Autoionization of triply-excited Rydberg series
Verbockhaven, G.C.; Hansen, J.E.

Published in:
Physical Review Letters

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Autoionization of Triply Excited Rydberg Series

Gilles Verbockhaven and Jørgen E. Hansen
Department of Physics and Astronomy, University of Amsterdam, Valckenierstraat 65, NL-1018 XE Amsterdam, The Netherlands (Received 8 November 1999)

The Auger rates of triply excited Rydberg series are shown to behave rather differently from doubly excited series. It is shown that in hollow atoms the Auger decay rates for Rydberg series of the type $2l'nl''$ with $n \approx 2$ are expected to be nearly independent of n, while for doubly excited series of the type $2nl'$ the decay rate in general decreases with increasing n. In addition the ratio between the rates for $2l'nl''$ Rydberg series with different l'' values will be fixed and often the ratio will be equal to one.

In practice this behavior can fairly easily be obscured, for example, if Rydberg series perturb each other. Nevertheless, the gradual decrease in the Auger decay rate with increasing n is a well-known property of the doubly excited Rydberg series [12]. Note that possible nonorthogonalities between initial and final state orbitals automatically are taken into account for these states in the calculation of the I factor.

Nonorthogonalities are not automatically included when we consider triply excited states and since orthogonality simplifies the analysis we will initially assume that initial and final state orbitals are orthogonal. In practice, as we will see, this will often be a rather bad approximation. Surprisingly, the assumption does not, it turns out, seriously invalidate the analysis presented below, at least not for $2l'nl''$ series.

Consider a Rydberg series of the type $2s2p\,^3P\,nl\,^4L$ in a three-electron system such as Li I. This series can be considered to be built on the $2s2p\,^3P$ term in Li II, and it lies above the ionization limit of Li II. This means that there are an infinity of limits of the form $lsn'nl''^3L$ available for the Auger decay. However, the main conclusions of this Letter rely on that most of the limits are inaccessible in the approximation we have chosen. This follows from the explicit expression for the decay rate which has three parts of which

$$I(2s2p, 1s\epsilon\ell) \langle nl|n'l'\rangle \label{eq:1}$$

usually will be the largest and the essential point is that Eq. (1) is zero unless $n = n'$ and $l = l'$. Therefore in the orthogonal approximation, the Rydberg electron is a spectator electron and the decay rate is approximately the same for all values of n, being determined by the same $I(2s2p, 1s\epsilon\ell)$ factor since ϵ is roughly independent of n. The two other contributions are decays in which one of the $2l$ electrons is the spectator and the only limits that can be reached in these decays are therefore $1s2s\,^3S$ and $1s2p\,^3P$. The I factors associated with these two decay routes, for example $I(2pnl, 1s\epsilon\ell)$ and $I(2snl, 1s\epsilon\ell)$ for the decay of $2s2pnl$, do contain the Rydberg electron. Therefore these two contributions can be expected to be smaller than Eq. (1) when $n > 2$. We note that one of these two
is the only contribution present for the more well-known
(doubly excited) $1s2lnl^24L$ series, consistent with the
analysis of the difference between doubly and triply
excited series. Thus if $n > 2$, we assume in the following
that the decay rate is determined primarily by Eq. (1).
One practical consequence of this result is that, if the total
decay rate of the lowest member of a Rydberg series has
been determined, this value can serve as a first estimate
for the decay rates of the higher members.

A related so-called spectator model is well known for the
decay of innershell resonances [13,14] which have similarities
to the triply excited states we are considering here.
It has been found that the spectator model is in good accord
with the observations unless the Rydberg electron interacts
noticeably with the inner electrons [15] and the same can
be expected here.

Thus while it usually is possible in an Auger decay to
reach several final bound states of either parity, in this case
only one $1snl$ final state is possible in which both n and
l are fixed (in addition to $1s2s$ and $1s2p$). That only one
state is available is linked to the fact that only one state, $1s$,
is available for the decay of $2l2l'$. Generalizing this result we
see, for example, that for the $3l3n/ln''$ Rydberg series
more limits will be available, the number being determined
by the number of final state limits ($1s$, $2s$, and $2p$) that
can be reached from the doubly excited $3l3l'$ state plus the
final states which become available when one of the $3l$
electrons is the spectator.

Another consequence of Eq. (1) can be exemplified by
considering the $2s2p(3P)ns4P^0$ and $2s2p(3P)nd4P^0$ se-
ries assuming, as above, that the nl electron is the spec-
tator. Since the radial part of the l factor is the same for
these two decays, a possible difference in decay rate must be
due to the angular factor involved. Computation shows
that the angular factor is the same for the two series so that
we predict that the decay rate should be independent of l
in this case. We note that the same angular (and radial)
factors are involved in the decay of the $2s2pnd4D^0$ and
$4F^0$ series, for example.

These predictions are based on a number of approxima-
tions which cannot be expected to be fulfilled very often
in real atoms. Nevertheless, we have found that at least for
$2l2l'n''$ series some of the predictions can be expected to
be independent of the approximations and some examples
have, in fact, recently been established of Rydberg series in
Li I which do show fairly constant Auger rates. The results,
which will be described in more detail elsewhere [16], are
obtained using a B-spline-based configuration interaction
(CI) approach [17–19]. The calculations are nonrelativis-
tic, which is a good approximation for excited states in Li.
We emphasize that these calculations include a very con-
siderable amount of correlation. Therefore it is not a priori
obvious that a single-particle analysis is at all relevant.

In Tables I and II we show decay rates for
$2s2p(3P)nl^24P^0$ series members where l can be s and d.
There is considerable mixing between the two series but
the total widths of both series are found to be nearly
equal as well as roughly independent of n in agreement
with Eq. (1). Purities as well as total widths are shown
in Table I.

Table I includes also total widths from the recent paper
by Berrington and Nakazaki [8]. It is seen that there is
agreement with our results only for the lowest, $3s$, term.
The reason is that Berrington and Nakazaki included only
$1snl$ limits up to $n = 3$ and thus missed the contribution
from Eq. (1) except for $3s$. It could be expected that their
result for $3d$ should be the same as ours too but we see
shortly why this is not the case.

In Table II we show decay rates to $1sns3S$ and to
$1snd3D$ limits with $n \leq 6$. We omit the term labels in
the following. The order of the entries in the tables is
determined by the energy of the series members, i.e., the
two series are intermixed. Also results for the decay to the
$1s2p$ limit are included in Table II. This decay is due to
one of the two contributions we are neglecting in Eq. (1),
namely the contribution corresponding to the $2p$
electron being a spectator. The neglect is seen to be fully justified
in this case. The decay to the $1s2s$ limit, in which $2s$
is a spectator, is seen to be somewhat more probable but
still only about 10% of the contribution from Eq. (1) in
the most favorable case, if we assume that the decay rate
for $2s2p3s$ to $1s2s$ is due to this effect. The decay rate
decreases quickly with n as expected (Table II). Thus the
contribution to the total decay rate from this channel is
much smaller than 10% for higher n states.

The results confirm that Eq. (1) provides the main con-
tribution to the decay rate in this case, which means that the
nl series should decay preferentially to the $1snl$ limits
and Table II shows that this is followed quite well. With regard
to decay to the $1sns$ limits, Table II shows that the decay
rates for the nd series members are small except for the
decay of $2s2p3d$, which is large to the $1s4s$ limit, while
the $2s2p4d$ decay is large to the $1s5s$ limit. This can be
explained by mixing between $2s2pnd$ and $2s2p(n + 1)s$.
In both cases the decay rate for the term called $2s2pnd$ is

<table>
<thead>
<tr>
<th>$2s2p(3P)nl^24P^0$</th>
<th>Purity</th>
<th>Present</th>
<th>BN</th>
</tr>
</thead>
<tbody>
<tr>
<td>$nl = 3s$</td>
<td>93.3</td>
<td>9.95</td>
<td>8.6</td>
</tr>
<tr>
<td>$3d$</td>
<td>85.8</td>
<td>9.58</td>
<td>4.7</td>
</tr>
<tr>
<td>$4s$</td>
<td>87.0</td>
<td>9.62</td>
<td>1.0</td>
</tr>
<tr>
<td>$4d$</td>
<td>85.4</td>
<td>9.44</td>
<td>1.1</td>
</tr>
<tr>
<td>$5s$</td>
<td>86.2</td>
<td>9.44</td>
<td>0.4</td>
</tr>
<tr>
<td>$5d$</td>
<td>84.2</td>
<td>9.45</td>
<td>0.4</td>
</tr>
<tr>
<td>$6s$</td>
<td>84.8</td>
<td>9.44</td>
<td>0.3</td>
</tr>
</tbody>
</table>
smaller than for the 2s2p(n + 1)s partner. The opposite behavior is found for the decay of the 2s2pnd series to the 1snd limits. For the decay of the s series we expect according to Eq. (1) a maximum for the limit with an n value corresponding to the n value for the series member. It can be seen that this prediction is valid up to n = 4 while 2s2p5s has its largest decay rate to the 1s6s limit. Larger deviations are shown by the 2s2pnd series where the n value of the initial state even for 3d does not unambiguously define the main final state. The reason is another effect we have neglected so far namely the lack of orthogonality between the orbitals in the initial and final states.

It has been known for some time [15,20–23] that the existence of an inner hole can have profound influence on the orthogonality between initial and final state orbitals. This is easily understood when it is considered that the 2s' electron in the 1s2s' limit (we use a prime to distinguish final from initial state orbitals) sees the nuclear charge screened by the 1s electron while the 2s electron in the 2s2pnl states sees a basically unscreened nuclear charge. The screening depends on the particular case and for the cases shown in Table II the orthogonality between the initial 2s and the final 1s function is rather good. First for the initial 4s orbital there is a large mixing, while the initial 5s has the expansion 11:21:64:3 in terms of the final 4s'5s':6s':7s'. The expansion coefficients correspond very closely to the decay rates. For example, 2s2p5s decays to the limits 4s'5s':6s':7s' in the proportions 11:25:63:2 according to Table II.

For the d series the lack of orthogonality is already important for the initial 3d orbital which can be expressed as 57:42 in final 3d':4d' orbitals. Berrington and Nakazaki [8] included only the 1s3d' limit in their calculation for 3d in Table I and, consequently, their calculated width is only half of the expected value. The initial 4d orbital has the expansion 13:8:68:10 in terms of 3d':4d':5d':6d'. Thus in this case the radial overlap 〈4d|4d'〉 is =0 as previously observed in Ar I [15,23]. This nonorthogonality is also observed in the calculated branching ratios where the 2s2p4d decay shows the branching 13:9:74:11 to 3d':4d':5d':6d', confirming the small overlap between the 4d orbitals.

Chung and Gou [7] realized, for example, that “for resonances such as 2s2s7p, the 1s7p + e+ may be a very important decay channel.” For this reason Chung and Gou included, in addition to 1snd limits up to n = 3, also the 1snl'' limit in calculations of the total width for 2s2pnl'' terms. However, we have shown that, except for the lowest n values, the presence of nonorthogonalities means that this is not enough since the 1s(n + 1)l limit, for example, may be more important than the 1snd limit. This means that the total rates calculated by Chung and Gou [7] for the higher terms are smaller than ours and that they, consequently, could not observe the effect we are reporting here. However, Chung and Gou studied only the 5P'' series for which the n independence anyway is less obvious [16].

Nonorthogonalities make additional limits possible. Consider the 2s electron in the 2s2pnd series as the spectator, then a nonzero 〈2s|1s〉 overlap will allow decays such as 2s2pnd → 1snl'el where l can be arbitrary except limited by the coupling and parity requirements in the I(2pnd,n'l'el) factor. As mentioned already, in the present case 〈2s|1s〉 = 0 so such decays can be neglected. Also 〈2p|2p'〉 = 1 and therefore the main consequence of nonorthogonality is the behavior of the Rydberg electrons, ns and nd, which we have discussed above.

The extension of the previous arguments to multiply excited states is fairly straightforward. That the Coulomb interaction is a two-electron operator leads to the conclusion that there will be several spectator electrons and the decay rate can be approximated by a sum over decay rates corresponding to a set of doubly excited states, where the terms in the sum involving electrons with different n values will be small.

In conclusion, we have shown that in an orthogonal approximation, triply excited Rydberg series of the form
$2l_2 l'n_2l''$ will decay preferentially to one particular final state namely $1sn_2 l''$ and the decay rate will be independent of n and often also of l''. In practice a large number of effects could be expected to obscure this simple result, in particular mixing between configurations and nonorthogonalities, which, as we have seen, can be large when inner electrons are missing in the initial state. However, when total decay rates are considered the n and l'' independence may show up anyway. This follows directly from the fact that there is only one decay route in the orthogonal approximation, since even when this amplitude is distributed over a large group of levels via the nonorthogonalities there is little possibility for interference so that the total width will remain unchanged (Table I). For series for which the l'' independence applies, also CI between the series has little effect on the total rates as also demonstrated in Table I. However, we note that this of course does not mean that interference is absent between the direct and the resonant photoionization channels in a photoionization experiment. This effect has been observed and in fact found to obscure the observation of Rydberg states in the $1snl$ channels [6].

Diehl et al. [5,6] have studied the decay of $2p^o$ series members and noticed that the partial cross sections, as predicted here, are very dependent on the initial state. Unfortunately the $2s2p(^3P)nl^2P^o$ and $2s^2np^2P^o$ series are mixed together so that the $1snl$ series with $l = p$ are possible as limits, in addition to $l = s$ and d, complicating the analysis for these series. However, we notice that Diehl et al. [6] looked for the $2s2p(^3P)ns$ series in the partial cross section to $1s2s^3S$ while we predict that a more sensitive approach would be to use the $1sns^3S$ limits (or perhaps $n + 1$ due to the orthogonality problem).

Finally, we notice that the preceding analysis has been based essentially on a single particle picture modified in particular by the orthogonality problem. In fact, the use of the single particle picture to describe these strongly correlated states has been questioned. The observation of Rydberg states can to some extent be taken as experimental proof of the usefulness of the single particle picture. However, for $3I3l''nl''$ series the number of interacting series will increase considerably and complicate the analysis further so that the presence of Rydberg series in triply excited atoms should not be taken for granted.

This work was sponsored by the Stichting Nationale Computerfaciliteiten (National Computing Facilities Foundation, NCF) for the use of supercomputer facilities with financial support from the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organization for Scientific Research, NWO).