to	best	handle	the	effects	of	missing	

observations	throughout	the	night.	The	data	we	analyzed	was	gathered	five	times	per	

day	with	roughly	3‐hour	intervals	between	measurements	(interval	queries	were	

exactly	spaced	3	hours	apart,	but	the	patient	did	not	always	respond	immediately).		To	

mimic	this	behavior	in	the	simulation	study,	we	simulated	a	VAR	process	for	5,	10,	25	or	

50	days	with	eight	realizations	per	day,	and	subsequently	removed	every	sixth,	seventh	

and	eight	measurements.	This	generated	data	with	five	observations	per	day	(25,	50,	

125	and	250	measurements	respectively	per	condition).	We	varied	the	method	for	

handling	the	night	by	either	ignoring	the	night	(regressing	first	observation	of	the	day	

on	the	last	observation	of	the	previous	day)	or	by	using	cubic	spline	interpolation	as	

described	by	Fisher	et	al.	(2017).	Every	condition	was	replicated	100	times,	leading	to	a	

total	of	1,200	generated	datasets.	Figure	S2	displays	the	results,	which	show	that	

removing	nights	had	the	best	performance.	This	can	be	done	in	graphicalVAR	using	the	

dayvar	argument.	
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Figure	S2.	Results	of	the	second	simulation	study.	
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