Tuning of Conversion and Optical Emission by Electron Temperature in an Inductively-Coupled CO$_2$ Plasma

Diyu Zhanga, Qiang Huang a, Edwin J. Devida, Eric Schulerb, N. Raveendran Shijub, Gadi Rothenbergb, Gerard van Rooijc, Ruilong Yangd, Kezhao Liud, and Aart W. Kleyn a

a Center of Interface Dynamics for Sustainability, Institute of Materials, China Academy of Engineering Physics, Chengdu, Sichuan 610200, People’s Republic of China

b Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands

c Dutch Institute for Fundamental Energy Research, P.O. Box 6336, 5600 HH Eindhoven, The Netherlands

d Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907, People’s Republic of China

* Corresponding authors. Email: qhuang1986@163.com, Email: a.w.kleijn@contact.uva.nl
Figure S1 Emission spectrum from CO₂-Ar mixed plasma recorded at different supplied power (30 W, 150 W, 300 W). The Ar flow was fixed at 1000 sccm and CO₂ flow was fixed at 20 sccm and 100 sccm, respectively. The pressure was fixed at 14±1 Pa.
Figure S2 a) Emission spectrum of the CO \(b^3\Sigma^+ - a^3\Pi\), O I \(3p^5P \rightarrow 3s^5S^o\) (777 nm) and O I \(3p^5P \rightarrow 3s^5S^o\) (844 nm) transitions at different pressure. b) integrated emission intensity of 1-0, 0-0, 0-1 transition of CO \(b^3\Sigma^+ - a^3\Pi\) system and O I \(3p^5P \rightarrow 3s^5S^o, 3p^5P \rightarrow 3s^5S^o\).