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ABSTRACT
The Internet of Things (IoT) holds the promise to blend real-
world and online behaviors in principled ways, yet we are
only beginning to understand how to e�ectively exploit
insights from the online realm into e�ective applications in
smart environments. Such smart environments aim to
provide an improved, personalized experience based on the
trail of user interactions with smart devices, but how does
recommendation in smart environments di�er from the
usual online recommender systems? And can we exploit
similarities to truly blend behavior in both realms to
address the fundamental cold-start problem? In this article,
we experiment with behavioral user models based on
interactions with smart devices in a museum, and
investigate the personalized recommendation of what to
see after visiting an initial set of Point of Interests (POIs), a
key problem in personalizing museum visits or tour guides,
and focus on a critical one-shot POI recommendation task
—where to go next? We have logged users’ onsite physical
information interactions during visits in an IoT-augmented
museum exhibition at scale. Furthermore, we have collected
an even larger set of search logs of the online museum
collection. Users in both sets are unconnected, for privacy
reasons we do not have shared IDs. We study the
similarities between users’ online digital and onsite physical
information interaction behaviors, and build new behavioral
user models based on the information interaction behaviors
in (i) the physical exhibition space, (ii) the online collection,
or (iii) both. Speci�cally, we propose a deep neural
multilayer perceptron (MLP) based on explicitly given users’
contextual information, and set-based extracted features
using users’ physical information interaction behaviors and
similar users’ digital information interaction behaviors. Our
experimental results indicate that the proposed behavioral
user modeling approach, using both physical and online
user information interaction behaviors, improves the onsite
POI recommendation baselines’ performances on all
evaluation metrics. Our proposed MLP approach achieves
83% precision at rank 1 on the critical one-shot POI
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recommendation problem, realizing the high accuracy
needed for fruitful deployment in practical situations.
Furthermore, the MLP model is less sensitive to amount of
real-world interactions in terms of the seen POIs set-size, by
backing of to the online data, hence helps address the cold
start problem in recommendation. Our general conclusion is
that it is possible to fruitfully combine information
interactions in the online and physical world for e�ective
recommendation in smart environments.

1. Introduction

The last decade witnessed a surge of interest in the implementation of Internet of
Things (IoT) in di�erent applications, such as smart shopping malls and smart
museums, which provide the infrastructure for understanding users’ physical
interaction behavior and consequently their preferences in interacting with
smart environments (Atzori, Iera, & Morabito, 2010; Barnaghi, Wang,
Henson, & Taylor, 2012; Vermesan & Friess, 2013; Hashemi, Hupperetz,
Kamps, & van der Vaart, 2016; Hashemi & Kamps, 2017a; Hernández-Muoz
et al., 2011; Perera, Zaslavsky, Christen, & Georgakopoulos, 2014). This
prompts a range of questions: In what ways can tracking people in their real-
life behavior and trying to understanding their interaction behaviors be
helpful? Is it possible to give e�ective recommendations to users by tracking
them using IoT but without getting any explicit information, like ratings,
about their preferences?

Imagine you are at a huge museum like the Louvre in Paris and you want to
explore the museum. Usually, it is impossible to visit every single object in a
large museums like the Louvre in 1 day. Furthermore, freely roaming
through the museum is more desirable in comparison to the traditional
�xed walking route designed in a non-personalized way. Providing personal-
ized experiences for users is highly valuable in this context and will help
them to visit all the interesting objects of the museum according to the
user’s preferences. In this case, how amazing would it be if a contextual recom-
mender system can tell you accurately what to visit without relying on exten-
sive history or explicit feedback from you?

The emergence of applications like the above leads to interest in logging users’
onsite physical information interactions, creating a new and potentially expo-
nentially growing data about physical interaction that resembles current
online search engine interaction logs. Although understanding users’ search
behavior and their information needs based on query logs is well studied
(Chuklin, Markov, & Rijke, 2015; Hashemi, Williams, El Kholy, Zitouni, &
Crook, 2018a, 2018b; Wang, Zhang, Tang, Zheng, & Zhao, 2016), to the best
of our knowledge, there has not yet been any study on how to understand
users’ behaviors and their information needs based on similarities between
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users’ onsite physical and online digital information interaction behaviors. The
main contribution of this paper is to address this research problem by learning a
behavioral user model using both onsite physical and online digital user
behaviors.

To this aim, users’ onsite physical interactions of visits in a museum and
users’ online query logs of a search engine on the same collection are logged.
Onsite physical information interactions are based on unlocking contents of
an installed iPad screen at each POI using RFID tags. For privacy reasons, we
don’t have shared IDs, hence users in both sets are un-connected, and we
study the typical cold start case where we have no prior history on a visitor to
the smart exhibition in the museum yet we have historical data of users’
online interactions with the museum search engine. We study how we can use
similarity of users’ online and onsite information interaction behaviors with
an aim of improving onsite POI recommendation at the smart museum.
Figure 1 shows an example of the museum space with the mentioned installa-
tions. In this way, we log users’ interactions with POIs and track users’ visits
in the museum. Figure 2 shows the �oorplan of an exhibition in a smart
museum with an integrated IoT. As it is shown in Figure 2, users behave di�er-
ently after visiting a set of POIs. The walk-through graph of three real users after
checking in at POI1 and POI2 is plotted. The blue and red paths show walk-
through behaviors of two users tend to check-in at POIs one after the other
but with di�erent preferences. The green path shows a user who behaves com-
pletely di�erent from the other two and does not check-in at POIs one after the

Figure 1. (Colour online) Interactive POIs in a museum physical space, consisting of a series of
pedestals with screens and actuators integrated into the Roman Department of the Allard
Pierson Museum of Archaeology in Amsterdam, The Netherlands.
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other. This �gure shows an example of how di�erent users exhibit di�erent
onsite physical behavior, which indicates that understanding and prediction of
users’ onsite physical behaviors can be challenging and di�cult.

Understanding users’ onsite physical behavior is also challenging as there are
external factors in the environment having impact on users’ behavior. As it is
studied in Hashemi et al. (2016), users’ walk-through behavior and their
dwell-time interacting with a POI in an exhibition are a�ected by the position
of the POI in the exhibition. They have also observed a decrease in users’ inter-
ests in interacting with technology at the end of an exhibition compared to the
start of the exhibition. These external factors lead to position and temporal rank
bias in the collected onsite sensor logs (Hashemi et al., 2016). Furthermore,
users’ behavior is also a�ected by other visitors around them, which leads to
an observation of crowd bias in collected onsite interaction logs (Hashemi &
Kamps, 2017a).

Such external factors bring an additional complexity to understand users’
onsite behavior as it makes users’ behavior a combination of “pure” content pre-
ferences and other factors like the physical constraints. Moreover, there is a
di�erence in how di�erent users will behave in the presence of external
factors as those discussed earlier. Therefore, understanding users’ onsite behav-
ior and preferences in order to provide an e�ective personalized service in a
smart environment is an interesting yet challenging problem. Understanding
users’ onsite behavior and providing e�ective personalized POI recommen-
dation become even more challenging in smart museums as in the early stage

Figure 2. (Colour online) Variance in onsite users’ behavior after visiting a set of POIs in a
museum exhibition shown in Figure 1. The �gure indicates variance of three visitors’ preferences
in visiting POIs. Each of them shown by a di�erent color, and the black edges are the ones
walked by all the three visitors. C-in is the check-in station and the S is the check-out station.
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of launching a smart museum, we do not have access to considerable amount of
onsite walk-through sensor logs. Thus taking advantage of other user prefer-
ences, signals available for a same collection could be very helpful. To this
aim, we study similarity of users’ online and onsite preferences by using users’
online interaction behavior signals to model their onsite interaction behaviors.
Speci�cally, we build a graph, in which graph nodes are the POIs available in
a smart museum and graph edges are created based on users’ click-through
behavior on an online search engine providing access to the same museum col-
lection. We then de�ne behavioral features based on the built graph, which are
used to create our proposed behavioral user models.

In this paper, our main aim is to study the question: How to model users’
information interaction behavior with IoT having an aim of providing a person-
alized onsite POI recommendation? Speci�cally, we answer the following
research questions:

(1) How to understand users’ onsite physical behavior and create a behavioral
user model that is able to e�ectively predict relevant unseen POIs?

(2) How strong are di�erent users’ interaction behaviors with IoT in understand-
ing users’ preferences?
(a) Are online digital behaviors similar to onsite physical behaviors? Does

understanding online digital users’ information interaction behaviors
have a positive e�ect in learning a model to predict unseen relevant
POIs and complete users’ personalized onsite visits?

(b) What are the relative importance of each feature extracted based on
di�erent users’ interaction behaviors in e�ectiveness of POI recommen-
dation systems?

(3) How e�ective is behavioral POI recommendation system in one-shot POI rec-
ommendation problem?

(4) What is the e�ect of given seen POIs set-size in the unseen POI recommen-
dation performance?

This paper builds on and extends the work reported in Hashemi and Kamps
(2017b) by providing more detail and explanations of the approach and its
relation to related work, and further analysis such as a study of the impact of
number of seen POIs on the performance of the unseen POI recommendation
system. The rest of the paper is organized as follows. In Section 2, we review
related work on recommender systems and their use in the museum domain,
as well as on tracking behavior in smart environments. Our proposed onsite
POI recommendation approach is detailed in Section 3. The experimental
setup and results are discussed in Sections 4 and 5. In Section 6, we discuss
potential future directions of our study in this paper. Finally, we present the con-
clusions and future work in Section 7.
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2. Related work

In this section, we discuss related work on context-aware recommendation
systems, POI recommendation systems, recommendation systems in museums,
and the IoT.

2.1. Context-aware recommendation systems

Traditionally, recommender systems deal with applications having just two
types of entities: users and items. However, creation of more complex and rea-
listic applications leads to interest in a new line of research about how to incor-
porate contextual information as an extra dimension into the recommendation
systems (Hashemi, Clarke, Kamps, Kiseleva, & Voorhees, 2016). There are three
ways of incorporating context in the recommender systems: contextual pre-
�ltering, contextual post-�ltering, and contextual modeling (Adomavicius &
Tuzhilin, 2011). As the later approach is closer to our study in this paper, we
will discuss some of the related research in the contextual modeling.

In order to contextually model the context aware recommendation system,
Karatzoglou, Amatriain, Baltrunas, and Oliver (2010) proposed a multiverse rec-
ommendation method based on tensor factorization, which integrates contex-
tual information by modeling data as a User-Item-Context N-dimensional
tensor instead of a traditional two-dimensional User–Item matrix. One
problem of this method is the data sparseness, which is proportional to the
number of de�ned contexts in their method. Liu and Aberer (2013) proposed
to partition the User–Item matrix by grouping ratings of similar context,
which could be helpful to decrease the data sparseness. The other problem of
the multiverse recommendation method is that it only works for categorical fea-
tures. To overcome this problem, Rendle, Gantner, Freudenthaler, and Schmidt-
Thieme (2011) proposed to use factorization machines to model contextual
information. The above studies are done to model contextual information,
however, none of them are scalable enough to be e�ective for the recent expo-
nentially growing data.

2.2. POI recommendation systems

There have also been many studies to solve the POI recommendation problem in
both academia and industry (Guy, 2015; Zoeter, 2015). They generally try to
adapt traditional recommendation algorithms to the POI recommendation
problem. One line of research includes collaborative �ltering and matrix factor-
ization approaches in location-based social networks (LBSNs). Berjani and
Strufe (2011) proposed regularized matrix factorization, in which they apply
personalized collaborative �ltering on dimensionally reduced user–POI matrices
to minimize the squared regularized error. In addition to the geographical
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aspects, there is research on POI recommendation that in addition to the geo-
graphical dimension also includes the temporal dimension in the matrix factor-
ization framework (Gao, Tang, Hu, & Liu, 2013; Griesner, Abdessalem, &
Naacke, 2015).

Within the POI recommendation literature, there are some studies that are
related to ours in the sense that they studied users’ check-in behavior (Park,
Hong, & Cho, 2007; Scholz, Illig, Atzmueller, & Stumme, 2014; Xiao, Zheng,
Luo, & Xie, 2010; Ye, Yin, Lee, & Lee, 2011; Ying, Lu, Kuo, & Tseng, 2012;
Zheng, Cao, Zheng, Xie, & Yang, 2010; Zheng, Zhang, Xie, & Ma, 2009;
Zheng, Zheng, Xie, & Yang, 2010; Zhuang, Mei, Hoi, Xu, & Li, 2011). As
three interesting examples of these related works, Zheng et al. (2010) proposed
collaborative location activity �ltering. Particularly, they used collective factoriz-
ation to recommend locations or activities to users. To this aim, they used com-
ments having GPS data in a web-based GPS management system as a data
source. Moreover, Ye et al. (2011) proposed a collaborative POI recommen-
dation algorithm based on geographical in�uence. To this aim, they used
users check-in activities in LBSNs. At last, Scholz et al. (2014) studied talk
attendance prediction in an academic conference using a link prediction
approach. To this aim, they logged talk attendance behavior using RFID tags.
However, none of the above studies used both the actual users’ onsite physical
information interaction behaviors and users’ online digital click-through
behaviors.

2.3. Recommendation systems in cultural heritage

Another line of related work is research on recommender systems for museum
visitors. In museums, although using mobile tour guides cause negative social
e�ects such as less interaction with visitors’ fellow group members in a group
visit, visitors are interested in using location-aware mobile tour guides, in
which they could get information from the guide and spend more time in exhi-
bitions (Lanir, Ku�ik, Dim, Wecker, & Stock, 2013). As many museums have
extensive collections of objects which makes it impossible to visit all of them
in a single day, requiring visitors to be selective. Thus personalization become
one of the key topics of research in cultural heritage domain (Ardissono,
Ku�ik, & Petrelli, 2012).

Grieser, Baldwin, and Bird (2007) studied next exhibition recommendation
problem in the museum space using visitors history. They applied Naive
Bayes learning model using textual description, geospatial proximity, and popu-
larity of exhibitions. In their study, popularity baseline, which is one of our
de�ned baseline in this paper, was reported as the most successful next exhibi-
tion recommendation model.

Bohnert, Zukerman, and Laures (2012) studied unseen exhibition recommen-
dation using nearest-neighbor content-based �ltering approach by taking
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visitors explicit ratings of exhibitions as inputs. They did the study using 41
museum visitors as participants. Moreover, Bartolini et al. (2016) study the rec-
ommendation of diverse multimedia data across several web repositories, and
arrangement of them in visiting paths. They consider location, number of
persons and weather condition as context in their contextual pre-�ltering
system, and they did the study based on 90 users as participants.

Apart from di�erent recommendation methods being used in the above
studies in the museum domain, they are limited in term of number of partici-
pants in the experiments. In addition, none of them log and study users’
onsite physical information interactions behaviors. In this paper, we log more
than 21,000 users’ visits of a museum in a 5-month period in operational prac-
tice, and our proposed model is based on users’ both online digital and onsite
physical information interaction behaviors.

In visiting a museum, recommendations can sometimes be very binary, which
leads to either a satisfactory visit or a dis-satisfactory one. For example, a visitor
might be in a situation of deciding a path to take from two available ones. The
problem of deciding which path to target to take in museums has been addressed
in Wecker, Lanir, Ku�ik, and Stock (2011) by splitting screen of their mobile
tour guide to two parts in order to show both paths and what objects are in
their way in each path. This is a critical problem that the authors address by
giving information to users to decide themselves. In this paper, we address
this problem by a one-shot POI recommendation system using a deep multilayer
perceptron (MLP).

Closest in spirit to our work is Hashemi and Kamps (2017a), in which users’
onsite physical behaviors in the existence of a crowd of users have been studied.
They studied skip or stay behavior prediction in checking in di�erent POIs as a
classi�cation problem. Their study is di�erent from ours as they do not investi-
gate on similarities between users’ physical and digital behaviors. Furthermore,
we study a POI ranking problem in this paper but they did research on onsite
physical interaction behavior classi�cation problem.

2.4. Internet of Things

The IoT is a network of connected physical objects, in which sensors and actua-
tors are seamlessly embedded in physical environments, and information is
shared across platforms to develop a common operating picture (Gubbi,
Buyya, Marusic, & Palaniswami, 2013). The IoT was �rst introduced by Kevin
Ashton in 1999 in supply chain management context (Ashton, 2009). Then,
in the past decade, IoT applied to many applications such as health care
systems (Catarinucci et al., 2015), smart cities (Zanella, Bui, Castellani, Vange-
lista, & Zorzi, 2014), and smart museums (Hashemi & Kamps, 2017b).

Integration of IoT in physical environments provides not only the possibility
to collect information from the environment (i.e. sensing) and interact with the
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environment via actuation, command, and control (Gubbi et al., 2013) but also
the opportunity to use the collected information to provide services to users such
as analytics (Strohbach, Ziekow, Gazis, & Akiva, 2015) and personalization
(Evangelatos, Samarasinghe, & Rolim, 2013; Hashemi & Kamps, 2017b).

As the most relevant line of research to our study in this paper, Evangelatos
et al. present a framework for creating personalized smart environments using
wireless sensor networks. Similar to our proposed behavioral user model, their
proposed framework can take personalized action based on some prede�ned
pro�les including information such as users’ age. However, our proposed perso-
nalization model is very di�erent from their model as we model users behavior
based on their implicit interaction signals collected using sensor logs and per-
sonalize a user experience based on the user’s behavior. Furthermore, their
experimental results are based on just eight users, which are much lower than
the number of users in our experiments based on an operational IoT museum
environment. In fact, our experimental results are based on thousands of
users’ onsite and online information interactions logs.

3. POI recommendation using users’ behaviors

This section studies how to predict relevant POIs to the given user and context
based on users’ interaction behaviors, aiming to answer our �rst research ques-
tion: How to understand users’ onsite physical behavior and create a behavioral
user model that is able to e�ectively predict relevant unseen POIs? To this aim,
we �rst present how the smart museum and our collected user interaction
logs look like. Then, after formally stating the POI recommendation problem,
we detail our proposed behavioral user models and features extracted for train-
ing the model.

3.1. POI recommendation in smart museums

There is a growing interest in integration of IoT in museums aiming to provide
smart services for museum visitors (Alletto et al., 2016; Ardito et al., 2018; Cei-
pidor et al., 2013; Chianese & Piccialli, 2014; Gribaudo, Iacono, & Levis, 2017;
Mighali et al., 2015; Rao, Sharma, & Narayan, 2017; Sornalatha & Kavitha,
2017). In this study, we focus on a speci�c type of smart museums that aims
to understanding users’ information interaction behavior based on collected
onsite sensor and online click-through interaction logs. In particular, we
de�ne a smart museum as follows.

. Smart museum is a museum with exhibitions that are richly and invisibly
interwoven with sensors, actuators, displays, and computational elements,
embedded seamlessly in museum visits, and connected through a continuous
network.
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The data used in this paper is based on the smart exhibition that is part of the
Roman Department of the Allard Pierson Museum in Amsterdam, the Nether-
lands. We aim at modeling users’ onsite physical interaction behavior in a smart
museum by training a behavioral user model based on a collected sensors’ infor-
mation interaction logs. To this aim, in our smart exhibition RFID tags are pro-
vided as a key to access some additional information about objects being shown
in the museum. Figure 3 shows an example of how these keys are being used to
unlock content at each POI. These keys are given to users at the start of the
exhibition.

At the start of the museum exhibition, there is a check-in station, at which
users can enter their preferences in order to personalize the content being
shown in all of the POIs. These preferences are perspectives of the narratives
(i.e. Rome, Egypt, and Lowlands), language (i.e. English and Dutch), and the
user’s age range (i.e. Adults and Children). Figure 4 shows statistics of a
sample of the smart museum visitors’ preferences collected at the check-in
station. In this sample, we exclude any user session that has missing value for
any of the three collected preferences. As it is shown in Figure 4, visitors are
interested in all available content perspective prepared for POIs. Furthermore,
as the smart museum is in the Netherlands and it is expected, visitors usually
preferred Dutch over English content. Moreover, the smart museum is an
archaeological museum and our collected onsite interaction logs indicate that
we have more adult visitors compared to children visitors.

After checking in, users are free to put their tags on RFID readers of some or
all POIs to unlock contents being shown about objects at the POIs. We are
mainly interested in the choice, and order, of POIs visitors choose to interact

Figure 3. (Colour online) An interactive POI in a museum physical space and an RFID tag as a key.
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with. Each POI contains three di�erent archeological objects. Users are free to
interact with POIs in any order. They can watch short movies, interact with
3D photos of POIs’ objects, or read contents about objects being shown at
POIs. At each POI, users are able to change the perspective of narratives and
learn about objects from di�erent perspectives. However, their visit will still
be personalized based on their preference at the check-in station, and they
will see narratives based on their initial choice at the next POI. At last, users
might check out in a summary station, in which they might leave their name,
gender, birth date, and email. By leaving their email, users show their interests
to receive more content about the exhibition in a post-visit scenario.

In addition to the users’ onsite physical information interaction logs, we have
also collected query and click-through logs of the museum search engine.
Speci�cally, when users are in the museum website and explore the museum col-
lection, they might search for an object by issuing a query and then clicking

Figure 4. (Colour online) Distribution of onsite explicit context chosen by visitors at the check-in
station.
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objects being shown in search engine result page (SERP). They might even not
issue a query and just click on objects recommended by the museum recommen-
der system. By clicking on objects ranked in the SERP or recommended in the
museum search engine �rst page without issuing a query, users land on the
object page, which is shown in Figure 5. In the object page, the museum recom-
mender system recommends the most similar objects to the clicked object, which
easily lead to click chaining in session. In addition, users might return to SERP
and click on another object. They might also revise their query and click on
objects retrieved for the given revised query. All these online users’ interaction
behaviors lead to click chaining that is the basis of our de�ned online features,
which are detailed in Table 1.

There are other types of the museum search engine sessions that are not useful
for collecting our online features. As all of our online features are based on users’
online click-through behavior, we exclude sessions with no click in our data pre-
processing. Furthermore, we �lter out bot sessions in the data pre-processing.

In smart museums, there are many external factors that might have impact on
users’ preferences in visiting POIs. For example, a user might be interested in
POIs having most popular objects in the exhibition. Furthermore, a user’s
check-in behavior might be a�ected by the location of POIs presented in the
museum (Hashemi et al., 2016) or even visitors’ crowd in the museum
(Hashemi & Kamps, 2017a). In addition to all these external factors, users’

Figure 5. (Colour online) A museum’s online collection search engine result page (left �gure)
and object page including related objects recommended to users based on clicking on an
object presented in the search engine result page (right �gure).
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preference play a major role in their choice to visit an unseen POI after visiting a
set of POIs. Users’ behavioral dynamics, due to existence of all these factors,
makes it very challenging to predict users’ next check-in interaction after visiting
a set of POIs. To address this problem, in addition to explicit context given by
users at the start of an exhibition, we try to implicitly capture context by user’s
choice of visiting a set of POIs in the physical environment. In the rest of this
section, we �rst state unseen POI recommendation problem based on a set of
seen objects in a smart museum, and then we detail our proposed model to
address this problem.

3.2. Problem statement

Let u = {u1, u2, . . . , ui} , Ui be a subset of users visited a smart environment,
cseen = {c1, c2, . . . , cj} , Cj

seen a subset of seen or occurred contexts, and
pseen = {p1, p2, . . . , pk} , Pk

seen a subset of seen POIs. Then, let
Rseen [ Ri×j×k

seen be a user–context–POI matrix containing i users, j seen contexts,
and k seen POIs. Value ri,j,k [ Rseen refers to the visit frequency of user i, in
context j to the POI k. In this paper, due to the fact that museum visitors
rarely check in to a POI more than once, we have used binary seen or unseen
values rather than considering the frequency.

Table 1. De�ned features to predict relevant unseen POIs to users after visiting a set of POIs.
Feature Category Description

f1 Explicit Context Gender (e.g. Female)
f2 Explicit Context Language (e.g. English)
f3 Explicit Context Visitor age range (e.g. Adults)
f4 Explicit Context Chosen perspective (e.g. Roman)
f5 Onsite Seen POIs set size.
f6 Onsite Content-based relevance score of a POI candidate to a pro�le created using seen

POIs’ content that was shown onsite
f7 Onsite Unseen POI’s PageRank in onsite visits walk-through weighted graph built based

on a train set
f8 Onsite Unseen POI’s PageRank in onsite visits walk-through unweighted graph built

based on a train set
f9 Onsite Unseen POI’s centrality in onsite visits walk-through graph built based on a train

set
f10 Onsite Minimum distance of the seen set of POIs to the POI candidate in the onsite visits

walk-through graph built based on a train set
f11 Onsite Median distance of the seen set of POIs to the POI candidate in the onsite visits

walk-through graph built based on a train set
f12 Onsite Mean distance of the seen set of POIs to the POI candidate in the onsite visits

walk-through graph built based on a train set
f13 Online Unseen POI’s PageRank in Online click-through weighted graph built based on a

train set
f14 Online Unseen POI’s PageRank in Online click-through unweighted graph built based on

a train set
f15 Online Unseen POI’s Centrality in Online click-through graph built based on a train set
f16 Online Minimum distance of the seen set of POIs to the POI candidate in the Online click-

through graph built based on a train set
f17 Online Median distance of the seen set of POIs to the POI candidate in the Online click-

through graph built based on a train set
f18 Online Mean distance of the seen set of POIs to the POI candidate in the Online click-

through graph built based on a train set
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Having above information about users, given a subset of unseen contexts (i.e.
cunseen = {c1, c2, . . . , cm} , Cm

unseen), and a subset of unseen POIs (i.e.
punseen = {p1, p2, . . . , pn} , Pn

unseen), the behavioral unseen POI recommen-
dation problem is the estimation of ri,m,n [ Runseen based on users’ interaction
behaviors with the seen POIs, in which Runseen [ Ri×m×n

unseen is a user–context–
POI matrix containing i users, m unseen contexts, and n unseen POIs.

In order to model the set-based contextual POI recommendation, we cast the
context-aware recommendation problem to a binary classi�cation problem, in
which relevant POIs are labeled 1 and irrelevant ones labeled 0. In this way,
we try to learn a behavioral model to predict relevant unseen POIs to the
given user and context based on the user’s interaction behaviors in the
context. Then, relevance probability of POIs to the user and context pairs will
be used to rank the unseen POIs. To this aim, a set of features that represents
users’ interaction behaviors in given contexts is de�ned.

3.3. Feature set

In order to learn an e�ective model to rank POIs, we have extracted 18 di�erent
features. As shown in Table 1, we have classi�ed features to three sets, namely,
explicit context, onsite, and online.

The explicit context features refer to information explicitly given by users
about the context. In our study, we collected users’ gender, their preferred
language, their age range, and their chosen perspective of the narratives at the
exhibition. Previous study on these explicit contexts (Hashemi et al., 2016)
shows that users behave di�erently in these di�erent contexts. For example, as
it is discussed in Hashemi et al. (2016), children tend to spend less time in
front of the POI about death. Therefore, it seems a reasonable set of features
to consider as explicit contexts. Furthermore, the content being shown in the
exhibition at each POI is personalized, which implicitly has impact on users
onsite interaction behavior.

The second group consists of onsite features which are a set of implicit behav-
ioral features collected during the interactions in the smart environment. In par-
ticular, we use onsite features extracted based on user walk-through data.
Speci�cally, f5 is the number of seen POIs, which can be a signal of visitors’
expertise in interacting with the POIs. In addition, it can be considered as a
con�dence indicator of some other features’ scores like f6. Whereas f6 is the
content-based �ltering score of POI candidate based on the pro�le built using
the seen POIs. This content-based �ltering score is calculated based on the
onsite POI descriptions and users’ onsite interactions. That is why it is con-
sidered as one of the onsite features in our feature classi�cation.

In addition to f5 and f6, we build users’ walk-through graph using their onsite
interactions with POIs based on the train set onsite information interaction logs
and calculate the further f7, f8, f9, f10, f11, and f12 features. Details of these features
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are available in Table 1. In particular, f7 is unseen POI’s PageRank in the onsite
visits walk-through weighted graph. Weight of a link from POIa to POIb is the
number of times that visitors visited POIb after checking in at POIa. The main
motivation behind using pagerank rather than link popularity of POIs is the fact
that pagerank helps minimizing the e�ect of position rank bias of the POI1. It is
shown in Hashemi et al. (2016) that there is a position rank bias in smart
museums and it is more likely that users check in at POI1, which is the closest
POI from the check-in station. This leads to high degree of both incoming and out-
going node degree for POI1. Using pagerank gives less importance for incoming
links from POIs with many outgoing links (e.g. POI1), which minimizes the poss-
ible bias on users’ behavior based on available external factors. On the other hand,
f9 is centrality feature that can capture popularity in the walk-through graph.

The third group consists of online features refers to a set of features based on
online interaction logs based on the collection information as o�ered on the
museum’s web site. The features are de�ned in a similar way as we have
modeled the onsite selected POIs using the onsite users’ interaction logs.
However, the feature calculation is entirely based on the prior online click-
through graph of the museum search engine. As said before, we assume a
cold start scenario, where no mapping between users at the smart exhibition
and the online logs, hence no online prior history of the particular visitor.
The online click-through graph is �ltered to the objects available at onsite
POIs. In this study, each onsite POI contains three di�erent museum objects.
We merge all the objects related to each POI as one node, and the click-
through graph’s edges are aggregated from all the edges of POIs’ objects. As a
result, same as onsite walk-through graph, the online click-through graph has
onsite POIs as nodes. Details of these features are available in Table 1.

3.4. Learning model

In order to learn a set-based behavioral POI recommendation model, we have
implemented a logistic regression classi�er and a deep neural MLP with drop-
outs to estimate relevance of each POI to the given user after visiting a set of
POIs. The logistic regression classi�er and the deep MLP have been trained sep-
arately based on each group of features extracted using di�erent users’ infor-
mation interaction behaviors to study which user information interaction
behavior is more e�ective in understanding users’ preferences in their inter-
actions with the IoT in smart environment. In the rest of this section, we will
detail the logistic regression and the deep MLP implemented for the set-based
behavioral POI recommendation.

3.4.1. Logistic regression
Logistic regression classi�er is a linear classi�er that transparently helps under-
stand contribution of each feature in the estimation of POIs relevancy. In fact,
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we would like to know which trained logistic classi�er performs better and why.
To this aim, we train di�erent logistic regression classi�ers based on di�erent
feature sets using di�erent users’ interaction behaviors.

In order to learn a logistic classi�er, we use variable c [ {0, 1} to show rel-
evance of a POI to a user in a context. Speci�cally, Pu(c = 1 | u, c, p) is the rel-
evance score of the POI p to the user u and the context c, in which � is unknown
parameters learned using maximum likelihood estimation (MLE) based on the
train set. Given the relevance judgments r of each POI pk to a user ui and
context cj in the train set, the likelihood L of the train set is as follows:

L =
�|U|

i=1

�|C|

j=1

�|Pseen|

k=1
Pu(c = 1 | ui, cj, pk)rPu(c = 0 | ui, cj, pk)1�r,

in which we assume relevance judgments r are generated independently. We
model Pu(c = 1 | ui, cj, pk) by logistic function on a linear combination of fea-
tures created based on each speci�c group of users’ information interaction
behaviors. Then, we optimize the unknown parameters � by maximizing the fol-
lowing log likelihood function:

u� = argmaxu

�|U|

i=1

�|C|

j=1

�|Pseen|

k=1
r log Pu c = 1 | ui, cj, pk

� �

+ 1 � r( ) log Pu c = 0 | ui, cj, pk
� �

.

In order to turn the logistic classi�er scores to probabilities, we have used the
softmax function:

S yi
� �

=
eyi

�
j eyj

,

in which yi is the logistic classi�er score, and S(yi) is the output relevance prob-
ability of our behavioral POI recommendation model. At last, we rank unseen
POIs based on the logistic classi�er output probability of POIs’ relevancy
being estimated based on features created using interaction behaviors of a
given user in a context.

3.4.2. Deep neural MLP
In this section, we investigate on a deep neural MLP by an aim of improving
e�ectiveness of the POI recommendation to be used in critical one-shot POI rec-
ommendation applications. The motivation behind the critical one-shot POI
recommendation is that an irrelevant recommendation sometimes has a very
negative e�ect in users’ experience in a way that they might be incorrectly
guided to an uninteresting department of a museum that leads to a dissatis�ed
experience. In this model, for each user in a context, our main goal is to rec-
ommend a POI which is highly relevant to them. In the one-shot POI
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recommendation, we do not care about relevant POIs retrieved after rank 1. In
the rest of this section, we detail our deep MLP with an aim of improving e�ec-
tiveness of POI recommendation to be used for the critical one-shot POI rec-
ommendation problem.

In order to learn a set based behavioral POI recommendation and learn users’
onsite complicated physical behaviors, we have used a deep MLP neural network
with 3 hidden layers having 326 units. To learn an e�ective model and overcome
over�tting problem, we have used a dropout feedforward neural network. Let
l [ {1, 2, 3} be the index of the hidden layers of the network. Let z(l) be the
vector of input to layer l and y(l) be the vector of outputs from layer l. The
dropout neural network is modeled as follows for any hidden unit i and
l [ {0, 1, 2} (Hinton, Srivastava, Krizhevsky, Sutskever, & Salakhutdinov,
2012; Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014):

r(l) � Bernoulli(p),
ỹ(l) = r(l) � y(l),
z(l+1)

i = w(l+1)
i ỹ(l) + b(l+1)

i ,
y(l+1)

i = f (z(l+1)
i ),

where r(l) denotes a vector of independent Bernoulli random variables having
probability p of being 1, ỹ(l) is thinned outputs created by multiplying a
sample of r(l) vector by outputs of layer l (i.e. y(l)) and used as input for the
next layer l+1, w(l) and b(l) are weights and biases at layer l, and f is an activation
function, which is recti�ed linear units (ReLUs) in our setup. This process is
done at each layer.

Following prior research in neural network domain, we have used p = 0.5 in
our dropout network. This value is reported as a close to optimal value for a wide
range of networks in di�erent applications (Srivastava et al., 2014).

In the learning phase, the derivatives of the loss function are backpropagated
through the dropout network. The dropout network is trained using the stochas-
tic gradient descent (SGD) algorithm with mini batches, which is widely used
algorithm for training neural networks. The learning rates are adjusted based
on adaptive gradient algorithm (AdaGrad) (Duchi, Hazan, & Singer, 2011). In
the test phase, the sub-network is used without dropout, but the weights are
scaled as W(l)

test = pW(l).
For the classi�cation purpose and having probabilities as outputs, we have

used Logistic classi�er in the last layer. The logistic classi�er in the last layer
is trained same as the logistic regression classi�er being discussed in the previous
section. The only di�erence is that, in the logistic classi�er being used in the last
layer, we model Pu(c = 1 | ui, cj, pk) by logistic function on a linear combination
of inputs from the last hidden layer units’ outputs. At last, the �nal relevance
probability of Pu(c = 1 | ui, cj, pk) is used to rank unseen POIs based on features
created using interaction behaviors of a given user in a context.
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4. Experimental setup

In this section, we describe our experimental setup. We �rst describe the data set
used in this paper, and second detail the evaluation methodology used in this
study.

4.1. Dataset

The dataset of this study is based on onsite physical and online digital interaction
logs collected at an archeological museum. Onsite physical interaction logs are
collected using sensors available in the museum, and the online digital inter-
action logs are based on click-through behavior of users.

In this paper, 5-month onsite physical interaction logs of the museum with
more than 21,000 sessions are used, which lead to 3925 high-quality onsite ses-
sions to be used for evaluation purposes.

The online features, detailed in Table 1, have been extracted based on 18,001
high-quality sessions created based on a common time-oriented session identi�-
cation approach in search engines using 30-minute inactivity time as session cut-
o� boundary (Eickho�, Teevan, White, & Dumais, 2014; Shokouhi, Ozertem, &
Craswell, 2016). The main assumption is that a long period of inactivity between
a user’s activities indicates the user is probably no longer active, which leads to
ending the session.

4.2. Evaluation methodology

In our collected onsite information interaction logs, about 16,000 out of 21,000
sessions either did not have any interactions with POIs or they did not check out
at the summary station, and about 1000 of them had interactions with all the
POIs. In order to avoid bias over users who are interested in visiting all or
none of the POIs at the museum, we exclude all sessions have checked in at
all or none of the POIs at the exhibition. As a result of this preprocessing
step, 3925 out of 21,000 high-quality onsite information interaction sessions
remain for creating the test collection.

Considering the walk-through graph, for each user in a session and at each
checked-in POI during their visit, we created a test collection using the seen
set of POIs, the user and the explicit contexts as the query and the unseen
POIs as the candidates, for which we have judgments based on the user’s
session. Basically, we know which POI candidates are visited by the user and
consider them as relevant POIs. The rest of the POIs are considered as irrelevant
POIs.

Doing the above procedure in building the test collection leads to create a
contextual set-based POI recommendation test collection having 1,083,623 judg-
ments. Table 2 shows an example of records created using a user session. To test
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our proposed model, in order to avoid over�tting, we have done �vefold cross-
validation, in which for each fold as a test set, three out of the four remained
folds randomly sampled and used as a train set, and the remained fold used
as a validation set. We repeat the process for all the �ve folds and report the
average of the evaluation metrics.

4.3. Evaluation metrics

For the evaluation of the de�ned set-based behavioral POI recommendation
task, we cast the problem to a ranking task and use mean reciprocal-rank
(MRR), mean average precision (MAP) and R-precision (R-Prec) as metrics
that are e�ective to evaluate proposed models. Moreover, in order to evaluate
the one-shot POI recommendation systems, we use precision at rank 1 (P@1)
as an evaluation metric.

The MRR is the average of the reciprocal ranks of the �rst relevant result for a
set of queries Q as

MRR =
1

|Q|

�|Q|

i=1

1
ranki

.

In our experiments, Q is a set of 1,083,623 queries (user and context pairs). In
MRR, ranki represents rank of �rst relevant POI for a given pair of user and
context. Precision at rank n (i.e. p@n) is used in number of evaluation metrics
in this study, which is de�ned as follows:

p@n =
# relevant POIs in top n results

n
,

where n is the rank. For a single query, AP is de�ned as the average of the p@n
values for all relevant POIs as:

AP =
�N

n=1 p@n × rel(n)
R

,

Table 2. An example of records created for the test collection using a
user session. The judgments are based on seen POI set-size 2 and 3.
Query context Seen POI set Candidate Relevance

c1 �POI1, POI2� POI3 0
c1 �POI1, POI2� POI4 1
c1 �POI1, POI2� POI5 0
c1 �POI1, POI2� POI6 0
c1 �POI1, POI2� POI7 1
c1 �POI1, POI2� POI8 0
c1 �POI1, POI2, POI4� POI3 0
c1 �POI1, POI2, POI4� POI5 0
c1 �POI1, POI2, POI4� POI6 0
c1 �POI1, POI2, POI4� POI7 1
c1 �POI1, POI2, POI4� POI8 0
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in which N is the number of retrieved POIs candidates and rel(n) is a binary
function indicating the relevance of a POI to a given user and context pair at
a given rank. A POI is relevant to a user and context pair, if the user checks
in at the POI at that visit. MAP is the mean value of the APs computed for
all queries. R-Prec is precision at rank R where R is the number of relevant can-
didates for the given query. At last, P@1 is the precision at rank 1.

4.4. Baselines

In this section, we detail the baselines created for the evaluation purposes.

4.4.1. Popularity
The popularity-based recommendation ranks POIs candidates according to their
popularity scores. According to previous evaluation studies in recommender
systems such as Herlocker, Konstan, Terveen, and Riedl (2004), systems recom-
mending very popular items can guarantee that users will like most of the rec-
ommended items. Moreover, the popularity baseline is usually used in
evaluation of personalized recommendation systems and it is informed as a
competitive baseline (Lucchese, Perego, Silvestri, Vahabi, & Venturini, 2012).

In this paper, the popularity is computed as the number of users who checked
in at each POI. Therefore, regardless of what POI has been already seen by a
user, the popularity baseline recommends the most popular POIs according to
other users who checked in at the POIs before.

4.4.2. Bias-based �ltering
In both physical and digital worlds, external factors has impact on users’ behav-
ior with information systems (Hashemi et al., 2016; Hashemi & Kamps, 2017a,
2017b). As a result, assuming existence of the same external factors in the phys-
ical smart environments, we could take advantage of them and predict the next
POI based on users’ status in the environment. Although the bias-based �ltering
baseline could be hard-to-beat, it would not be a very useful recommender
system in practice. Such a baseline is not based on users’ interests and their
pro�le. They are just predicting users’ next move using biases and external
factors in the environment.

As Hashemi et al. (2016) discussed, there are some biases in onsite user infor-
mation interaction logs. They introduce the walk-through position bias that
shows users tend to visit POIs one after the other from check-in to check-out
stations. They also observed time-rank bias that indicates users tend to spend
less time at the end of exhibitions. Considering these two biases, the probability
of checking in at a POI is proportional to the distance from the Check-out
station. Therefore, in all experiments of this paper, the bias-based baseline
ranks POIs based on their distance from the check-out station.
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4.4.3. Content-based �ltering
As descriptions of POIs in museums are well curated, they are an informative
source of information that makes content-based �ltering as an e�ective baseline
in this domain. In this study, each POI contains three museum objects with
reach descriptions. In order to build a content-based �ltering model, we build
a pro�le of each user after visiting a set of POIs using Language Modeling frame-
work. Each pro�le’s language model is based on all seen objects of pseen.

Since we have pro�les of users at each context based on their seen POIs, KL-
Divergence of each unseen POI’s language model and the pro�le is considered as
content-based �ltering scores for ranking unseen POIs.

5. Experimental results

In this section, we provide answer to the research questions stated in the Intro-
duction section.

5.1. POI recommendation using users’ information interaction behaviors

This section answers our second research question: How strong are di�erent
users’ interaction behaviors with IoT in understanding users’ preferences?

To this aim, we have used each of the three groups of features extracted
based on each information interaction behaviors to train a POI recommen-
dation system. Speci�cally, we have trained three di�erent logistic regression
classi�ers, which are trained based on: (1) the explicit context features (i.e.
Logistic Regression-Explicit Context), (2) the onsite features (i.e. Logistic
Regression-Onsite), and (3) the online features (i.e. Logistic Regression-
Online).

In the rest of this section, we �rst investigate whether users’ online digital
interaction behaviors are similar to the users’ onsite physical behavior. Then,
we detail relative importance of each feature extracted based on features’
weights being learned by logistic regression classi�ers using each type of users’
interaction behaviors with an aim of understanding users’ behaviors.

5.1.1. Onsite physical behavior versus online digital behavior
We �rst look at the question: Are online digital behaviors similar to onsite phys-
ical behaviors? Does understanding online digital users’ information interaction
behaviors have a positive e�ect in learning a model to predict unseen relevant
POIs and complete users’ personalized onsite visits?

In order to answer this research question, we compare POI recommendation
systems trained based on each type of interaction behavior. As shown in
Figure 6, the POI recommendation system trained based on users’ online
digital interaction behavior is not only as good as the other POI recommen-
dation systems being trained based on either explicit context or onsite

248 S. H. HASHEMI AND J. KAMPS



interaction behaviors, but also is performing better than them in terms of all
common tested information retrieval metrics.

This experiment indicates that the availability of the considerable amount of
online interaction logs in comparison to onsite interaction logs leads to training
an e�ective onsite POI recommendation system based on users’ online digital
interaction behaviors. As we achieve an e�ective onsite POI recommendation
system based on users’ online digital interaction behaviors, we conclude that
there is a similarity between onsite physical and online digital information inter-
action behaviors.

5.1.2. Features relative importance in understanding users’ interaction
behaviors
We now look at the question: What are the relative importance of each feature
extracted based on di�erent users’ interaction behaviors in e�ectiveness of POI
recommendation systems?

To this aim, we normalize features’ weights being learned in each logistic
regression classi�er trained for each group of features separately. Then,
average of the normalized features’ weights over the �vefold cross-validation
is reported and compared in Figure 7.

As it is shown in Figure 7, among the explicit context interaction, the chosen
language (i.e. f2) at the start of museum visits is relatively more important in
comparison to other explicit context-based features. Furthermore, mean dis-
tance of the seen POIs to a POI candidate in the onsite visits’ walk-through
graph (i.e. f12) has relatively more importance in comparison to other onsite
interaction behavior-based features. Regarding the online interaction behaviors,
median distance of the seen set of POIs to the given candidate in the online click-
through graph (i.e. f17) is relatively more important than other online features in
the e�ectiveness of the POI recommendation systems.

Figure 6. (Colour online) E�ectiveness of di�erent types of users’ interaction behavior in under-
standing their onsite preferences.
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