Plasmic fabric analysis of glacial sediments using quantitative image analysis methods and GIS techniques
Zaniewski, K.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
COLOUR PLATES


Plate 3. An example of the insepic plasmic fabric in an Antarctic sample. Width of view: 2.5 mm.

Plate 4. An example of the vosepic plasmic fabric in an Antarctic sample. Width of view: 1.5 mm.

Plate 5. An example of the skelsepic plasmic fabric. Sample collected in The Netherlands. Width of view: 1.5 mm.

Plate 6. An example of the masepic plasmic fabric. Sample taken in Germany. Width of view: 5 mm.

Plate 7. An example of the binasepic plasmic fabric. Sample collected in Scotland. Width of view: 16 mm.

Plate 8. An example of the lattisepic plasmic fabric. The photo also shows skelsepic plasmic fabric. The sample was collected in The Netherlands. Width of view: 3 mm.

Plate 9. An example of the omnisepic plasmic fabric. Sample collected in The Netherlands. Width of view: 3.5 mm.

Plate 10. An example of the unistrial plasmic fabric. Sample collected in The Netherlands. Width of view: 4.5 mm.

Plate 11. An example of the kinking plasmic fabric. Sample collected in The Netherlands. Width of view: 3.5 mm.

Plate 12. An example of the types of illumination used in this thesis. Top shows plain light, middle cross-nicols and bottom gypsum wedge. Moneymore, Scotland.

Plate 13. Sample images showing the various selected results of the classification procedure. a) shows a section of the initial sample image (crossed-polarized view). b) shows the results of the Minimum Distribution Angle classification. c) is an example of the Simple One-Pass Clustering. d) shows the "distance" image for the same classification. e) is an example of the Suits Maximum Relative classification. f) shows the Minimum Distance to Mean results.

Plate 14. The picture shows a cross-polarized view of an image with an overlay example of training sites. Note the variety of shapes, sizes, and the number of sample training sites. The accuracy of the results depends in large part on the quality of the training site definition.

Plate 15. Plasmic fabric displayed using full RGB colour mix is shown on the left. The same image without the "blue" bandwidth can be seen on the right. The "blue" values are set to 0.

Plate 16. The image on the left is a cross-polarized view of a thin section image showing strong plasmic fabric. The white square indicates the location of the magnified field shown on the right. Most of the smooth diagonal lines seen in the left picture are composed of individual pixels as seen in the second image. When converted to a vector format these straight lines appear as a series of horizontal and vertical segments - no diagonals are present.