Plasmic fabric analysis of glacial sediments using quantitative image analysis methods and GIS techniques
Zaniewski, K.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
REFERENCES

resolution images. In: S. Shoba, M. Gerasimova and R. Miedema (Editors), Soil
372-378.

In: L.A. Douglas (Editor), Soil Micromorphology: A Basic and Applied Science. Elsevier,
Amsterdam, pp. 565-579.


Bal, L. (1973). Micromorphological analysis of soils: Lower levels in the organization of
organic soil materials. Soil Survey Papers, No.6. Netherlands Soil Survey Institute,
Wageningen, 174 pp.


microstructure studies in geotechnical engineering. In: R.H. Bennett, W.R. Bryant and M.H.
Hulbert (Editors), Microstructure of Fine-grained Sediments, from Mud to Shale. Chapter 40.
Springer-Verlag, New York, pp. 367-378.

research and teaching (submicroscopy). In: L.A. Douglas (Editor), Soil Micromorphology: A

clayey soils (Vertisols). In: L.A. Douglas (Editor), Soil Micromorphology: A Basic and


Oda, M. (1976). Fabrics and their effects on the deformation behaviours of sand. Special Issue, Department of Foundation Engineering, Faculty of Engineering, Saitama University, Japan.


182


