Revisiting Cultural Differences in Emotion Perception between Easterners and Westerners: Chinese Perceivers are Accurate, but See Additional Non-intended Emotions in Negative Facial Expressions

Fang, X.; van Kleef, G.A.; Sauter, D.A.

DOI
10.1016/j.jesp.2019.02.003

Publication date
2019

Document Version
Final published version

Published in
Journal of Experimental Social Psychology

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Case Report

Revisiting cultural differences in emotion perception between easterners and westerners: Chinese perceivers are accurate, but see additional non-intended emotions in negative facial expressions

Xia Fang, Gerben A. van Kleef, Disa A. Sauter

University of Amsterdam, The Netherlands
York University, Canada

ARTICLE INFO
Handling editor: Ursula Hess
Keywords:
Culture
Facial expressions
Emotion perception
Negative emotion
Multiple emotions

ABSTRACT
It is well established that East Asians (Easterners) are poorer at categorizing some emotional facial expressions than are North Americans and West Europeans (Westerners). We hypothesized that rather than Easterners failing to identify the intended emotions, they are more likely than Westerners to perceive multiple concurrent emotions. To test this hypothesis, we asked Chinese and Dutch participants to rate theoretically based facial expressions (Western prototypes from the Facial Action Coding System [FACS]) in Experiment 1, and empirically based facial expressions from each culture (Chinese and Dutch) in Experiment 2. Across experiments, both groups of perceivers consistently rated intended emotions higher than non-intended emotions, irrespective of emotion type and of whether the expressions were static or dynamic. Furthermore, Chinese participants produced smaller differences in ratings between intended and non-intended emotions than did Dutch participants. Machine learning based categorization supported the possibility that Chinese participants’ poorer categorization performance on forced-choice emotion categorization tasks can be explained by their tendency to perceive intended as well as non-intended emotions in facial expressions. Together, these results suggest that Chinese are more likely than Dutch to see multiple concurrent emotions in facial expressions, thus shedding new light on the role of culture in emotion perception.

1. Introduction

The extent to which cultural factors shape emotion perception is a matter of considerable debate (e.g., Elfenbein & Ambady, 2003a; Jack, Garrod, Yu, Caldara, & Schyns, 2012; Matsumoto, 1992). It is well established that the majority of observers across cultures reliably identify emotions from nonverbal expressions (e.g., Elfenbein & Ambady, 2003a; Paulmann & Uskul, 2014), but cross-cultural differences have been found in the absolute levels of agreement for certain negative facial expressions (e.g., Beaupré & Hess, 2005; Jack, Blais, Scheepers, Schyns, & Caldara, 2009; Matsumoto, 1992; Yik & Russell, 1999). Specifically, East Asians (Easterners) appear to be less accurate than West Europeans and North Americans (Westerners) in recognizing facial expressions of anger, disgust, and fear.

Two explanations have been put forth to account for this phenomenon. One is that negative emotions may pose a threat to group harmony, which is valued to a greater degree in collectivist cultures (including many Eastern countries) compared to individualistic cultures (including many Western countries; Nisbett, Peng, Choi, & Norenzayan, 2001). On this view, reduced exposure to negative emotions could affect the perception of emotion (i.e., emotion decoding) (Matsumoto, 1989). Specifically, due to a lack of experience with negative emotional expressions, Easterners may be less accurate in categorizing different negative expressions (Biehl et al., 1997). Another explanation is that Easterners use a decoding strategy that is inadequate for distinguishing some negative facial expressions: Easterners focus more on information in the eye region, while Westerners weigh information more evenly across different parts of the face (Yuki, Maddux, & Masuda, 2007). Easterners may therefore be poorer at judging expressions that share similar morphological features around the eye region, such as anger and disgust, and fear and surprise (Jack et al., 2009). These two accounts suggest that Easterners’ lower performance in categorizing negative...
facial expressions is caused by their failure to identify the intended emotions signaled by facial expressions.

Here we propose another possibility, namely that Easterners tend to see multiple concurrent emotions when perceiving negative facial expressions. Previous findings indicate that Easterners commonly experience multiple different emotions simultaneously, while Westerners tend to report experiencing specific feelings (Bagoozi, Wong, & Yi, 1999; Schimmack, Oishi, & Diener, 2002). We propose that the tendency to experience mixed emotions may predispose Easterners to also perceive others’ emotional expressions as more mixed. Suggestive evidence comes from studies showing that, when describing facial expressions, Easterners use more words referring to non-intended emotions than do Westerners (Beaupré & Hess, 2005; Leu, Mesquita, Masuda, Ellsworth, & Karasawa, 2003), but no study to date has directly examined the concurrent perception of multiple emotions from negative facial expressions portrayed by actors from both groups of participants’ cultural backgrounds (Easterners and Westerners). Here we test the hypothesis that, rather than Easterners failing to identify the intended emotion, they perceive multiple emotions simultaneously.

This hypothesis was tested by examining multi-scalar intensity ratings for two pairs of emotions for which Easterners are known to make more confusion errors than Westerners: anger-disgust and fear-surprise. Specifically, Easterners more frequently misclassify disgust expressions as anger (and vice versa), and misclassify fear expressions as surprise (e.g., Jack et al., 2009). Both static and dynamic emotional expressions were used to test the robustness of the findings, and stimuli from both of the ethnic groups employed as participants (Chinese and Dutch) were included. All measures, manipulations, and exclusions are reported below.

2. Experiment 1

2.1. Participants and design

The study included 582 individuals, who participated for course credits or monetary compensation. Twenty-two participants were excluded for failing to complete the task. The final sample consisted of 280 Dutch participants from the University of Amsterdam and 280 Chinese participants from Zhejiang University. One hundred forty-four Dutch participants (M_age = 22.56, SD = 3.57; 103 women; 95 of which saw Dutch faces and 49 Chinese faces) and 144 Chinese participants (M_age = 20.94, SD = 1.74; 103 women; 95 of which saw Dutch faces and 49 Chinese faces) judged facial expressions of anger, disgust, and fear. Both sets are based on the Respective facial expression databases (i.e., the terms are used to denote the various facial expressions in each stimulus set; see Table 1), and they were translated back into English by a native speaker of each language to verify accurate translation.

2.2. Stimuli and procedure

Six Dutch actors (three men, three women) and six Chinese actors (three men, three women) posing facial expressions of anger, disgust, fear, and surprise were selected from the Radboud Faces Database. Table 1 presents Chinese and Dutch translations of the emotion terms of interest. The exposure time of the first frame (i.e., the start emotion) and the speed of 30 frames per second. Based on the unfolding time of natural dynamic expressions (Hoffmann, Traue, Bachmayr, & Kessler, 2010), the exposure time of the first frame (i.e., the start emotion) and the last frame (i.e., the target emotion) were set to 600 ms each. Thus, each clip lasted for 2000 ms. In total, 72 morphs (6 actors \times 2 actor ethnicities \times 6 emotional changes) were included for anger-disgust-fear (condition 1) and the same number of morphs for fear-surprise-anger (condition 2). The procedure of the dynamic task was identical to that of the static task, except that participants were asked to judge the last emotion expressed in the video. Six practice trials, followed by four blocks of 36 trials each (6 actors \times 6 emotional changes) were included. The order of the static (15 min) and dynamic (30 min) tasks was counterbalanced between participants, with an unrelated filler task (15 min) in between.

2.3. Results and discussion

Based on confusion patterns established in previous research (Elfenbein & Ambady, 2003b; Jack et al., 2009), we focused on ratings of the intended emotion and of the non-intended emotion that has been found to be most confusable with (or morphologically similar to) the intended one, that is, anger with disgust and fear with surprise. An overall mixed-design ANOVA on the ratings was conducted separately for each of the target emotions (anger and disgust in condition 1; fear and surprise in condition 2). Emotion Scale (Intended, Non-intended morphologically similar) and Start Emotion (None [static], Emotion X, (Langner et al., 2010) and the Taiwan Corpora of Chinese Emotions (Shyi, Huang, & Yeh, 2013), respectively. Both sets are based on the Facial Action Coding System (FACS; Ekman, Friesen, & Hager, 2002). A pilot study was conducted to ensure that the Chinese and Dutch stimuli were matched for perceived intensity in both cultural groups (see Supplementary Materials for details).

2.2.1. Static task

In the static task, each trial started with a fixation cross displayed in the center of the screen for 500 ms, followed by a photograph of an emotional expression (anger, disgust, or fear in condition 1; anger, fear, or surprise in condition 2) shown for 1000 ms. Then a gray screen appeared with a prompt to judge the emotion expressed in the face. Ratings were made by moving sliders on three scales ranging from 0 (not at all) to 100 (very much), reflecting the three emotions shown in the respective condition. All scales were displayed on a single screen, with the order consistent for each participant, but counterbalanced between participants. Each participant completed three practice trials, followed by four blocks of 18 trials each (6 actors \times 3 static expressions). The order of emotion displays was random. All participants were tested in their own language. The emotion terms were taken from the respective facial expression databases (i.e., the terms are used to denote the various facial expressions in each stimulus set; see Table 1), and the emotions were translated back into English by a native speaker of each language to verify accurate translation.

2.2.2. Dynamic task

Based on the static stimuli, we used Fantamorph 5 (http://www.fantamorph.com/) to generate dynamic facial expressions that changed from one emotion to the target emotion of interest. Examples of the dynamic stimuli are available online (https://osf.io/k893a/). The dynamic stimuli consisted of 26-frame morphs, which were presented at the speed of 30 frames per second. Based on the unfolding time of natural dynamic expressions (Hoffmann, Traue, Bachmayr, & Kessler, 2010), the exposure time of the first frame (i.e., the start emotion) and the last frame (i.e., the target emotion) were set to 600 ms each. Thus, each clip lasted for 2000 ms. In total, 72 morphs (6 actors \times 2 actor ethnicities \times 6 emotional changes) were included for anger-disgust-fear (condition 1) and the same number of morphs for fear-surprise-anger (condition 2). The procedure of the dynamic task was identical to that of the static task, except that participants were asked to judge the last emotion expressed in the video. Six practice trials, followed by four blocks of 36 trials each (6 actors \times 6 emotional changes) were included. The order of the static (15 min) and dynamic (30 min) tasks was counterbalanced between participants, with an unrelated filler task (15 min) in between.

Based on confusion patterns established in previous research (Elfenbein & Ambady, 2003b; Jack et al., 2009), we focused on ratings of the intended emotion and of the non-intended emotion that has been found to be most confusable with (or morphologically similar to) the intended one, that is, anger with disgust and fear with surprise. An overall mixed-design ANOVA on the ratings was conducted separately for each of the target emotions (anger and disgust in condition 1; fear and surprise in condition 2). Emotion Scale (Intended, Non-intended morphologically similar) and Start Emotion (None [static], Emotion X,
Emotion varied across target emotions. For expressions of target anger, between-subjects variables. A complete overview of effects can be found in Table 2.

We first examined whether perceivers identified the intended emotions in the expressions. The main effects of Emotion Scale were significant for all target emotions, $p s < 0.001$, $\eta^2_s = [0.425, 0.829]$, with both Chinese and Dutch perceivers rating the intended emotions higher than the non-intended morphologically similar emotions (see Fig. 1; means and standard deviations of emotion ratings for all expressions are presented in Table 3); this pattern of results held when target emotions were further broken down by start emotions (see Fig. 1). This suggests that, on average, both Chinese and Dutch perceivers saw more of the intended than of the non-intended morphologically similar emotions in the facial expressions, irrespective of emotion type and of whether the expressions were static or dynamic.

We then examined whether the two groups of perceivers differed in the degree to which they perceived intended versus non-intended morphologically similar emotions. The two-way interactions of Emotion Scale and Culture of Perceiver were significant for all target emotions, $p s < 0.01$, $\eta^2_s = [0.082, 0.447]$ (see Fig. 1). Dutch perceivers produced greater differences in ratings on the intended versus non-intended morphologically similar emotions as compared to Chinese perceivers.

These results fit with previous findings showing that Easterners are less accurate than Westerners in categorizing certain negative facial expressions (Beaufre & Hess, 2005; Jack et al., 2009; Matsumoto, 1992; Yik & Russell, 1999). This is based on the assumption that the larger the difference between the perception of intended and non-intended morphologically similar emotions in a multi-scaler intensity rating task, the more likely participants would be to choose the “correct” emotion category in a forced-choice task, and vice versa. Although no forced-choice task was included in this experiment, machine learning could be applied here to simulate what participants’ responses would likely have been if we had used a forced-choice task. To establish this, we first used an unsupervised machine learning technique to perform a k-means clustering analysis in SPSS with $k = 2$ on Chinese and Dutch participants’ responses, respectively. The purpose of the unsupervised machine learning here is to classify the response patterns into two groups (to simulate responses on a two-alternative forced-choice task) using only participants’ ratings on emotion scales without referring to actual emotion categories. This was applied to (1) participants’ ratings of anger and disgust for each type of trial (i.e., static anger, disgust-to-anger, fear-to-anger, static disgust, anger-to-disgust, and fear-to-disgust) in condition 1, and (2) participants’ ratings of fear and surprise for each type of trial (i.e., static fear, anger-to-fear, surprise-to-fear, static surprise, anger-to-surprise, and fear-to-surprise) in condition 2. The 2-means clustering algorithm partitioned the response patterns into 2 clusters, in which each response pattern was assigned to the cluster with the nearest mean. The predicted cluster membership (i.e., cluster 1 or cluster 2) was saved for each participant’s judgments on each type of trial. The predicted emotion category was assigned to each cluster based on the cluster center (i.e., the mean ratings of anger and disgust for each cluster; see Table S1). For example, the cluster that had a higher score for anger than disgust ratings was assigned to the predicted anger category, whereas the cluster that was higher on disgust than anger ratings was assigned to the predicted disgust category.

Second, for each participant’s judgments on each type of trial, we compared the predicted emotion category generated in Step 1 with the actual emotion category. Classifications were coded as 1 if the categorization was correct (i.e., it matched the actual emotion category), and as 0 if the categorization was incorrect (i.e., it did not match the actual emotion category). Categorization performance of the 2-means clustering algorithm was significantly higher for Dutch participants than for Chinese participants across all emotions (details are provided in Table 4).

Third, we tested whether judgments endorsing multiple concurrent emotions would result in lower categorization accuracy of the 2-means clustering algorithm. This was done by conducting a logistic regression analysis in which the categorization accuracy generated in Step 2 was regressed onto the differences between participants’ ratings on the two emotions (anger and disgust ratings for condition 1 and fear and surprise ratings for condition 2). As expected, higher difference scores by human raters positively predicted the classification accuracy of the 2-means clustering algorithm (condition 1: $B = 0.042$, $SE = 0.003$, $p < .001$; Nagelkerke R square for model = 0.266; condition 2: $B = 0.033$, $SE = 0.003$, $p < .001$; Nagelkerke R square for model = 0.139). These results suggest that perceivers’ tendencies to perceive multiple concurrent emotions in facial expressions of emotion may explain their lower accuracy on forced-choice emotion expression categorization tasks.

Taken together, the current findings suggest that, rather than failing to identify the intended emotion, Chinese perceivers are more likely than Dutch perceivers to see multiple concurrent emotions in negative facial expressions.

3. Experiment 2

Experiment 2 showed that Chinese perceivers were more likely than Dutch perceivers to see multiple emotions in negative facial expressions. According to the dialect theory of nonverbal communication of emotion (Elfenbein & Ambady, 2003a, 2003b; Elfenbein, Beaufre, Lévesque, & Hess, 2007), different cultures vary in their nonverbal expressions, and the presence of such differences has the potential to make the recognition of emotion less accurate across cultural boundaries. Therefore, an alternative explanation for this result could be that the FACS-based (Western) prototypes of emotional expressions may have been more culturally appropriate for Dutch perceivers, and more ambiguous for Chinese perceivers. This may have led Chinese perceivers to perceive multiple concurrent emotions in the facial expression stimuli. To address this alternative interpretation, we used empirically based facial expressions from Chinese and Dutch cultures, respectively, in Experiment 2. If the pattern of results in Experiment 1 was due to the use of FACS-based (Western) prototypes of emotional expressions, then we would expect Dutch participants to be more likely than Chinese participants to perceive multiple emotions when describing empirically based facial expressions from Chinese culture, while the reverse pattern should occur for empirically based facial expressions from Dutch culture.

3.1. Participants

The study included 157 individuals, who participated for course credits or monetary compensation. Seventy-five Dutch participants ($M_{age} = 21.53$, $SD = 4.15$; 59 women) from the University of Amsterdam and 82 Chinese participants ($M_{age} = 24.16$, $SD = 5.10$; 58 women) living in Mainland China (mainly University students) were recruited via personal networks. All participants provided written informed consent, and the ethics committee of the University of Amsterdam approved the study. The sample size was determined before any data analysis.

3.2. Stimuli and procedure

The stimuli for Experiment 2 were taken from a study in which
Chinese and Dutch participants were asked to pose facial expressions of anger and disgust with the goal of being understood by their friends (Fang, Sauter, & Van Kleef, 2018). A total of 49 Dutch (13 men, 36 women) and 45 Chinese (23 men, 22 women) actors posed facial expressions of anger and disgust, yielding facial expressions based on Dutch and Chinese cultural prototypes, respectively.

Each trial consisted of a photograph of an emotional facial expression (anger or disgust) in the center of the screen and four scales and the reference line denote larger differences between the intended and non-intended emotion scales. Greater distances between squares and the reference line denote larger differences between the intended and non-intended emotion scales. The figure indicates that both Chinese and Dutch perceivers saw more of the intended than the non-intended in the various facial expressions.

Table 1

<table>
<thead>
<tr>
<th>Exp.</th>
<th>Effects</th>
<th>Target Anger</th>
<th>Target Disgust</th>
<th>Target Fear</th>
<th>Target Surprise</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>df</td>
<td>F</td>
<td>p</td>
<td>df</td>
</tr>
<tr>
<td>Exp. 1</td>
<td>Emotion Scale (S)</td>
<td>(1284)</td>
<td>473.88</td>
<td>< .001</td>
<td>.625</td>
</tr>
<tr>
<td></td>
<td>Start Emotion (A)</td>
<td>(2568)</td>
<td>4.79</td>
<td>< .001</td>
<td>.069</td>
</tr>
<tr>
<td></td>
<td>Culture of Perceiver (P)</td>
<td>(1284)</td>
<td>25.86</td>
<td>< .001</td>
<td>.083</td>
</tr>
<tr>
<td></td>
<td>Culture of Expresser (E)</td>
<td>(1284)</td>
<td>0.18</td>
<td>.673</td>
<td>.001</td>
</tr>
<tr>
<td></td>
<td>S × A</td>
<td>(2568)</td>
<td>46.29</td>
<td>< .001</td>
<td>.140</td>
</tr>
<tr>
<td></td>
<td>S × P</td>
<td>(1284)</td>
<td>229.28</td>
<td>< .001</td>
<td>.447</td>
</tr>
</tbody>
</table>

Table 2

Note. The non-intended emotion denotes only one emotion, namely the non-intended emotion that has been found to be most confusable with (or morphologically similar to) the intended one in a given condition. For expressions of anger, for example, the non-intended emotion denotes disgust only. The factor of Start Emotion was only in Experiment 1, which varied across target emotions. For expressions of target anger, for example, Emotion X and Y indicate disgust and fear, respectively.
(intensity ratings of anger, disgust, fear, and sadness, respectively) underneath the photograph. Ratings were made by moving sliders on the four scales ranging from 0 (very much not at all) through 100 (very much). The scales were administered in this order for all participants: anger, disgust, fear, and sadness. The order of photographs was randomized across participants. Each participant completed 188 trials (94 actors × 2 emotional expressions). As in Experiment 1, all participants were tested in their own language.

3.3. Results and discussion

As in Experiment 1, we analyzed ratings of the intended emotion and of the non-intended emotion that has been found to be most confusable with (or morphologically similar to) the intended one, that is, anger and disgust. We conducted the same analysis as in Experiment 1, except that the factor Start Emotion was dropped (since all stimuli in Experiment 2 were static), and the factor Culture of Expresser was treated as a within-subjects variable in this experiment. A complete overview of effects can be found in Table 2.

We first examined whether perceivers identified the intended emotions from the expressions. The main effects of Emotion Scale were significant for both emotions (anger: $F(1,155) = 383.24$, $p < .001$, $\eta^2_p = 0.712$; disgust: $F(1,155) = 335.48$, $p < .001$, $\eta^2_p = 0.684$), with both Chinese and Dutch perceivers rating the intended emotions higher than the non-intended morphologically similar emotions (see Fig. 2; all raw means and standard deviations of emotion ratings are available in Table 3). This suggests that both Chinese and Dutch perceivers saw more of the intended than of the non-intended morphologically similar emotion in facial expressions of anger and disgust.

We then examined whether the two groups of perceivers differed in the degree to which they perceived intended versus non-intended morphologically similar emotions, and whether this differed as a function of culture of expresser. The three-way interaction of Emotion Scale, Culture of Perceiver, and Culture of Expresser was significant for both emotions (anger: $F(1,155) = 66.47$, $p < .001$, $\eta^2_p = 0.300$; disgust: $F(1,155) = 101.68$, $p < .001$, $\eta^2_p = 0.510$). To test whether perceivers found expressions to be more ambiguous when judging facial expressions based on prototypes from another culture, the three-way interaction effect was broken down by Culture of Expresser. For Dutch expressions, the two-way interaction of Culture of Perceiver and Emotion Scale was significant for both emotions (anger: $F(1,155) = 161.01$, $p < .001$, $\eta^2_p = 0.605$; disgust: $F(1,155) = 383.24$, $p < .001$, $\eta^2_p = 0.762$). When judging Dutch expressions, Dutch perceivers produced greater differences in ratings on the intended versus non-intended morphologically similar emotions as compared to Chinese perceivers. For Chinese expressions, the two-way interaction of Culture of Perceiver and Emotion Scale was only significant for anger, $F(1,155) = 101.68$, $p < .001$, $\eta^2_p = 0.396$, but not for disgust, $F(1,155) = 0.76$, $p = .386$, $\eta^2_p = 0.005$. When judging Chinese expressions of anger, Dutch perceivers produced greater differences in ratings on the intended versus non-intended morphologically similar emotions as compared to Chinese perceivers. No cultural differences were found for Chinese expressions of disgust.

Table 3

<table>
<thead>
<tr>
<th>Exp. Expressions</th>
<th>Chinese perceivers</th>
<th>Dutch perceivers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intended emotion</td>
<td>Non-intended emotion</td>
</tr>
<tr>
<td></td>
<td>Morphologically</td>
<td>Morphologically</td>
</tr>
<tr>
<td></td>
<td>Similar emotion</td>
<td>Dissimilar emotion</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>Exp. 1 Static anger</td>
<td>57.67</td>
<td>21.06</td>
</tr>
<tr>
<td>Disgust to-anger</td>
<td>60.96</td>
<td>20.55</td>
</tr>
<tr>
<td>Fear to-anger</td>
<td>62.75</td>
<td>20.70</td>
</tr>
<tr>
<td>Static disgust</td>
<td>74.01</td>
<td>16.14</td>
</tr>
<tr>
<td>Anger to-dissimilar</td>
<td>71.48</td>
<td>16.84</td>
</tr>
<tr>
<td>Fear to-dissimilar</td>
<td>73.29</td>
<td>16.13</td>
</tr>
<tr>
<td>Static fear</td>
<td>70.77</td>
<td>17.12</td>
</tr>
<tr>
<td>Surprise to-fear</td>
<td>73.10</td>
<td>16.69</td>
</tr>
<tr>
<td>Anger to-fear</td>
<td>71.38</td>
<td>17.15</td>
</tr>
<tr>
<td>Static surprise</td>
<td>71.98</td>
<td>17.65</td>
</tr>
<tr>
<td>Fear to-surprise</td>
<td>67.55</td>
<td>20.21</td>
</tr>
<tr>
<td>Anger to-surprise</td>
<td>74.32</td>
<td>16.81</td>
</tr>
<tr>
<td>Exp. 2 Chinese anger</td>
<td>28.86</td>
<td>12.90</td>
</tr>
<tr>
<td>Chinese disgust</td>
<td>31.53</td>
<td>16.34</td>
</tr>
<tr>
<td>Dutch anger</td>
<td>25.44</td>
<td>13.23</td>
</tr>
<tr>
<td>Dutch disgust</td>
<td>26.69</td>
<td>15.46</td>
</tr>
</tbody>
</table>

3 Ratings on all negative “basic” emotions (anger, disgust, fear, and sadness) were included in Experiment 2. The reason for including fear and sadness was to ensure variation in the emotional rating.
These results show that, when judging facial expressions based on Dutch prototypes, Chinese observers were more likely than Dutch observers to perceive multiple concurrent emotions; when judging expressions based on Chinese prototypes, Chinese observers were also more likely than Dutch observers to perceive multiple emotions in expressions of anger, whereas Chinese and Dutch observers judged expressions of disgust similarly.

As in Experiment 1, we used machine learning to test the idea that perceiving multiple concurrent emotions with low differentiation results in participants selecting the “wrong” emotion category in a forced-choice task. As expected, categorization performance of the 2-means clustering algorithm was significantly higher for Dutch participants than for Chinese participants across both emotions (details are provided in Table 4), and higher difference scores by human raters positively predicted the classification accuracy of the 2-means clustering algorithm, B = 0.095, SE = 0.010, p < .001, Nagelkerke R² square for model = 0.312. This suggests that Chinese participants’ lower performance in categorizing facial expressions may indeed be due to their tendencies to perceive multiple concurrent emotions with low differentiation.

In sum, as in Experiment 1, we found that both Chinese and Dutch perceivers perceived more of the intended than of the non-intended morphologically similar emotions in facial expressions, but that Chinese perceivers produced smaller differences in ratings between intended and non-intended morphologically similar emotions compared to Dutch participants when judging facial expressions based on Chinese prototypes. This speaks against the alternative explanation that Chinese participants perceive multiple emotions in the facial expression stimuli in Experiment 1 because the Chinese participants may have found these expressions to be ambiguous because they were based on Western (FACS-based) prototypes. Together, the current findings suggest that, rather than failing to identify the intended emotion, Chinese are more likely than Dutch to perceive multiple emotions simultaneously from negative facial expressions.

4. General discussion

Although there is an ongoing debate in the literature about the universality of emotional expressions, cultural variation in emotion perception is widely acknowledged (Ellenbein et al., 2007). The current research was designed to test for cultural differences in multiple emotion perception from facial expressions. Experiment 1 demonstrated that both Chinese and Dutch participants saw more of the intended than of the non-intended morphologically similar emotions in FACS-based (Western) prototypes of anger, disgust, and fear, but that Chinese participants produced smaller differences in ratings between intended and non-intended morphologically similar emotions than did Dutch participants. Experiment 2 further demonstrated that Chinese participants produced smaller (for anger) or similar (for disgust) differences in ratings between intended and non-intended morphologically similar emotions compared to Dutch participants when judging facial expressions based on Chinese prototypes. This suggests that Chinese participants perceive multiple emotions in the facial expression stimuli in Experiment 1 because the Chinese participants may have found these expressions to be ambiguous because they were based on Western (FACS-based) prototypes. Together, the current findings suggest that, rather than failing to identify the intended emotion, Chinese are more likely than Dutch to perceive multiple emotions simultaneously from negative facial expressions.

4.1. Theoretical implications

Although we focused on ratings of the intended emotion and of the non-intended morphologically similar emotion in the current study, it should be noted that cultural differences are not limited to non-intended morphologically similar emotions but also generalize to non-intended morphologically dissimilar emotions (see Fang et al., 2018). The difference between Easterners’ and Westerners’ inclination towards mixed emotions may reflect cultural differences in cognitive styles (holistic vs. analytical). Specifically, Easterners tend to attend to the entire field and make relatively little use of categories, while Westerners pay attention primarily to the focal object and the categories to which it belongs (Ji, Peng, & Nisbett, 2000; Markus & Kitayama, 1991; Nisbett et al., 2001). In the current study, Dutch participants’ inclination towards attending to a specific emotion category may have rendered them less likely to endorse multiple emotions compared to Chinese participants. Another possible explanation relates to cultural differences in dialectical thinking (dialectical vs. non-dialectical). According to Ji, Nisbett, and Su (2001), “dialectical thought has a long history among the Chinese people. Objects are understood as unstable and inseparable from subjects. This type of thought emphasizes not only the coexistence and interpenetration of the two parts of a contradiction, but their change and transformation into one another as well”. From this perspective, the “contradictions” in Easterners are no longer contradictions, as the parts of a “contradiction” are malleable. Easterners are...
thus comparatively less troubled by contradictions in their own and others' thoughts, emotions, and behaviors than are Westerners (Peng & Nisbett, 1999; Peng, Spencer-Rodgers, & Nian, 2006). As specific emotions are associated with distinct combinations of appraisals and action tendencies (Ellsworth & Smith, 1988; Frijda, Kuipers, & ter Schure, 1989; Scherer, 1984), endorsing concurrent distinct emotions can be seen as contradictory. As a result, Chinese participants may feel more comfortable endorsing multiple emotions in a facial expression compared to Dutch participants.

Existing explanations for cultural differences in emotion recognition accuracy cannot fully account for the current findings. One proposal is that Easterners have fewer opportunities to learn to identify negative emotional expressions as a result of these emotions being judged as socially undesirable and consequently expressed less (Biehl et al., 1997). Theoretically, however, it is equally conceivable that suppression of negative emotions in collectivist cultures could make Easterners more, rather than less, sensitive to these signals; perceptual acuity may be particularly advantageous when clear signals are scarce. Another proposal is that Easterners have an attentional bias towards others’ eyes, which provide inadequate information for distinguishing between certain negative facial expressions (Jack et al., 2009). However, in the current study we found that Chinese participants rated intended emotions higher than non-intended morphologically similar emotions, both for FACS-based (Western) prototypes of emotional expressions and for empirically derived facial expressions from Chinese and Dutch cultures. Furthermore, we found that Chinese participants had a greater tendency to perceive mixed emotions in both types of facial expression stimuli. By applying an unsupervised machine learning technique to categorize the facial expressions and conducting a logistic regression to predict the effect of emotion differentiation on categorization accuracy, we demonstrated that Chinese participants’ lower performance in categorizing facial expressions may be due to them perceiving multiple concurrent emotions with low differentiation.

It is noteworthy that the semantic profiles of anger, disgust, fear, and surprise are similar in Chinese and Dutch (Fontaine, Scherer, Roesch, & Ellsworth, 2007; Fontaine, Scherer, & Soriano, 2013; Russell & Sato, 1995). This speaks against the possibility that Chinese perceivers’ mixed perception of emotions was caused by larger semantic overlap between the Chinese terms of anger and disgust or larger semantic overlap between the Chinese terms of fear and surprise.

It should be also noted that although the overall results between Experiments 1 and 2 were by and large consistent, the magnitude of differences between the intended and non-intended morphologically similar emotions differed across the two experiments. Specifically, the effect sizes for Chinese participants perceiving anger expressions in Experiment 2 were more than twice as large as those in Experiment 1 (see std. diff. in means in Figs. 1 and 2). This difference in results between Experiments 1 and 2 may have been caused by differences in the stimuli used: We used FACS-based facial expressions in Experiment 1, and facial expressions based on Chinese and Dutch prototypes, respectively, in Experiment 2. It is possible that the empirically based facial expressions (both Chinese and Dutch prototypes) are clearer to Chinese participants than the theoretically based facial expressions.

4.2. Limitations and future directions

Although the use of multi-scalar intensity ratings is not novel in cross-cultural studies of emotional facial expressions (e.g., Beaupré & Hess, 2005; Ekman et al., 1987), most studies in this area have employed forced-choice tasks and have primarily focused on the recognition of intended emotions (for exceptions, see Ekman et al., 1987; Yrizarry, Matsumoto, & Wilson-Cohn, 1998). Using a combination of static and dynamic stimuli portrayed by actors from both groups of participants’ cultural backgrounds, the current study revealed a consistent pattern of cross-cultural differences in the perception of intended versus non-intended morphologically similar emotions from negative facial expressions. Nevertheless, the current study has limitations. Firstly, although morphs are perceived as natural and are commonly used in dynamic emotion research (e.g., Sacharin, Sander, & Scherer, 2012; Sato & Yoshikawa, 2004), the dynamic expressions employed here may not necessarily represent natural emotional change. Our dynamic stimuli involved simultaneous movements of facial components, but when emotional expressions change in real life facial muscles may change in different orders and at different rates. That caveat aside, the consistent pattern across the static and dynamic stimuli bolsters confidence in our general conclusion that both Chinese and Dutch observers perceive more intended than non-intended morphologically similar emotions in negative facial expressions, while Chinese observers are more likely than Dutch observers to perceive additional non-intended morphologically similar emotions as well. Secondly, our sample is not balanced in terms of gender. Some previous research has found that male and female perceivers differ in the accuracy of emotion perception (Montagne, Kessels, Frigerio, de Haan, & Perrett, 2005; but see Matsumoto et al., 2000). Furthermore, recent work has found that men and women differ in their likelihood of perceiving non-intended emotions from facial expressions (Fischer, Kret, & Broekens, 2018). However, concerns that gender could drive the effects in the present study are dispelled by the fact that the cultural samples were perfectly matched in terms of gender proportions in Experiment 1, together with the consistency in results between the two experiments.

Finally, although there is a large body of research showing that Easterners are more holistic and dialectical than Westerners (e.g., Nisbett et al., 2001; Peng et al., 2006), we did not include these measures in the current research. In order to elucidate the possible processes underlying the observed cultural differences in emotion perception, future research may measure or even manipulate holistic/analytic cognition and dialectical thinking.

In sum, the present article provides a theoretical and empirical addition to the literature on emotion communication across cultures. We found consistent evidence across FACS-based (Western) prototypes of emotional expressions and facial expressions based on culture-specific prototypes from both cultures (Chinese and Dutch), supporting our hypothesis that Chinese have a stronger inclination to perceive multiple concurrent emotions from negative facial expressions than do Dutch. It may thus be that, rather than failing to see the right emotions, Chinese in fact are more likely than Dutch to perceive multiple emotions in facial expressions. Together with previous research showing that Easterners are more likely than Westerners to experience mixed emotions (Bagozzi et al., 1999; Schimmack et al., 2002), these findings underline that culture plays a pervasive and consistent role in shaping emotional processes.

Acknowledgements

This research was facilitated by a scholarship from the China Scholarship Council awarded to the first author, and grants from the Netherlands Organisation for Scientific Research (NWO) awarded to the second (452-09-010) and third (275-70-033) authors.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jesp.2019.02.003.

References

