Understanding Oxygen Activation on Metal- and Nitrogen-Codoped Carbon Catalysts

David Eisenberg,*§ Thierry K. Slot,** and Gadi Rothenberg‡

*Schulich Faculty of Chemistry and the Grand Technion Energy Program, Technion—Israel Institute of Technology, Haifa 3200003, Israel
**Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands

Supporting Information

ABSTRACT: Multidoped carbons are often used for oxygen activation catalysis, both in heterogeneous catalysis and electrocatalysis. Identifying their catalytic sites is crucial for developing better catalysts. We now report an in-depth study into \(\text{O}_2 \) activation on an important class of materials: carbons codoped by nitrogen and 10 different metals (V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, and Pb). To identify catalytic sites, we studied their composition and structure (both bulk and surface) by a wide range of techniques, including temperature-programmed reduction, X-ray diffraction, electron microscopy, X-ray photoelectron spectroscopy, and \(\text{N}_2 \) sorption porosimetry. The \(\text{O}_2 \) activation step was studied by electrochemical oxygen reduction. To assign active sites, the electrocatalytic activity, selectivity, and stability were correlated to material composition and to known reactivity pathways. Two types of sites for \(\text{O}_2 \) activation were identified and assigned for each multidoped material: (1) particles of partially reduced metal oxides and (2) metal–nitrogen clusters embedded into the carbon matrix. The detailed assignment correlates to activity in alcohol oxidation through similar volcano plots and leads to practical suggestions for catalyst development.

KEYWORDS: carbon-based catalysts, tandem catalysis, oxygen activation, metal oxides, active site, oxygen reduction reaction, temperature-programmed reduction, cooperative catalysis

INTRODUCTION

To design multidoped carbons rationally, we must first establish reliable synthesis/structure links. The problem is that many carbons are made by complex pyrolysis reactions of diverse organic matter. Predicting and directing the evolution of their composition (sp\(^3\)/sp\(^2\) ratio and doping) and structure (porosity, crystallinity, and domain sizes) is difficult. Moreover, metal ions in the precursors complicate things even further. Iron and nickel, for example, catalyze the growth of carbon nano-tubes, whereas molybdenum tends to form carbides and alkali-earth metals form carbonates. Doping a carbon also changes its wettability, conductivity, and work function.

The second challenge in using multidoped carbons for oxygen activation lies in understanding the structure–activity correlations. The catalytic sites can range from single-atom sites, such as edge-positioned nitrogen atoms or carbon-embedded Fe–N\(_x\) complexes, to large inorganic particles. Much research is devoted to determining active site structure and linking it to catalytic activity.

Recently, we reported that carbons codoped by nitrogen and metallic elements can catalyze the oxidation of alcohols and alkynes. In these catalysts, as well as in others in the literature, the role of each dopant remains unclear. Does alcohol oxidation happen solely on the metal oxide (MO\(_x\)) particles (Figure 1a), or is this an example of tandem catalysis, with MO\(_x\) particles binding the substrate and surface-embedded M–N\(_x\) clusters activating the oxygen (Figure 1b)?

Here we identify the catalytic sites for \(\text{O}_2 \) activation on these multidoped carbons. Starting with N-doped carbon as our active support, we dope it with 10 metals (V, Cr, Mn, Fe, Co,
yielding a full width at half-maximum of 0.91 eV for the Ag respect to the sample surface. The pass energy was 46.95 eV, spherical capacitor analyzer was set at a 45° angle with 5 L of deionized (DI) water, overnight drying at 70 °C, followed by washing with 1 M HCl, then sonicated, stirred, and dropcast on a glassy carbon working electrode (φ = 5 mm, A = 0.196 cm²) to give a total catalyst loading of 30 μg, or 153 μg/cm². Electrochemical experiments were performed in a three-electrode homemade glass cell, filled with KOH (0.1 M, 150 mL), and stabilized at 25.0 ± 0.1 °C. A Gamry Reference 600 potentiostat was employed, together with a Gamry RDE710 rotating electrode setup. A saturated calomel electrode (SCE) separated from the solution by a 10 cm bridge was used as a reference electrode, and a graphite rod was used as a counter electrode. Potentials were reported vs reversible hydrogen electrode (RHE) by adding 1.011 for pH 13. Nitrogen (99.999%) or oxygen (99.999%) were bubbled for 30 min to saturate the solution and were flowed above the solution during the experiments. Cyclic voltammetry experiments were performed in O2-saturated 0.1 M KOH solution and corrected for background currents in a N2-saturated solution (Figure 7a). The number of electrons transferred per molecule (n) was calculated by Koutecky–Levich analysis from linear sweep voltammograms curves performed on a rotating disk at rotation speeds of 400–2400 rpm. To compare stability, chronoamperometry experiments recorded the decay of the ORR activity under continuous operation (E = 0.41 V vs RHE), while bubbling oxygen and stirring.

Experimental Section

Synthesis of Multidoped Carbons

Magnesium nitrolitriacetate (MgNH(CH2COO)3(H2O)4) was prepared from a solution of basic magnesium carbonate and nitrolitriacetic acid at 85 °C, precipitated by ethanol, and dried. The powder was pyrolyzed in quartz boats under argon flow (900 °C/1 h, ramp rate 10 °C/min), yielding a nitrogen-doped carbon loaded with MgO nanoparticles. The MgO was washed out by overnight stirring in 1 M HCl, followed by washing with 5 L of deionized (DI) water, overnight drying at 70 °C, and a final annealing in argon (1000 °C/1 h, ramp rate 5 °C/min). The resulting N-doped, hierarchically porous carbon (100 mg) was impregnated with metal salts (0.2 mL, 0.66 M). The salts included NH4VO4 (2 equiv of oxalic acid for dissolution), Cr(NO3)3·9H2O, Mn(NO3)2·4H2O, Fe(NO3)3·9H2O, Co(NO3)2·6H2O, Ni(NO3)2·6H2O, Cu(NO3)2·3H2O, Zn(NO3)2·6H2O, (NH4)2MoO4·5H2O, and Pb(NO3)2. The powder was then dried at 75 °C overnight and annealed in argon (300 °C/1 h), to yield the final M–N–C material. Chemicals were obtained from commercial sources (>99% pure) used as received.

Material Characterization

Scanning electron microscopy (SEM) was done on a Zeiss EVO50 microscope operated at 15 kV. Temperature-programmed reduction was performed by placing 25 mg of sample sandwiched between two quartz wool plugs in a quartz tube reactor (4 mm inner diameter), purging with N2, and applying a flow of 5% H2/N2. The system was allowed to equilibrate and then heated at 5 °C/min to 800 °C (no hold time). X-ray diffraction (XRD) patterns were obtained with a MiniFlex II diffractometer using Ni-filtered Cu Kα radiation, at 30 kV and 15 mA. X-ray photoelectron spectroscopy (XPS) measurements were carried out using a PHI VersaProbe II scanning XPS microprobe (Physical Instruments AG, Germany), using a monochromatic Al Kα X-ray source of 24.8 W power with a beam size of 100 μm. The spherical capacitor analyzer was set at a 45° takeoff angle with respect to the sample surface. The pass energy was 46.95 eV, yielding a full width at half-maximum of 0.91 eV for the Ag 3d5/2 peak. Peaks were calibrated using the C 1s position.

Curve fitting was done using XPSPeak 4.1. N2 adsorption–desorption isotherms were measured on a Thermo Scientific Surfer instrument at 77 K, using vacuum-dried samples (200 °C/3 h). Isotherms were analyzed by the ThermoFischer Advanced Data Processing 6.0 software, using the two-parameter Brunauer–Emmett–Teller (BET2) model for specific surface area.

Electrochemistry

Inks of the catalytic powders were prepared according to the following proportions: 0.80 mL of DI water, 0.20 mL of ethanol, 10 μL of Nafion (5 wt % in water/isopropanol), and 1 mg of M–N–C powder. Inks were sonicated, stirred, and dropcast on a glassy carbon working electrode (φ = 5 mm, A = 0.196 cm²) to give a total catalyst loading of 30 μg, or 153 μg/cm². Electrochemical experiments were performed in a three-electrode homemade glass cell, filled with KOH (0.1 M, 150 mL), and stabilized at 25.0 ± 0.1 °C. A Gamry Reference 600 potentiostat was employed, together with a Gamry RDE710 rotating electrode setup. A saturated calomel electrode (SCE) separated from the solution by a 10 cm bridge was used as a reference electrode, and a graphite rod was used as a counter electrode. Potentials were reported vs reversible hydrogen electrode (RHE) by adding 1.011 for pH 13. Nitrogen (99.999%) or oxygen (99.999%) were bubbled for 30 min to saturate the solution and were flowed above the solution during the experiments. Cyclic voltammetry experiments were performed in O2-saturated 0.1 M KOH solution and corrected for background currents in a N2-saturated solution (Figure 7a). The number of electrons transferred per molecule (n) was calculated by Koutecky–Levich analysis from linear sweep voltammograms curves performed on a rotating disk at rotation speeds of 400–2400 rpm. To compare stability, chronoamperometry experiments recorded the decay of the ORR activity under continuous operation (E = 0.41 V vs RHE), while bubbling oxygen and stirring.

Results and Discussion

We prepared the carbon support following published procedures, based on pyrolysis of a Mg-based metal–organic framework. These carbons have a high surface area (1570 m²/g) and high nitrogen content (5.9 at % by XPS). They feature interconnected micro-, meso-, and macropores, assisting mass transport. A percolating network of graphitic shells boosts the electrical conductivity of the matrix and charge transfer between redox sites. The carbons were loaded with 1.3 mmol/g of metal solutions by incipient wetness vacuum impregnation. A reductive heat treatment (300 °C/1 h) under argon yielded the final M–N–C materials, containing 0.8–2.3 at % of metals (Table 1). Unlike copropyliation, this strategy fixes the carbon matrix, allowing for a fair comparison between the metals.

Scanning Electron Microscopy

Scanning electron microscopy (SEM, Figure 2) reveals highly similar MOx particles for all metals, as expected from incipient wetness impregnation. The particles are spherical or near-spherical, between 100–400 nm in diameter. Further analysis of the subsurface by backscattered electrons (see Figure S1 in the Supporting Information) reveals many more particles under 100 nm, between 100–400 nm in diameter. Further analysis of the subsurface by backscattered electrons (see Figure S1 in the Supporting Information) reveals many more particles under 100 nm, between 100–400 nm in diameter. Further analysis of the subsurface by backscattered electrons (see Figure S1 in the Supporting Information) reveals many more particles under 100 nm, between 100–400 nm in diameter. Further analysis of the subsurface by backscattered electrons (see Figure S1 in the Supporting Information) reveals many more particles under 100 nm, between 100–400 nm in diameter. Further analysis of the subsurface by backscattered electrons (see Figure S1 in the Supporting Information) reveals many more particles under 100 nm, between 100–400 nm in diameter. Further analysis of the subsurface by backscattered electrons (see Figure S1 in the Supporting Information) reveals many more particles under 100 nm, between 100–400 nm in diameter. Further analysis of the subsurface by backscattered electrons (see Figure S1 in the Supporting Information) reveals many more particles under 100 nm, between 100–400 nm in diameter.
Table 1. Composition of Metal- (M) and Nitrogen-Codoped Carbons

<table>
<thead>
<tr>
<th>M</th>
<th>metal content (at %)</th>
<th>MOx particle diameters (nm)</th>
<th>MOx composition, crystalline phases underlined</th>
<th>M–N binding</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>1.12</td>
<td>200–400</td>
<td>V₂O₃, VO₂</td>
<td>some</td>
</tr>
<tr>
<td>Cr</td>
<td>0.84</td>
<td>100–300</td>
<td>Cr₂O₃, Cr₂O₇</td>
<td>significant</td>
</tr>
<tr>
<td>Mn</td>
<td>2.32</td>
<td>200–500</td>
<td>MnO₂, MnO₃, Mn₂O₃</td>
<td>some</td>
</tr>
<tr>
<td>Fe</td>
<td>1.11</td>
<td>200–300</td>
<td>Fe₂O₃, FeO</td>
<td>significant</td>
</tr>
<tr>
<td>Co</td>
<td>1.38</td>
<td>200–300</td>
<td>CoO, Co₂O</td>
<td>significant</td>
</tr>
<tr>
<td>Ni</td>
<td>1.25</td>
<td>200–300</td>
<td>NiO, NiOOH</td>
<td>significant</td>
</tr>
<tr>
<td>Cu</td>
<td>1.82</td>
<td>200–300</td>
<td>CuO, Cu₂O</td>
<td>significant</td>
</tr>
<tr>
<td>Zn</td>
<td>2.22</td>
<td>100–300</td>
<td>ZnO</td>
<td>some</td>
</tr>
<tr>
<td>Mo</td>
<td>1.53</td>
<td>200–300</td>
<td>MoO₃</td>
<td>significant</td>
</tr>
<tr>
<td>Pb</td>
<td>2.34</td>
<td>100–400</td>
<td>PbO</td>
<td>none</td>
</tr>
</tbody>
</table>

*From X-ray photoelectron spectroscopy (XPS) integration. *From scanning electron microscopy (SEM). *From temperature-programmed reduction (TPR), X-ray diffraction (XRD), and XPS. Crystalline phases are underlined; the rest are amorphous. *From XPS in the N 1s region.

Figure 2. Scanning electron micrographs of the M–N–C samples. Each element is represented by low- and high-magnification micrographs.

used to identify the metal oxidation states and describe particle–surface interactions (Figure 3). Assigning TPR peaks is complicated when the same oxidation state is present in different crystals or interacts strongly with the support surface. Moreover, extrinsic factors such as metal loading, particle size, or heating rates may also shift the reduction temperatures. In our case, the homogeneity of the MO₃ particles suppresses the effects of particle size and loading, facilitating comparison by TPR.

All TPR traces show a support gasification reaction above 600 °C (Figure 3, denoted by “X”). This is the metal-catalyzed carbon methanation reaction (C + H₂ → CH₄).[39,40] The Cr–N–C trace is typical for mixed Cr(III)–Cr(VI) oxides.[31–33] The main peak at 450 °C (2) corresponds to the reduction of Cr(VI) to Cr(III). Cr(VI) chromates with different degrees of oligomerization are found on large Cr₂O₃ particles.[41,42] The TPR shoulder at 380 °C (1) is attributed to support interactions and/or crystallization of such surface Cr(VI) species.[41] Peak 3 corresponds to further reduction of the Cr₂O₃ particles to CrO.[42] The Mn–N–C trace exhibits multiple peaks, typically assigned to oxides such as MnO₂, Mn₅O₈, and possibly MnO₃ and MnO₂. The lower-temperature peaks (250–400 °C, peaks 1 and 2) may reflect the reduction of Mn(IV),[44,45] Mn(IV/III),[46] and possibly Mn(III).[44] Peak 3 corresponds to reduction of either Mn(III) or carbon-stabilized MnOx species.[47] Higher-temperature peaks (4 and 5) may be assigned to the reduction of Mn(II/III)[44,47] bulk Mn(IV),[46] or surface-interacting MnOx species.[48] Finally, MnO₃ catalyzes methanation, lowering its temperature by ∼100 °C relative to free-standing activated carbon.[47] The Fe–N–C trace shows Fe₂O₃ reduced to Fe₃O₄ (350 °C, 1), then to FeO (450 °C, 2), and finally to Fe (610 °C, 3).[48–51] The low-temperature shoulder in peak 1 reveals some Fe₃O₄ in the starting sample.[48] Peak 4 may be assigned to reduction of micropore-confined Fe₂O₃ particles or to support gasification.[51,52] The broadening of peaks 2 and 3 may indicate particle–support interactions.[48,50] Similarly, Co₂O₃ is first reduced to CoO (360 °C, 1) and then to metallic cobalt (460 °C, 2).[53,54] The high intensity of the second peak shows that both are present in the sample. Reductions above 400 °C reflect carbon methanation combined with particle–support interactions.[39,53] For Ni–N–C, we see two types of NiO: large particles with little support interaction (400 °C, 1)[55–57] and smaller, harder-to-reduce particles (520 °C, 2). Peak 2 is assigned to pore-constrained[55,56] or support-stabilized[55,58,59] NiO. A shoulder below 350 °C suggests a higher oxidation state, either Ni₂O₃ or NiOOH.[55] In the Cu–N–C trace, CuO is reduced to Cu₂O (280 °C, 1) and then to metallic copper (380 °C, 2).[40,60] The splitting in peak 1 indicates weakly and strongly interacting CuO particles. The Zn–N–C trace identifies only well-dispersed ZnO (reduction at 400 °C).[61,62] For Mo–N–C, the first two peaks correspond to the reduction of MoO₃ to MoO₂.[38,58,63] The difference is attributed to octahedral/tetrahedral Mo(VI) species and/or to support interactions of the MoO₃.[63] Peak 3 (650 °C) is assigned to Mo(IV) → Mo(II) reduction, with the latter either an oxide or a carbide.[54] Finally, the H₂-TPR traces of Pb–N–C are harder to assign. In both, the typical oxides (PbO and V₂O₅, respectively) are reduced above 600 °C when present as bulk powder,[63–67] and support interactions lower reduction temperatures to 400 °C.[67–69] Peak 1 in the VO₃ trace probably belongs to V₂O₅, with strong interactions to the support.[70–72] Peak 3 in the PbO trace is probably bulk PbO, with the early peaks (1 and 2) relating to support interactions or to unreduced Pb(NO₃)₂.[71] Overall, the H₂-TPR describes several oxides (mostly partially reduced), with significant particle–support interactions. The reducing species may be the carbon itself or volatile...
species released from it during the annealing step. Indeed, the annealing temperature (300 °C) is close to the temperature at which carbon methanation may begin, especially when catalyzed by metals. The “support-interacting” species could be particles, clusters, or even strongly bound metal atoms.

X-ray Diffraction. X-ray diffraction (XRD) showed that most MOX particles are amorphous (Figure S2). Only the Mn-, Cu-, and Zn–N–C samples displayed additional diffraction peaks (Figure 4), corresponding to Mn3O4, CuO, and ZnO (JCPDS cards 01-080-0382, 48-1548, and 89-1397, respectively). Importantly, the presence of crystalline phases does not rule out additional, amorphous phases in the catalysts—for example, the lower reduction states of Mn that were suggested by TPR.

X-ray Photoelectron Spectroscopy. X-ray photoelectron spectroscopy (XPS) was used to describe composition and bonding on the surface of both MOX particles and the N:C support (Figures 5 and S3; see Supporting Information for deconvolution method). The pristine N-doped carbon contains pyridinic (398.3 eV), pyrrolic (399.5 eV), graphitic (400.9 eV), and oxidized (402.9 eV) nitrogen atoms. Pyridinic nitrogens are suitable for metal coordination, and 300 °C is sufficient temperature for forming metal–nitrogen bonds. XPS in the N 1s region is more useful for detecting metal–nitrogen bonding than metal XPS, which often has low sensitivity due to symmetry breaking and charge redistribution related to the binding. Indeed, the spectra reveal that metal codoping shifts the N 1s binding energies. Introducing the metal leads to a peak in the intermediate region (398.5–400 eV) in most materials, suggesting the formation of new metal–nitrogen bonds. Other possible assignments for this new peak could be pyrrolic or pyrimidonic nitrogen. These moieties, however, are unlikely to form as a result of an impregnation with metal and mild heat treatment. The new M–N bonds vary in intensity between the cations and are most obvious for Cr-, Fe-, Co-, Ni-, and Cu-based carbons (Figure 5). The M–Nx clusters are dispersed on the carbon surface, in addition to the MOX particles. Alternative methods were considered to confirm metal–nitrogen binding, namely, Fe–Mössbauer and X-ray absorption spectroscopies. These methods, however, are unsuitable in the current composites, due to the small percentage of metals in M–Nx clusters (most of it is in the oxides) and the similarity in X-ray absorption between M–N and M–O bonds.

In the metal regions of the XPS (Figure 6), most spectra are too complex for reliable mathematical deconvolution, especially when the signal-to-noise ratio is low and varies between samples. Nevertheless, “shape fitting” (overlaying the spectra with literature spectra) helped identify oxidation states.
and binding modes on the surfaces of MO₃ particles. This method helps avoid overfitting of broad peaks and focuses on peak positions and relative magnitudes. The V 2p XPS is characteristic to V₂O₅ based on the high-energy binding energy of the 2p₃/2 peak (517.2 eV).⁸¹,⁸² Shape fitting shows that there might also be traces of VO₂, indicating partial reduction of V(V) to V(IV).⁸¹ In the Cr 2p XPS, two doublets (2p₃/2 peaks at 576.6 and 579.2 eV) indicate the presence of Cr(III), either as Cr₂O₃ particles or as Cr−N₄ sites. Both have typical binding energies of 576.5−576.7 eV.⁴³,⁸³−⁸⁵ In addition, Cr(VI) is present, probably as a CrO₃ layer on the surface of Cr₂O₃ particles.⁴³,⁸³ Shape and position comparison of the Mn 2p XPS reveals Mn(III) and Mn(IV) oxidation states.⁸⁶−⁸⁸ These probably correspond to the Mn₂O₃ and MnO₂ phases detected earlier by TPR, rather than to Mn−N centers (which are scarce, according to N 1s XPS). In the Fe XPS spectrum, a typical 2p₃/2 peak of Fe(III) appears at 710.4 eV,⁸³ with some contribution from Fe(II). These oxidation states may be related to Fe₂O₃ with some residual FeO and/or to FeIII−N₄ clusters embedded into and interacting with the carbon sheets.⁸⁹ The Co 2p XPS signals indicate a mixture of Co(II) and Co(III) states.⁹⁰−⁹² These ions could be located in

Figure 5. XPS in the N 1s region of the metal-free N-doped carbon (black trace) and the corresponding M−N−C composites (red traces).

Figure 6. XPS of the M−N−C samples in the metal regions.
the CoO₄ particles detected by TPR, to partially reduced (CoO) or oxidized (CoO₂) oxides, or to Co−Nₓ centers. Similarly, the Ni 2p XPS shows signals from both Ni(II) and Ni(III), possibly as NiOOH surface layers on the NiO particles or as Ni−Nₓ sites. Shape fitting of the Cu 2p XPS also reveals two reduction states (Figure S4), Cu(II) and Cu(I)/Cu(0). The first (2p3/2 line at 932.4 eV) could correspond to CuO or to CuII−Nₓ, and the second (934.1 eV) corresponds to Cu₂O or to CuI−Nₓ. Even if metallic copper exists (it is indistinguishable from Cu(I) by XPS), it is not expected to contribute to any catalytic activity, as it would not survive long in an oxygenated environment. The Zn 2p spectrum represents only Zn(II) species (2p line at 1022.1 eV). This ion probably corresponds to ZnO rather than to a Zn−Nₓ cluster, which is rare according to the N 1s XPS (Figure S3). The Mo 3d spectrum reveals pure Mo(VI), without any lower oxidation states (e.g., no carbides). Finally, the Pb 4f spectrum shows peaks typical to PbO, albeit shifted 0.5 eV to higher energies. This shift (see Figure S4) is assigned to unreacted Pb(NO₃)₂, which dissolves during catalysis.

Overall, XPS in the metal region suggests that the surface chemistry of the Moₓ particles generally matches their bulk composition. Most surfaces are partially reduced, with the exception of MoO₃, V₂O₅, and ZnO where the metals are fully oxidized.

ORR Electro catalysis. ORR electrocatalysis was used to understand how the M−N−C materials activate oxygen. We studied three aspects: activity (determined by cyclic voltammetry), selectivity for the 2e⁻ vs the 4e⁻ reduction (determined by Koutecký−Levich analysis), and stability (determined by chronoamperometry). All the M−N−C materials were active in ORR electrocatalysis, within a narrow range of overpotentials (Figure 7 and Table 2). In all cases, the pristine N-doped carbon was slightly better, with the E₁/₂ within 50 mV. The MOₓ particles may be blocking micropores (hindering access to surface sites) and slowing down mass transfer. Both effects may lead to lower currents and hence to lower observed onset potentials.

To quantify the blocking, we focused on Pb−N−C. Neither PbO or Pb−Nₓ clusters have any ORR activity, here or in the literature. Thus, doping by Pb has a purely blocking effect on...
Diode O2 activating sites. The specific surface area of Pb–N–C, measured by N2 sorption and analyzed by BET, decreases from 1570 m²/g in the pristine carbon to 520 m²/g in Pb–N–C. This drop corresponds to surface blocking by PbO particles. It should be similar in magnitude for all similarly sized MOx particles (cf. Figure 2), with the catalytic activity of each metal offsetting this blocking.

Chronoamperometry reveals 19–45% drops in activity after 8 h of oxygen reduction (Figure 7b and Table 2). The pristine N-doped carbon decays to a stable current, due to its gradual oxygenation. All M–N–C catalysts also decay over time, sometimes after an initial rise (e.g., Ni, Cr, and Cu). This decay can be related to leaching out of M–N₆ centers and/or the dissolution of MOx particles. In describing MOx dissolution, solubility constants fall short, because the particles’ composition is mostly mixed. Instead, we use Pourbaix diagrams to identify thermodynamically stable phases for a given element at a range of pH values and applied potentials. Here, the Pourbaix diagrams describe narrow belts at the base of the MOx particles, because these are the regions both exposed to solution and electrically wired to the external circuit. These regions, responsible for the ORR activity, experience an applied potential of ∼0.36 V vs normal hydrogen electrode (NHE), and an effective pH of 13 to ∼14–15 (because alkaline ORR generates hydroxides locally).

The more insulated regions at the top of the particles are harder to describe by this approach, because their potential is ill-defined. Pourbaix diagrams (Figure SS) predict that all metals dissolve under these conditions, yielding oxo or hydroxy(oxo) anions, namely, HV₉O₂⁺, CrO₂⁻, HMoO₄²⁻, HCrO₂⁻, HCO₃⁻, HNIO₂⁻, HCuO₂⁻, HZnO₂⁻, MoO₄²⁻, and HPO₄²⁻. This dissolution cannot be correlated to the ORR activity, because it may simultaneously (1) clear blocked sites, (2) destroy catalytic surface layers, or, conversely, (3) expose better catalytic layers.

The most active codopants in this study are based on Fe and Co. Both the oxide particles (Fe₂O₃, Fe₃O₄, CoO, and Co₃O₄) and the surface-embedded Fe−N₆ and Co−N₆ clusters can contribute to ORR electrocatalysis. However, the ORR peak is sharper for Co–N–C than for Fe–N–C, suggesting a narrower distribution of active sites. The Co–N–C also decays faster in activity than Fe–N–C, possibly reflecting their difference in selectivity, as observed both here and elsewhere. M–N–C catalysts can reduce O₂ by either 2e⁻ (yielding HO₂⁻) or 4e⁻ (to OH⁻). The number of electrons transferred per O₂ molecule (n) is 2.7 for Co–N–C and 3.2 for Fe–N–C. Thus, the products of ORR contain a higher HO₂⁻/OH⁻ ratio for Co–N–C than for Fe–N–C. Peroxides can corrode metal-doped carbons, destroying their ORR activity. Both Mn–N₆ clusters and MnO₂ particles are known ORR electrocatalysts, yet XPS shows little Mn–N binding, suggesting that MnO₂ phases (MnO₂, MnO₃, MnO₄, or MnO₅) contribute more to O₂ activation in the Mn–N–C catalyst.

The Cu–N–C catalyst is highly active, closely following the first metals. In nature, the tricopper center in the lacasse enzyme has excellent ORR performance. Many synthetic complexes and particles of copper show ORR activity. Copper is exceptionally active toward alcohol oxidation (Figure 8), suggesting that the reaction is not limited by the O₂ activation rates. The copper in the Cu–N–C sample starts as a mixture of CuO, Cu₂O, and/or Cu(0). According to the Pourbaix diagram, CuO first dissolves to HCuO₂⁻ and is then reduced to Cu₂O (reduction to Cu(0) is unlikely in an oxygenated solution). Interestingly, the stepwise changes in the chronoamperogram may reflect these reductions (Figure 7b). If we think of the first 2 h of ORR as a “pretreatment” step, then the Cu(1)–N–C catalyst has the highest stability by far. The catalytic site could be either Cu₂O or Cu(1)–N₆, because both are active toward the ORR.

The high ORR activity of the Ni–N–C and V–N–C catalysts is surprising. Neither NiO, NiOOH, nor Ni–N₆ macrocycles are good ORR electrocatalysts. NiO particles typically reduce O₂ only by 2e⁻, whereas we see n = 3.16 e⁻/O₂. Thus, the Ni–N₆ sites in the Ni–N–C catalysts contribute more to the ORR than the NiO and/or NiOOH particles. Similarly, V₂O₃ particles are unlikely to be good ORR catalysts, suggesting that it is the V(IV) surface layer, detected by XPS and TPR, that drives the catalysis. Little is known about V–N₆ centers for alkaline ORR catalysis; such activity was only observed for homogeneous vanadium complexes in acidic media.

Cr–N–C has mediocre ORR activity, like other Cr₂O₃/carbon composites and Cr–N₆ macrocycles. Typically, Cr₂O₃ particles prefer the 4e⁻ reduction, while Cr–N₆ clusters are selective toward the 2e⁻ reduction. Our Cr–N–C catalyst shows n = 3.1, suggesting that the Cr₂O₃ particles are more significant for ORR electrocatalysis. Moreover, the rise in ORR activity after ~5 h (Figure 7b) suggests that initial dissolution of the Cr₂O₃ surface layer (detected by TPR) improves activity.

The ORR activity of the Mo–N–C catalyst approaches that of Cr–N–C. Because MoO₃ is inactive in ORR, the activity is assigned to the prominent Mo–N₆ sites. In the Zn–N–C material, conversely, Zn–N binding is weak, suggesting that ZnO contributes to the meager ORR activity observed.

In future studies, we hope to refine the active site assignment by using selective leaching or selective reduction of MOx particles, or the selective blocking of M–N₆ sites, in order to decouple the interactions in their activities. This should lead to better control materials, which are otherwise hard to produce.

O₂ Activation—From ORR to Alcohol Oxidation. The ORR activity follows a “volcano”-type trend with respect to the number of d-electrons (Figure 8). The volcano peak is on Fe–N–C. This behavior matches most systematic comparisons of
third-row transition metals as electrocatalysts for alkaline ORR. This alignment with the literature further supports the hypothesis that the drop in ORR activity (relative to the pristine N-doped carbon) that was observed for all metal dopants is indeed a systematic effect—despite the small differences in electrocatalytic activity ($E^{1/2}$ spreads over 50 mV). Interestingly, vanadium outperforms the trend, calling for additional studies of this novel V–N–C catalyst.

Similarly, the catalytic activity of the M–N–C materials toward cinnamyl alcohol oxidation is volcano-shaped. The peak is centered on Co or Cu, with one outlier (Cu or Co, respectively). This similarity between the volcanoes suggests that O_2 activation is the reaction bottleneck. The outlier must have excellent ORR on its own to overcome this bottleneck; both Co and Cu fit this description, although Co is more active. Previous studies suggest that ORR activity is correlated to O_2 activation in catalytic transformations. The qualitative match between the two volcano plots lends some support to this hypothesis. However, the center of the peak is shifted by either 1 (Co) or 3 (Cu) d-electrons, when comparing the catalytic and electrocatalytic systems.

The active site assignments (Table 2) can direct catalyst design. In catalysts where O_2 activation is done primarily on the oxide particles (e.g., Cr$_2$O$_3$, ZnO, and MnO$_2$), the oxide surface area should be maximized. This calls for an optimization of the impregnation procedure, to minimize particle size and maximize particle loading up to when they start blocking mass transport. Moreover, the carbon is merely an idle support here, enabling particle dispersion and material handling. Carbon optimization efforts should then focus on pore design (for eased flow) and promoting graphitization (to boost conductivity and stability).

Conversely, if O_2 is activated at the surface-embedded M–N_x clusters, then the M–N–C material is a tandem catalyst. During catalytic alcohol oxidation, sites such as $V^{IV}N^-$–Fe^-, Co^-, Ni^-, Cu^I–Mo^{VI}–N_x, the O_2 activates on the MO$_2$ particles bind and oxidize the alcohol. We have recently analyzed this situation in depth, focusing on the interaction between the two types of active sites. This interaction can be chemical (exchange of intermediates) or electronic (charge transfer). Its efficiency determines the dimensions of the so-called “active doughnut”, the toroidal volume at the base of the particles, where the reaction occurs during the exchange step. In these tandem catalysts, the loading of oxide particles cannot be maximized or they will block M–N_x sites. Rather, the particle dispersion needs to be carefully tuned, aiming at (1) maximum exposure of both types of sites and (2) interparticle distances optimized to the lifetimes and diffusivities of reaction intermediates. Furthermore, carbon graphitization (and hence conductivity) is more important in tandem catalysts, as it determines the rate of charge transfer between redox sites.

CONCLUSIONS

We studied the structure and catalytic activity of 10 carbon materials, codoped by nitrogen and transition metals. These materials are promising catalysts for heterogeneous oxidations with molecular oxygen. To identify the active sites for O_2 activation, we separated the two doping processes by loading M–N–C catalysts in the ORR. The activity order was Fe > Co > Mn > Cu ≈ Ni ≈ V > Cr > Mo > Zn > Pb. The M–N–C catalysts displayed medium selectivity toward the 4e$^-$/O$_2$ reduction, as compared to the 2e$^-$/O$_2$ reduction. All catalysts degraded during ORR, partially explained by the solubility of oxides in base. By correlating the ORR activity to material data and literature knowledge, we assigned probable active sites for O_2 activation. In some, these are M–N_x centers (Mo and Ni), in some they are MO$_2$ particles (Cr, Mn, and Zn), and there are probably a combination of both in the most active materials (V, Fe, Co, and Cu). The oxide particles block some of the surface sites. On the basis of these assignments, we proposed design guidelines for improving the performance of these M–N–C catalysts in the ORR.

REFERENCES

(5) Xie, J.; Yin, K.; Serov, A.; Art'yushkova, K.; Pham, H. N.; Sang, X.; Unocic, R. R.; Atanasov, P.; Datye, A. K.; Davis, R. J. Selective...

(74) Electrochemistry of N4 Macrocyclic Metal Complexes; Zagal, J. H., Bedioui, F., Eds.; Springer International Publishing: Cham, 2016.

