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Models of Intertemporal Trade under Information 
Asymmetry 

2.1 Introduction 

Prices in financial markets should obviously reflect information. However, to what extent 

prices reflect information, has been and still is the cause of debate among financial economists. 

It is understood, nowadays, that the price-information relation is not as simple as contented 

by the efficient market hypothesis, or the neoclassical work on price formation. Besides the 

empirical support for a more subtle nature of the information role of prices, theoretical work 

on price formation has yielded many insights. The mechanics of most of these theoretical 

models are driven by the rational expectations paradigm. This concept captures the flow of 

information from agents to prices and vice versa. Since its introduction to the area of finance 

by Grossman[ 1976,1977], this notion has become the primary modeling tool for trade under 

differential or asymmetric information. In particular, the CARA-Gaussian subclass of noisy 

rational expectations models has proven to be useful in the characterization of price formation. 

Within this thesis we adopt this approach as well, and additionally try to capture the dynamics 

of trade under information asymmetry. The extension toward multi-period variations is not a 

trivial task however. As Huang and Litzenberger stated in 1988, 

'..We also know very little about the rational expectations equilibria in multi-

period economies.[...] the multi-period extension is a formidable task. This exten­

sion, when successful, will give rise to a much richer model. Questions such as to 

what extent historical prices contain information about future prices and whether 

volume of trade can play any informational role can only be answered in models 

of a multi-period economy.' 

In spite of the apparent technical difficulty, over the last decade, the literature has seen many 

successful attempts. This literature is the main focus of this survey. It provides a background 

against which our efforts in this area are to be evaluated. 
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It should be noted that this survey does not have the intention to be complete or cover 

the whole strand of literature concerning the topic1. The literature has grown to be extremely 

rich in this area. Hence, we abstain from elaborate discussions on the variety of subfields that 

have arisen, and we restrain ourselves to the competitive noisy rational expectations approach. 

Within this area our attention is drawn to the more recent multi-period models, where we have 

tried to include the most relevant contributions. 

This chapter is set up as follows. In section two, we start with the illustration of the differ­

ence between the conventional Walrasian market-clearing mechanism and the rational expecta­

tions paradigm. We discuss the problem with fully revealing equilibria, and motivate the need 

for noise. We proceed by solving explicitly a static noisy rational equilibrium. The generic 

structure of the model allows us to subsequently derive the Diamond and Verrecchia[1982] 

model, and the Hellwig[1980] limiting economy. We conclude the section with discussion of 

the Admati[1985] multi-asset extension. In section three, we focus on multi-period rational 

expectations models. We start the section with a discussion of the general problem involved 

in solving for these equilibria. Subsequently, we discuss the various multi-period models that 

have been suggested, starting with the early two period models, and concluding with the 

infinite period models by Wang. The final section of this chapter elaborates on the differences 

between the models discussed, and the approach that is adopted in this thesis. 

2.2 The Informational Feedback from Prices: Rational Expectations 

In a market where assets are traded whose future payoff is uncertain, agents need to make 

forecasts for an optimal allocation decision. The expectations formed by agents thus play 

a crucial role in the formation of prices. If information is dispersed throughout the econ­

omy the prior expectations of agents will generally differ. Prices may, however, aggregate 

individual pieces of information through the demands of agents and consequently provide a 

signaling function to investors. Hayek [1945] considered this informational role of prices. In 

his view, the price system should serve as a communication device, resolving informational 

differences between agents. Agents' investment decisions are then optimal, as if their actions 

are coordinated by an invisible hand. 

The neoclassical framework is insufficiently rich to capture this role of the price system. To 

xThere are excellent reviews available that do encompass a larger scope of the literature on trade under 

differential information. The reader is referred to 0'Hara[1994] for an overview of the market microstructure 

literature, and to Brunnermeier[1998] for more emphasis on competitive rational expectations models. 
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illustrate this, consider how the classical Walrasian framework would cope with differentially 

informed agents. Assume that an asset is traded with uncertain payoff ü. N agents are present, 

with agent i initially endowed with z{ of the asset. Information dispersion is present through 

the assumption that each agent receives a private signal yt regarding ü. Given a utility function 

U(W), agents choose their demand such that they maximize their expected utility conditional 

on their private information. Their demand schedule, di(P,yi), is formally represented by 

di(P,yi) = 'aigmaxE[U{W{d,ü,zi))\yi\, s.t. ztP = dtP + M 
d 

where M is the amount of consumption good invested in the riskless asset. If agents have 

CARA utility functions with Arrow-Pratt risk measure pit the solution to this maximization 

problem is straightforward, and given by 2 

di(P,y1) = r—r- (2.1 
Pivsx[u\yi\ 

The equilibrium price P then follows by demanding that the market clears. That is, P is the 

solution to 

Using (2.1), one finds that the market-clearing condition can be written as 

P 1 E -
Ar £—) 

1 ^ V[u\yi] z 

N Y pivar[w|yi] TV 'Y P*var[«|y,] 

This equilibrium price may at first sight be appealing. It indeed aggregates information. In 

fact, each individual influences the price with his expectation of w. The magnitude of this 

impact is determined by both the precision of his information, and his risk aversion level; 

Individuals with more precise information have a stronger impact. We also observe a risk 

premium: if the excess supply Z is large, price will be low, and hence the expected excess 

return will be high. Moreover, this price discount is determined by the both the risk aversion 

and the information precision level of the economy. If the average individual is less risk 

averse, or has better private information, the risk adjustment factor is smaller. An equilibrium 

such as the above was studied by Lintner (1969). 

2This solution can be simply found as follows. Since 

E[U(M + diü)\yi] = -E[exp(-pi(M + diü))\yi\ 

-exp(-p,M - pidiE[ü\yi] + -p?c%vax[ü\yi]) 

Maximizing with respect to d{ yields the expression. 
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However, there is a problem with this formulation. Although agents know the market-

clearing price upon submitting their demands, they do not use the information reflected in 

prices. In fact, with hindsight agents would generally want to re-contract, in light of this 

additional information. Hence, this equilibrium is not market clearing conditional on the in­

formation contained in prices. The rational expectations concept resolves this difficulty. In 

a rational expectations framework, the requirement is that agents optimally use all informa­

tion available, and, in particular, the information displayed through prices. Agents' demand 

schedules are thus formed conditional on the market-clearing price in conjunction with pri­

vate and/or public information. Returning to our example, this implies that the maximization 

problem is replaced by 

di{P, Vi) = argmaxE[f/(M + du)\yu P] subject to zzP = dtP + M. 
d 

Hence, in contrast to the classical Walrasian models, market prices not only influence the 

demand of each agent through their budget constraint, but also through their conditional 

expected utility function. Accordingly, the market-clearing condition changes to 

Indeed, the solution to this pricing problem depends on the functional relation between P 

and the expectation of ü. The rational expectations approach demands that all agents conjecture 

the same pricing functional, and, that agents' (subjective) beliefs about the price function and 

the probability of outcomes coincides with the actual market-clearing price and probabilities. 

The advantage of this approach, first proposed by Muth[1960,1961], is that systematic errors 

or biases in the inference of agents, are ruled out, leading to a plausible means to the handling 

of expectations. 

The determination of equilibrium under rational expectations can be considered as a fixed-

point problem in the space of functions that map supplies and information signals to prices. 

Denote this space of functions by P. For an economy with a set J\f of agents, each endowed 

with information set P , and endowment zt, we have V/ € P, ƒ : ( { P } , {zz}) —> R + . Given 

a realization of the price P, agents can derive a conditional distribution regarding the signals 

that span the information set of each agent. Consequently, agents' demands are formed using 

this conditional distribution. If agents conjecture a price function ƒ, their demand d;(.) can 

therefore be written as d, = d(P, yf,f). The market-clearing price P is then implied through 

the requirement that the market clears, i.e. P solves Z = Y^d^P, yï,f). Denote the solution of 

this problem by ƒ', i.e. Z = £;d;(/ ' , yt; ƒ). Next, define the transformation T that transforms 
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ƒ to ƒ', i.e. Tf = ƒ'. A rational expectations equilibrium is then defined as a fixed point 

of this transformation, that is Tfree = free. The functional form that is usually considered, 

certainly in the CARA-Gaussian framework, imposes linearity in the state variables. In the 

above framework, one would for instance assume that P — no + n{ J] , yt. 

Grossman3 [1976] was the first4 to use the rational expectations concept to consider the 

aggregation of information through prices. He shows that this aggregation can be perfect, and 

ultimately lead to a Pareto optimal equilibrium. In fact, a social planner with complete knowl­

edge of the economy could not achieve a better allocation than in the fully revealing rational 

expectations equilibrium. This result is exactly what Hayek[1945] had contented. Agents need 

not to look further than market prices to know all they need to know to act optimally. This 

type of equilibrium is called informationally efficient. The signal provided by the price is a 

sufficient statistic for individual private signals. Beside the information aggregation function 

of markets, another informational role for prices is in the form of a transmitter of informa­

tion. Typically, this could occur, when one group of traders possesses superior information 

compared to the other group. Prices then transmit information from better-informed agents to 

uninformed agents, rather than to aggregate individual pieces of information. Grossman[1977] 

explores such a situation explicitly within the context of futures markets for commodities 

(wheat). A so-called fully revealing equilibrium results, where the private signals of informed 

agents are completely revealed through the market-clearing price. As Grossman[1977] notes 

'spot prices act like a xerox machine, freely distributing the information of the informed firms 

to the uninformed firms'. 

This type of full revelation of private information always occurs if the uncertainty about 

fundamentals is spanned by the information signals available to agents. In the Grossman[1977] 

model, the single source of uncertainty is revealed through the observation of the price re­

alization. Generally, if there are as many assets as sources of noise, a rational expectations 

equilibrium exists that resolves all uncertainty5 (Allen[1982]). Though Grossman[ 1976,1977] 

showed that such revelation may lead to an optimal allocation, fully revealing equilibria have 

several conceptual problems. In case of the aggregation of information, prices' being sufficient 

3For an overview of the contributions of Sanford Grossman to the rational expectations literature, see 

Admati[1991]. 
4Another early contribution to this literature is Green[1977]. 
5 Apart from the number of assets, the type of assets also influences its informational content. As such, 

financial innovations may be driven by enhancing informational efficiency of financial markets (see for instance 

Boot and Thakor[1993], Duffie and Rahi[1995], Allen and Gale[1994]). 



14 2. Models of Intertemporal Trade under Information Asymmetry 

statistics for the aggregate knowledge in the market, makes agents' demands independent of 

their private signal. A paradox is the result: if agents' demands do not depend on private 

signals, how can information be incorporated in prices? In case of disclosure of private infor­

mation, a problem arises when information is costly. If prices are fully revealing, agents will 

never have an incentive to acquire costly information, because they cannot exploit their initial 

comparative advantage if prices freely distribute all information. Grossman and Stiglitz[1980] 

point out this problem in their seminal work 'On the Impossibility of Informationally Effi­

cient Markets'. To resolve the problem of fully revealing prices, Grossman and Stiglitz[1980] 

assume that another source of uncertainty is present that distorts the signal displayed through 

prices. The result is that prices are only partially revealing. This gives informed traders the 

opportunity to exploit their private information, such that they can offset the cost of infor­

mation acquisition. Grossman and Stiglitz[1980] also consider the interior equilibrium that 

arises when agents have the choice to acquire costly information. Given the diminishing re­

turns when the number of informed traders grows, they show that an interior equilibrium may 

exist. The equilibrium allows them to consider the informativeness of the price system, and 

to elaborate on several conjectures. The most important observation concerns the efficient 

market hypothesis. Grossman and Stiglitz[1980] argue that 

'Efficient market theorists seem to be aware that costless information is a 

sufficient condition for prices to fully reflect all available information (..); they 

are not aware that it is a necessary condition. But this is a reducto ad adsurdum, 

since price systems and competitive markets are important only when information 

is costly'. 

The implication is that a price system should only partially reveal private information 

in order to reveal information at all. This has come to be known as the Grossman-Stiglitz 

paradox6. 

Full revelation of information can be precluded through the incorporation of additional 

noise. That noise in an economy may play a profound role in general is emphasized by 

6A related problem with fully-revealing equilibria is the so-called Hirshleifer effect. Hirshleifer[1971] shows 

how full resolution of uncertainty may preclude trade, that otherwise would have improved risk sharing. If risk 

averse agents face uncertainty, where one group of traders is better off in one state and the other group is 

better off in the other, trade may improve risk sharing. However, under full revelation of uncertainty the group 

that is better off, will not want to trade anymore. Hence, no trade occurs in the full revelation equilibrium. 

Moreover, with the anticipation of no-trade, trade will not take place, leading to no resolution of uncertainty, 

while pertaining the inefficient allocation of risk. 
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Black[1986] in his infamous 'Noise' paper. Noise introduces an additional degree of freedom 

rendering the market incomplete. In the standard CARA-Gaussian framework, noise typically 

enters the market-clearing condition in the following fashion 

y^ dj oc x 
i 

where X represents the noise term. In words, the excess demand scales with noise. The 

existence of such noisy excess supply can be motivated through the presence of liquidity 

traders, who trade on the basis of non-informational reasons, perhaps motivated by private 

liquidity shocks, or a hedging need given some random endowment with the risky asset. 

An alternative is proposed by Wang[1994], who introduces noise through informed agents 

who have the availability over a private production technology that causes their demand for 

the public risky asset include a non-informational component. In Campbell, Grossman and 

Wang[1993] noise is incorporated through the assumption of a stochastic average risk aversion 

level of the economy. From a strict mathematical viewpoint, all of these approaches are 

equivalent. More complex specifications of additional uncertainty (such as in Romer[1993]) 

often impair the CARA-Gaussian elegance by introducing non-linearities. In these cases, the 

only means to extract results is by numerical procedures. 

A criticism specific to the CARA-Gaussian framework is that the distributional properties 

of the state variables allows for unrealistic outcomes in the form of negative stock prices and 

risk aversion levels. In spite of this flaw, the normality assumption is common in this strand 

of literature. One justification is that it should be considered a first order approximation to a 

more complex distribution. Alternatively, one can argue that the CARA-Gaussian framework 

is equivalent to a model where more complex distributions are allowed, and agents have 

mean-variance utility functions (see Campbell, Grossman and Wang[1993]). 

Though the inclusion of additional noise by Grossman and Stiglitz[1980] resolves the con­

ceptual difficulties with informationally efficient equilibria, their model implies a schizophre­

nia of rational investors. Though agents rationally anticipate the complex relation between 

information and prices, they neglect their individual impact on the market-clearing price. In 

Hellwig[1980], this problem is resolved under the assumption of a large market, rendering 

individuals with an infinitesimally small impact on prices. Another novel feature in Hell-

wig[1980] is that it studies the information aggregation ability of financial markets, endowing 

each agent with a private piece of information. Another approach that considers an economy 

with dispersed information can be found in Diamond and Verrecchia[1981]. In the following 

we consider a generic framework that incorporates both of these approaches. 
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Assume that there are N traders, which we index by i 6 J\f = {1, 2,..., N}. Each individual 

is endowed with a private endowment given by zt. Investors can trade a riskless asset yielding 

a fixed gross return of unity, and a risky asset with uncertain payoff which we denote by ü, 

with ü ~ yVfwc/io1]- They do so with the objective of maximizing the expectation of their 

exponential utility at the consumption date that coincides with the liquidation date. We denote 

the risk aversion coefficient of investor i by p;. Each trader receives a private information 

signal y{ regarding v.. These information signals are imperfect through the perturbation of a 

normally distributed error term unique to each investor, i.e. yz = ü + ër, with ê,: ~ N[0, s,"1']. 

The initial endowments {zi}i<=M  are distributed normal with mean z0 and variance V = f1. 

Additionally, there is a group of liquidity traders that adds noise to the per capita excess supply. 

This extra per capita supply noise is represented by X, with X ~ N[0,x]. We assume that 

the random vector (X, z0l ...,zN,è0, ...,êjv) has a non-singular variance-covariance matrix. 

Given the distribution of imperfect information signals across investors, the collective 

knowledge in the economy is superior to any individual information set. Therefore, the signal 

present in the market-clearing price can provide agents with information beyond their private 

signals. Rational expectations enters through the requirement that agents extract information 

from prices, and do so optimally. Their demand is based on their conjecture of a price func­

tion, assumed to be linear in the state variables. Explicitly, we assume that agents conjecture 

a price function of the form7 

N N 

P - TTn + J2 KW - lZ = 7ro + nu + J2 ndi - lZ (2.2) 

where Z = i £ 2 , + X, and 7r = J =̂l  TTJ. The form of the demand schedule of agent i is 

standard and given by 

di{P,zi,yi)= ' ' 1 ^ . (2.3) 
PiVa,r[u\P, Zi,yi\ 

The equilibrium is determined by the solution to the market-clearing condition 

±-Y.di{P,~Zi,Vi)=Z 

The next step in the usual approach for solving rational expectations equilibria is the derivation 

of the conditional expectations and variances of each investor concerning ü. In this case, we 

7Note that we have made a simplifying assumption in this structure. We assume that the individuals' endow­
ment Z{ affects prices in a manner independent of his preferences. This is good enough for the derivation of both 
Hellwig[1980] and Diamond and Verrecchia[1982]. Generally, one should replace the term 7Z by jLX+J^-jiZi 
in order to find a solution. This extension is straightforward, though more tedious. 
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do so by means of the projection theorem. First note that the vector (u,z,;, j / ^ , P) has mean 

(uo, zo, uo, Tfo + nuo — JZo) and variance-covariance matrix 

/ hö1 0 

Mi 

K1 
7T/JÔ1 

0 r 1 0 -7 , / i 

/ lg1 0 hö1 + S"1 Tïhö1 + TViS'1 

\ nhô1 -lt/t nhô1 + 7T.S-1 ^hö1 + Ef=o ^ V + l2(l/tN + l/x) ) 

This expression can be used to determine the conditional expectation of trader i. Applying 

the projection theorem (see appendix A), the conditional expectation of investor i is linear in 

his information signals, 

E[u\P, Vi, zt] = a0i + auVi + a-i^P + a3lZi, 

with the coefficients axj given by 

Q0. 

OL\. 

b-lu0h0 \\Lf\ +72^-.1 - s-1^ +72(1 - AT1)/^ 

+6~1(72:o -7T0) (TT-TTi) 

«2z = ft,-1 (TT - -ïïi) 

Q3î = bf-yN'1 (TT - TT.,) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

where 

3 = 1 SJ 

£ ^ + 72(1 - i V - 1 ) / ^ + 7 V - 1 - TT,2«: (s, + /7,0) + (TT - nt)
2 (2.10) 

The individual i's conditional variance of the liquidation value is represented by ßt 

ßi = var[ü|P, Zi,yi] 

Kl*7 £-
AT _ 2 N 

" j \ , . . 2 „ - l _ 2 „ - l 1 „ ,2h Rj-l-i • y i ^ - T r f s ^ + ^ t(l-N-l)/tN 

(2.11) 

(2.12) 

Inserting (2.11) and (2.4) in the demand schedule of investor i (2.3), the market-clearing 

condition gives us the following equation specifying the equilibrium: 

-y = z 
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This implies that the market-clearing price has the structure 

1 JV 1 

Nh Pißi N h Pißi 
Z 

Rational expectations requires that the conjecture of agents concerning the pricing functional, 

given by relation (2.2), coincides with this functional form8. Moreover, this conjecture should 

be valid for all realizations of the random vector (P, { j / * } ^ ,  {zi} i£^, X). Imposing these 

requirements leads to the following specification for the constants of the pricing functional 

TTO 

TR 

-I N i 

1 yV 1 - a2t 

Nh Pißi 1 N i i ~ ] 

1 ^ l - « 2 , 

„ N 1 t »0y 1 

N E-
i A i 
Ar E-

Pißi 

- Oi2l 

aiiVi 
N^Pißi 

1 N „ 

^ h pißi 
These relations are the starting point for the discussion of two special cases of this model 

that can be found in Diamond and Verrecchia[1981] and Hellwig[1980]. 

To enhance tractability, Diamond and Verrecchia[1981] make some simplifying assump­

tions. First, each trader is assumed to have a risk tolerance of unity, i.e. p{ — 1 Vi e V . Second, 

traders receive information signals that, though different, have the same precision, i.e. st = s 

V,s_v. Finally, the exogenous liquidity component is absent, i.e. 0. Given the equiva­

lence across traders, these assumptions imply that the pricing functional should be symmetric 

in 7T,;. In accord with this, we impose that 7r, = TT/N. Observe that within this setup, each 

trader has four sources of information: the prior that he shares with all other traders, his 

private information signal, the market-clearing price, and his own endowment. The latter also 

benefits the precision of his estimates, as it can explain part of the error in the market-clearing 

price. 

Diamond and Verrecchia[1981] solve the pricing problem explicitly using the standard 

approach (i.e. by means of the projection theorem). We can apply the above relations to 

derive the equilibrium immediately. It is easily shown9 that upon implementing the specifics 

of their assumptions, the following expressions for the equilibrium pricing coefficients are 

8Note that this requirement can only be met, if we let a3i/(pi/3i) be independent of i. In both Diamond and 
Verrecchia[1982] and Hellwig[1980] this is indeed the case. See previous footnote. 

9Using the expressions (2.5)-(2.11 ), the update rule of each trader is characterized by the following coefficients 
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found: 

u0h0(ts + l) +tszQ(N - 1) 
7I"0 

7 

ts(Ns + /in) + s + h0 

stN + 1 
'ts(Ns + ho)'+s + ho' 

stN+l 
ts(Ns + h0) + s + h0 

The corresponding pricing functional is given by 

P = K~1 
u0h0{ts + 1) + tsz0{N - 1) + s(stN + l)jjJ2Vi- (stN + l)jT E * 

where 

X = ts(JVs + h0) + s + / i 0 

Observe that the price is a weighted average of the common prior of the market u0 and the 

information signals of each agent, TV-1 YlieNVii distorted by the uncertain per capita excess 

supply jjEzi-

Recall that the ex ante information of each trader is given by h0 with mean tin. After 

observing the market-clearing price, each trader now has a better estimate with mean 

stxt + s(yt - ufj) Nst -

 ̂ =  Uo + st(Ns + h0) + (hQ + s)+ N^TÏ{P - Uo) 

(dropping the indices) 

a0 = b-'uoho (TV - 1) n ^+J S + b-\-yz0 - 7r0)(7r - TT/N) 

a2 = ft"1 (TT - ir/N) 

a3 = b-^/N-^TT-ir/N) 

where b = (JV - 1) s "1* " 1^^ 2*  + S72) + s(7r2iVi + s7
2)) and ß = ft-'s"1 (TV - 1) **$// . Indeed, all Q' 

s are independent of i. We can thus safely drop the subscripts i. The equations that pin down the equilibrium, 
are then given by 

1 - ("first - ir2t — sj2) 

TO 

JV N(h0(w
2t + S72) + s(?r2iVt + S72)) - stw 

1_ s V 
N N(h0(ir

2t + sj2) + s{ir2Nt + S72)) - str 
u0h0N~1(-Kit + 72s) + st(jz0 - TT0)W 

N(h0(ir
2t + sj2) + s(ir2Nt + sj2)) - stir 

Though of' third order, the solution to the above equation is simple (and unique), and given by the coefficients 
presented in the text. 
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and precision h = er,"2 = h0 + ^j^~à. Indeed, the updated expectation is a weighted average 

of the common prior, the traders private signal, and the prevailing price P, corrected with 

the traders knowledge of the prices' error. Observe that the precision of the ex post update 

diminishes with increasing noise, and increases with the number of traders and the precision 

of the private signal. In the limiting economy, where the number of traders approaches infinity, 

uncertainty is resolved completely. The reason is that supply shocks are uncorrelated: upon 

applying the law of large numbers, the variance of the supply noise vanishes. In Grundy 

and McNichols[1989], agents are also endowed with random supply shocks. They, however, 

assume that as the limit of traders grows, additionally the variance of individual supply shocks 

grows. This results in an equilibrium in which the variance of the per capita excess supply 

remains non-zero. 

Diamond and Verrecchia[1981] report two limiting cases that are of interest. First, consider 

the limit in which the variance of supply noise, t, goes to infinity. In that case, the ex post 

information precision becomes, l imt^0 h = h0 + s which equals the ex ante level. In other 

words, there is no information contained in the price, and agents can only use their private 

information signal. Second, consider the limit of no supply noise. The ex post information 

precision now becomes lim^oo h = h0 + Ns, which equals the information precision of the 

combined knowledge in the market. Indeed, here, prices convey information perfectly, as if 

each trader additionally receives the signals of all other traders. However, as Diamond and 

Verrecchia[1981] note, this result can only be seen as a limiting case of a partially revealing 

equilibrium. In fact, it is impossible to exist. In their words, 'But when price is fully revealing, 

individuals' beliefs are fixed by aggregate information. This precludes beliefs from depending 

on private data, which in turn precludes price from depending on private data'. 

Although Diamond and Verrecchia[ 1981 ] show how an economy may aggregate informa­

tion, the price taking behavior of agents contrasts with their knowledge of their impact on 

price. This so-called schizophrenia of investors, is resolved in Hellwig[1980], by considering 

the actions of traders within the context of a very large (infinitely large) market. Individual 

agents can consequently not influence the price due to their mere smallness. Though Hell-

wig[1980] also considers existence of a finitely sized economy, his limiting economy has 

been used widely in the literature, and is the focus of the following discussion. 

Hellwig[1980] does not include shocks to private endowments of investors. In our generic 

economy, an identical situation occurs when we impose t~l = aM = 0. The equations speci-
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fying the regression coefficients of investor i then become 

a0i 

3=1 S'J 
K^oho E - + T V 1 - « + b-\1Zo - n0) (TT - Wi) 

au = 6 / sa2x x + Si ( E ' ^ 
j = i SJ 

where 

and 

fc E-^  +7 
3=1 SJ 

• • v 1 - * ? ^ (s, + ho) + {n- IT,)2 

ft  = &rV 

Again we can identify our parameters 

7 = 

E ^  +r* - ^ 

7Tj = 7 

7T0 = 7 

; = 1 SJ 

1 A l - t t 2 , 

1 C*ii 

i TV 

Explicitly the relation for 7T; becomes 

7S, S^2 + S, f £ƒ=! ^ ) X ~ X7r7r' 
ftiV s* ( E™=i ^ ) i + sa2 - X1T2 

(2.13) 

Of interest to us are the asymptotic properties of this price coefficient. As Hellwig shows, 

for large JV, the fraction Qt = 7^/7 is given by10 Q»(iV) = - ^ +o(l/7V2). Armed with these 

°First we define, following Hellwig[1980], Qi = 7^/7 and Q = 71-/7. Relation (2.13) can then be written as 

Given Qt > 0 and Q > Qi for all i, we have that 

PiN 
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asymptotic properties of 7r,:, we can approximate the relations for ay and ßit up to zeroth 

order in N^1. It follows that we can write 

»(K = b{
 XU0h0rfx

 l +bl
1{-/Z0- 7To)7T + o(N l) 

au = b-^rfx-1 +o(N~1) 

a2 l = b^TT + oiN-1) 

h = 'fx~1{si + HQ) + TV2 + oiN-1) 

with 

and 

ßi = bi1s~1-/2x-1+o(N-1) 

Hence, the equations specifying the pricing coefficients become 

*i = %(- + o(l/N)) 
JV Pi 

7T0 = 
AT 

N 

j 2 St + j2h0 + xir2 — XTX 

Ptl2 
•o(l/N) 

- , Uo/ lo72 + X7Z07T - XTT0TT 

/L —2 + °(l/N) PiV 

Before we proceed to the limiting case, note that for large N, the fraction 7^/7^ —> ^1. 

In other words, the relative importance of each agents' information is proportional to his 

risk tolerance and the precision of his information. Indeed, where in the Grossman[1977] 

model of information aggregation, this weight was only determined by the precision of each 

agents' information signal, here, his risk tolerance also contributes to the impact on the pricing 

functional. Observe that this means that for finite N, information is aggregated in a suboptimal 

way, since the most efficient estimator is given by y = J2siVi-

Moreover, we also have that 

Qi 
PiN 

(EjLi %r)x + s ' - xQ> - xQ< £ j * Q 

xQi E , Qj 
ft7V

 S ! ( E 7 = 1 ^ ) -  + S,:-*Q,: 2 

x s s, - xQi'EjQj. s, X
P

S
INJ23PI'N] SJ 

PiNy Si ' PiN
{ s, ' p,N{

 PiN Pl 

high 

Hence, for large N, Qi(N) = - ^ + o(l/N2) 
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The economy that results, taking the limit of N -> oo, is characterized by the relations 

(xs2r2 + s) 
s + h0 + xs2r2 

xsr + r"1 

7 - s + ho + xs2r2 

u0h0 + xz0sr 
7T0 — s + ho + xs2r2 

where we defined11 r = ƒ -di, and s = \ ƒ ^d i . These constants can be interpreted as the 

average risk tolerance and a proxy for the average information precision in the economy, 

respectively. Next, consider the pricing functional 

N 

P = 7T0 + 1TÙ + ^2 7Tj£i - 7-Z 
i=\ 

Applying the law of large numbers, in the limit iV -> oo, the term £ £ i TT,  ̂ has zero mean, 

and since12 

g*?«? - £ $ ( * + oii/NWsi < £(^))2* 2 < £ [ | « 

converges to zero when taking the limit, also has zero variance. Hence, the pricing functional 

converges in probability to 

P = TTo+TTÜ — jZ 

A very simple and elegant structure indeed. The private errors of individuals do not appear in 

this equilibrium price, given their infinitesimally small impact on the price. However, prices 

only imperfectly transmit information. This follows from inspecting the ex post informedness 

of agent i, as measured through var_1[ü|'(/;, P], 

v a r " 1 ^ , P] = ßil = st + h0 + s2r2x 

"These definitions are standard. The aggregation of a random variable zl (i e M) over Af is denoted by the 

intregal ƒ zidi. A formal definition of this aggregation requires the definition of the triple (J\f, g(N),p), where 

8(JV) denotes the collection of all subsets of M and \i : g(N) -» E+ is a finitely additive measure (Jordan 

measure) with the property that p(A) = limV-oo #(A{1, 2. -,N\) V A Ç A" for which the limit exists. The 

integral is then defined through 

12We define s = supi€A^ s; and p = inf ie^ p,-
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which remains finite. Furthermore, note how the informativeness of prices (represented through 

s2r2x) depends on the preferences of agents in the economy. It implies that the larger rs, 

the more reliable the market is in terms of communication. In words, the more risk tolerant, 

and the higher the precision of private information, the better the information that is revealed 

through trading. 

The conditional estimate of the future payoff is given by 

E[ü\yuP} = a0i + auyi + a2iP 

= b~l~f2x-l(u0h0 + sim) + b~\{P - j 0 - jz0) 

Another appealing feature arises: agents also use their own signal when forming their demand. 

This resolves the conceptual problem of prices being sufficient statistics. Many researchers 

have adopted the Hellwig[1980] framework. It allows for a very generic structure of informa­

tion distribution across investors, yet, at the same time it results in an elegant and tractable 

equilibrium. 

In Hellwig[1980]'s model all agents are endowed with a certain information precision in­

dependent of their preferences and initial endowments. If the information acquisition efforts 

are determined endogenously, however, it is likely that information precision levels and pref­

erences are correlated. Verrecchia[1982] addresses this issue. As he indicates, the decisions of 

each agent will not only depend on his own preferences, but also on the precision of informa­

tion revealed through prices. Since the latter quantity depends on the information acquisition 

efforts of all other agents, the information acquisition problem depends on the degree of in­

formation revelation and vice versa. Hence, these problems have to be solved simultaneously. 

Verrecchia adopts the model developed by Hellwig[1980], and considers the maximization 

problem for each investor given the cost for each precision level, represented by c(s). By 

means of a fixed-point argument he shows that an equilibrium exists in which the amount 

of information acquisition is endogenously determined. Additionally, Verrecchia[1982] shows 

that the level of precision a trader acquires is a non-decreasing function of his risk tolerance. 

This result can be understood by realizing that more risk tolerant traders will generally have 

larger positions, and hence are inclined to acquire more information to protect their riskier 

positions with higher accuracy. Verrecchia[1982] also shows that the informativeness of price 

increases as noise decreases. This result does not coincide with the findings of Grossman 

and Stiglitz[1980]. In their model, a decrease in noise leads to a reduction in the information 

gathering efforts of agents, such that the two effects exactly offset one another. In Verrecchia's 

model, this is not the case. Instead, the informativeness of price increases as noise decreases. 

This happens because the direct impact of the decrease in noise on the informativeness is 
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always larger than the impact of the corresponding reduction in information acquisition13. 

The foregoing analysis discussed economies in which a single risky asset is traded. Of 

course, the reality is that many assets can be traded, and that investors hold portfolios of assets. 

Admati[1985] extends the elegant framework of Hellwig[1980] to a multi-asset securities 

market. Her work is a straightforward, though tedious, extension of the Hellwig[1980] model. 

Admati, as Hellwig, first studies the finite agent economy, and then considers explicitly its 

limiting special case. The latter is the focus of the following discussion. As in Admati[1985], 

assume that n assets are traded. The vector of asset payoffs is denoted by F. Each agent 

receives a signal vector, regarding this quantity, of the following form: Y, = F + £,. Each 

asset has a liquidity component, which we represent through a vector of per capita excess 

supplies, denoted by Z. Furthermore, we denote the means of F and Z by F and Z, and 

the variance-covariance matrices of F, Z, and e,, by HQ1, X - 1 , and Sf1 respectively. We 

conjecture an equilibrium in which the pricing functional is linear in F and Z, i.e. the vector 

of prices is given by 

P — 7Tn + TT\F — jZ 

Additionally, define the following constants: 

r = / r,di 
Jo 

where r\ is the risk tolerance level of trader i, and 

Q = riSjdi 
Jo 

a proxy for the average risk tolerance weighted information precision in the economy. 

Observe that conditional on their private information and the pricing functional, agent i 

updates his beliefs regarding the vector of future payoffs according to 

E[F\Yi,P}=B0i + BliYi + B2iP 

Denoting the variance-covariance matrix of this estimate by V,, if follows immediately that 

the demand of agent i is given by 

di(Yi, P) = rzV-l{B0l + BltYt + {B2l - RI)P) 

13If information can be bought, an information seller is obviously necessary. Admati and Pfleiderer[ 1986,1988] 

show how information may be exploited by an information owner, if the latter has the possibility to sell it 

directly, use it himself to trade, or sell it indirectly trough a mutual fund. The optimal strategy of a monopolistic 

information owner depends on his preferences. Be they risk averse, they tend to sell information. If instead they 

are risk neutral, information owners will trade on their own account. 
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The market-clearing condition thus becomes 

jriV-\B0i + BuYi + {B2i - RI)P)di = Z 

This is a rational expectations equilibrium if the following conditions hold: 

Tl = jr,y-l(RI-B2l)di 

• K X = 7 I ' r . y - 1 B u d i 

7T0 = 7 ƒ r,VrlB0ldi 

and if 

ƒ riV~1BizEidi = 0 a.s. 

Note that the latter equation is guaranteed by the law of large numbers. The derivation of 

equilibrium needs some tedious algebra, which can be found in the appendix to chapter 3. 

The equilibrium price coefficients that ultimately follow this effort, are given by 

Tio = ^(rHo + rQXQ + Qf^HoF + QXZ) 

m = ~(rH0 + rQXQ + Q)-l(Q + pQXQ) 
K 

7 = ^(rHo + rQXQ + Qy'il + pQX) 

Indeed, the expressions are very similar to the ones derived by Hellwig[1980], However, the 

multi-asset market does have properties that cannot be directly captured by the single-asset 

market. 

In the multi-asset market under information dispersion given certain conditions, interesting 

phenomena can be observed. As Admati[1985] shows, the prediction of an asset's payoff may 

be decreasing with its price, and assets can be Giffen14 goods. These counter-intuitive depen­

dencies derive from the regression analysis agents apply in order to update their beliefs. In 

fact, these results hold only ceteris paribus. Due to correlation between payoffs and supplies, 

agents use other price movements to update their beliefs about a certain asset. If one asset 

provides a strong information signal, but does not change value, while another low informa­

tive asset increases in value, agents are inclined to infer that this movement is caused by a 

supply innovation, and hence assume that the fundamental has decreased. Another interesting 

observation concerns the comparison with the conventional homogenous multi-asset markets 

4A Giffen good has the property that the demand for it is increasing with its price. 
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considered by Sharpe[1964] and Linter[1965]. Similar to these symmetric information models, 

in Admati[1985] agents form their portfolios using an asset pricing model in which the risk 

premium on holding the asset is proportional to the covariance of its return and the return of a 

"benchmark" portfolio on the agent's mean-variance frontier. The price of risk is the expected 

excess return on the benchmark portfolio divided by the variance of this return. However, the 

fundamental difference is that expectations and covariances are conditional on an investor's 

individual information set. Hence, each agent applies a different asset pricing model. The 

individual benchmark portfolios do not aggregate in a simple manner with the dramatic im­

plication that the term market portfolio has no meaning in this economy. Market portfolios 

are generally not mean-variance efficient across different information sets. The capital asset 

pricing model (CAPM) therefore is of no value under information asymmetry15. 

2.3 Multi-period Noisy Rational Expectations Models 

The models described in the previous sections are static; trading takes place in only one 

period. A natural extension includes a multi-period setting that permits an examination of 

the intertemporal behavior of prices under information asymmetry. Unfortunately, extending 

the rational expectations paradigm to multi-period environments has been proven to be very 

difficult. The informational feedback from prices introduces a complexity that limits the 

tractability and transparency of multi-period studies. In spite of this, many researchers have 

been successful in performing this extension. 

A primary difficulty in the derivation of multi-period equilibria, concerns the maximization 

problem of investors. The simplicity of the demand function encountered in the static NREE 

15In Admati and Ross[1985] the model is used to consider the issue of performance evaluation. Measuring 

the performance of portfolio managers is important given the amount of capital that is affected through their 

investment decisions. Hence, many performance criteria have been put forward. Examples are the reward-to-

variability ratio or the reward-to-volatility ratio. Admati and Ross[1985] utilize the Admati[1985] model to 

consider how a fund manager who receives private information is evaluated under such criteria. They show 

that these performance criteria may yield incorrect results. For instance, the reward-to-variability ratio may be 

a decreasing function of precision of the information of the fund manager. The reason is the more aggressive 

trading actions of better informed agents, leading to more volatile return patterns. With the failure of conventional 

performance measures the need arises for alternative statistics. The only true measure of superior performance 

is the precision matrix of the private information of the fund manager. Admati and Ross[1985] suggest a 

few guidelines that may help extracting this precision matrix. Related work can be found in Dybvig and 

Ross[1985a,b]. 
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framework generally does not carry over to multi-period environments. The early work on 

multi-period models by Brown and Jennings[1989] and Grundy and McNichols[1989], there­

fore, assumes myopia of agents to derive the properties of the equilibria. In the past years, 

however, much progress has been made, through the work of Wang[1993], Slezak[1994], 

Vives[1995] and Brennan and Cao[1996], who allow agents to rationally take into account 

the possibility of intermediate trade. 

Before we discuss the models proposed in the recent literature, we first consider a generic 

approach to the dynamic pricing problem under information asymmetry assuming a CARA-

Gaussian structure. Though the equations that specify the equilibrium cannot be solved ex­

plicitly, it allows us to demonstrate a few basic properties of this framework. 

For ease of exposition, we adopt the following notation. We introduce the state variable tyt 

which is a sufficient statistic for all information up to and including time t, including investors' 

signals, liquidity shocks and private endowments, i.e. $ , e f ! , = R x ( \JieM X4
W) x I(

(p) 

x Aft- T{ represents the information set private to investor i, It
(p) represents the information 

public to all investors, and J\ft represents the noise space. Note that we include a constant 

dimension to ease notation. The state variable is assumed Gaussian-Markov. Specifically, it 

is to evolve in time according to 

where r]l+1 is normal with mean zero, and covariance matrix E4+1. The matrix L projects the 

(smaller) noise space Aft onto the (larger) state space Qt. A risky asset can be traded, that 

does not generate any dividends. The true value of the asset depends solely on fundamentals. 

Its price varies stochastically, due to the arrival of new information, and the occurrence of 

liquidity trades. We assume that the price is measurable with respect to i't. Additionally, we 

assume that it is affine in the state variables. Hence, the price at time t is a projection of Qt 

onto K+ i.e. 

Pt = p't t̂y îmt 

Furthermore, a riskless asset is present that yields a gross return of R in each period. Both 

assets are infinitely divisible. 

A continuum of investors is present, which we index by i e N = {1, 2,. . .} , who can take 

positions in the assets and act competitively. Each investor has a information set X) which 

includes all public signals, his private signals, and prices including Pt, i.e. X\ = xf1 x 2,(p). It 

is measurable with respect to Vlt, and can be expressed as a projection of $t onto a subspace. 
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Given the Gaussian-Markov property of if> t, conditional on this information, the investor has 

a belief regarding the future state of the economy, tft+i, characterized by 

E [ ¥m | Z Ï ] = tfnjl* = # * ( (2.14) 

where we implicitly defined b\'. Define the uncertainty vector lit of investor i implicitly as 

follows 

ft+i - tft+i|( = M%Ml 

where M[ maps noise onto the state space. The variance-covariance matrix of êj t is required to 

be non-singular and given by 0\. Note that this implies that for any inner product A'^t+i, m e 

uncertainty of this inner product for investor i is given by cov[i4'tft+i|2t] = A'M[0)+lMiA. 

Regarding the preferences of the investors, there are basically two possibilities that are of 

interest. If we allow for intertemporal consumption, we end up with a model like Wang[1993, 

1994]. A more common assumption, however, is that agents maximize their utilities over some 

future date. This is the approach we discuss here. Consider therefore agent i who maximizes 

his expected utility at time 7*. Denote the current time by t. Given a total wealth W\ at time 

t, agent i has a maximization problem of the form 

T, 

Vl{Wf, %;t) = maxE [ l ^ \Tt\ = max-E[exp 
dt * dt 

Pi \Wl + £ AWl K] 

where AW? = (Pt — RP^ijd^^, with d\_x the demand of the investor at time t — 1. Note 

that we can write 

Aw? = (P;$t-ijj/ (_1$wK_1 

The maximization problem can also be represented through a Bellman equation, i.e. the value 

function V*(W^;tft;t) should solve 

0 = max [E[V!(W^+1; * t + i ; t ) K ] - V(Wn 9t;t)] 

under the constraints that 

Wl+1 = Wl + (p't+1%+1 - Rp't%)4, and V(W^^;Tt) = -e~p^ 

By backward induction it can be shown that the following theorem applies to the solution. 

Theorem 2.1 The value function of investor i at time t can be written as a exponent of 

quadratic form in tf(, i.e. 

V i (W7;tf t;t) = - Q e x pr 

C(_! a constant, independent of {^t}t<T-

-PiWl - ^%l\% 
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In the following we prove this theorem. Assume that the theorem holds for t + 1. At t, the 

investor is faced with the optimization problem 

d\ = arg max— C\ E \ 
4 

exp -PiWl -Pi(p't+1%+i - Rp'^tK - -M>;+l7tViM>m 

This expectation can be calculated readily. In terms of the uncertainty vector of investor i, 
£ij.+i, we obtain 

+ (pt+A+p-H+^t+^M^ + ±.ë'it+iMill+i M>ëht+l 

Define 

Then consider the expectation of - exp [-p4\+1] • Using a standard formula (see appendix), 
one obtains 

E[-exp[-Pi4+1}\2i] = 

-C\ exp -Pi {(PUI*«-IIï  - Rp't^t) 4 + ^-%+i \H+i*t+i\i 

-2Pi {Pt+A + PTH+i^+ilO'G  ̂ (ft+1dj +ft Sm^+ilî)}] (2.15) 

with 

cî = iojri i (^r i +M i 7 î+ 1Ki-* 
The maximum value is attained for 

dl i = ( p 'm^+ i i ; - ^ w ) - p ;+ 1G ;+ 17 ;+ 1^ t + 1 | ; 

PiP't+iG\+1pt+l
 l 

where we used (2.14). Upon substitution, the expression in the theorem follows, with 7> 
recursively determined by 

7t = brt+i(l-Gi+1~fi'+1)bt 

l (pj+i (i - Gi^ti) tf - m)' (p't+1 (i - g;+17r+1) fef ~ Rp't) 
Pt+iG' t+iPt+i 
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The boundary condition at the consumption horizon of the investor is satisfied by imposing 

that 7J, = 0 . 

Note that even in this generic setup, due to the linearity assumptions, the value function 

keeps a relatively simple form. Also observe that the relative increase in utility due to trading 

is independent of the risk aversion level. 

Next consider how the pricing coefficients could be determined. Armed with the optimal 

demand schedule of each agent, we next need market clearing. Assume that at time t the per 

capita supply is given by Zt. The market-clearing condition is given by 

ƒ * * = ƒ 
p[+1{\ - G\+l^+l)b)' - R ^ ^ 

Hence, the pricing coefficients are recursively determined through 

p't = R-
1 - * di 

p1Pt+iGt
t+1pt+i PiPt+\G\+\Pt+\ 

This expression somewhat downplays the complexity involved in solving for an equilibrium. 

The regression coefficients, b\, will generally depend on pt+ï. Similarly, the uncertainty matrix 

G't+1 will depend on the informativeness of prices, and consequently on pt as well. 

This approach obviously is too generic to extract meaningful implications. The successful 

multi-period models derived in the literature impose additional structure to maintain tractabil-

ity. Especially, the dependency of agents' beliefs on the complete history of state variables 

is cumbersome. Most multi-period models therefore impose an informational structure that 

keeps the updating of beliefs tractable. 

In the following subsections, we discuss the main contributions to the multi-period ra­

tional expectations literature. We start with the two-period models and. in particular, the 

dynamic models by Brown and Jennings[1989] and Grundy and McNichols[1989]. More re­

cently, multi-period models have been proposed that allow for an arbitrary number of periods. 

Examples are the Brennan and Cao[1996] model, and the He and Wang[1996] model. We 

conclude our overview with the infinite horizon models proposed in Wang[ 1993,1994]. 

2.3.1 T w o P E R I O D M O D E L S 

Grundy and McNichols[1989] and Brown and Jennings[1989] were the first that extended 

the noisy rational expectations approach to a multi-period environment. In these models, it 

is shown that the consideration of past price realizations may yield additional information 

above the information reflected in current price levels. As such, they provide a rationale 



32 2. Models of Intertemporal Trade under Information Asymmetry 

for technical analysis. Agents can enhance the precision of their prediction by including 

past market statistics in their estimation of the ultimate payoff. Both models extend the 

Hellwig[1980] model to two periods. The structure of noise and information signals differs 

significantly however. 

In Brown and Jennings[1989] the focus is on the determination of the value of technical 

analysis. As in Hellwig[1980], prior to the first trading round, agents all share the same 

belief about the distribution of the liquidation value of the risky asset. The supply of the 

asset experiences a shock in each period, zt which is randomly distributed. These liquidity 

shocks are persistent, and correlated between the two trading periods. Initially, Brown and 

Jennings[1989] derive the maximization problem explicitly when agents rationally foresee the 

possibility of intermediate trade in the second period. They show that the optimal demand of 

investor i in the second trading round is given by 

j i _ m\n\-P2 
varfwlXJ] 

and in the first trading period by 

é = E{P2\1\] - A + E[41X;](G1 2-G„) 
PiGii PiGn 

where Gy are elements of the matrix G = (2N + M" 1) , where 

N= },.A l ^ l a n d / V / -
var(û|X|) ^ - 1 1 y ' \cov{P2,ù\l\) var(û|Xj) 

Indeed, the demand function in the first period already reflects the anticipated optimal 

demand in the second trading round. Brown and Jennings[1989] use the fact that the expec­

tations are linear in information signals and the price realization, to show that the demand is 

linear in the information signals and the supply of the asset. This allows them to infer that in 

each trading round a linear equilibrium price may exist. 

Due to the intractability of the demand functions, Brown and Jennings[1989] consider the 

simpler myopic investor economy, in which agents maximize their utility of the next period. 

The demand function in the first trading period simplifies to 

dl _ E[P2\1{} - A 
1 piV ar[P2|4] 

Brown and Jennings[1989] use the equilibrium that arises to show that, under mild assump­

tions, technical analysis always has value in the linear, myopic investor economy. Additionally, 

they consider the magnitude of the added value of technical analysis as a function of some 
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exogenous parameters. An interesting discussion on the informational efficiency hypotheses 

follows. According to the original definition of weak-form efficiency by Fama[1970] this 

market is not efficient. Fama[1970] defines a market weak-form efficient if all historical 

information, including past prices, is fully reflected in current prices. In the Brown and Jen-

nings[1989] model, current prices are not sufficient statistics for past prices, and hence, it 

violates this definition. Brown and Jennings[1989] discuss several alternative definitions of 

weak-form efficiency. They indicate that, according to the definition provided by Verrec-

chia[1982], this market is weak form efficient. In Verrecchia[ 1982] a market is weak-form 

efficient if conditional on noise in prices, past prices do not provide additional information 

above current prices. From that perspective, weak form efficiency does not imply that tech­

nical analysis is of no value. This is an important observation. Especially when taking into 

account that financial economics textbooks often take the equivalence between weak-form 

efficiency and irrelevance of technical analysis for granted. 

The Grundy and McNichols[1989] model differs from the Brown and Jennings[1989] on 

several accounts. Investors receive private information signals with an error term that has a 

common component, w. The implication is that even the aggregate information in the economy 

cannot reveal the ultimate payoff of the asset with perfect precision. Investors also differ in 

the way their endowment is modeled. This endowment is assumed to contain a random 

component that has infinite variance in the limiting economy. Upon taking the limit, supply 

variance remains while agents cannot use the observation of their private endowment to predict 

the aggregate supply. In the limiting economy, the impact of each investor's endowment on 

the aggregate supply is infinitesimally small. 

Grundy and McNichols[1989] consider a variety of implications that follow from their 

model. An important part of the paper is devoted to one particular equilibrium. They assume 

that in the second trading round no additional shocks impact the economy. Intuitively, one 

would expect that under these circumstances, in the second trading round no new trade be 

initiated. However, Grundy and McNichols[1989] show that there is an alternative equilibrium 

in which additional trade does occur. To understand why, consider the price conjectures in 

round 1 and 2: 

P\ = ^0,1 + ^ 1 , 1 ^ - 7 1 , 1 ^ 

h = ^0,2 + 71-1,2^ - 7 l , 2^ 

where Y is the aggregate information signal, i.e. Y = ü+w. Observe that these are in fact two 

equations in the two unknowns Y and Z. If this system is non-degenerate, these unknowns can 
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be solved for. The non-degeneracy holds if 71-11/7!] -£ 71-1,2/71,2- Hence, if agents conjecture 

this non-degeneracy, in the second trading round the aggregate knowledge of the market is 

revealed, which leads to additional trade in the second round. Grundy and McNichols[1989] 

show that this equilibrium exists as long as the variance of the common signal error is not 

too large. The interesting implication is that even in an eventless period, trade may occur. 

They relate this possibility to the crash of October 1987, which typically was void of any new 

information and seemingly came out of the blue. As Grundy and McNichols[1989] show, even 

in absence of news, price changes need not to be trivial. Another important point concerns the 

Milgrom-Stokey[1982] No-Speculation theorem. This theorem establishes that if allocations 

are Pareto optimal and investors hold essentially concordant beliefs16, investors can not agree 

to any non-null trade. As Grundy and McNichols[1989] show, the allocation after the first 

round is indeed Pareto optimal. The trade in the second round, therefore, seems to violate the 

No-Speculation theorem. However, this is not the case. In the second round, a public signal 

in the form of P2, is released. This signal does not resolve all uncertainty due to the common 

error term. Conditional on this public signal, allocations are no longer Pareto optimal. In 

light of this, it is derived that beliefs are not essentially concordant in this environment. 

Hence, agents still want to trade. Note that the common error term is necessary, for else, 

the Hirshleifer[1971] effect prevails, inhibiting further trade in the risky asset. Grundy and 

McNichoIs[1989] continue by examining other properties of their model. In particular they 

consider how a public information signal and an additional supply shock in the second round 

affect the equilibrium. They also stress the important point, as Brown and Jennings[1989], 

that rational agents are chartists that learn from the observation of price sequences. 

Brown and Jennings[1989] and Grundy and McNichols[1989] were among the first to ad­

dress the issue of technical analysis within a rational expectations model. Following them, 

other authors have argued that the study of past market statistics may indeed enhance the 

quality of trading decisions. Given the many sources of uncertainty present in financial mar­

kets, the inclusion of other statistics, as well as past statistics, may lead to a better or more 

complete spanning of the state of economy, and reveal additional information. One of the 

contributions that is of interest is by Blume et.al. [1994]. They deviate from the common ap­

proach by considering a market in which the aggregate supply is fixed. Though ceteris paribus 

this would lead to fully revealing prices, they introduce another source of uncertainty in the 

form of the stochasticity of the quality of information that agents receive. A problem arises. 

16If agents hold concordant beliefs, they agree on the conditional likelihood of an event given a realization 
of an information signal. 
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since there are as many sources of uncertainty as signals (i.e. price and volume). One equi­

librium is guaranteed, the no-trade equilibrium. The observation of both variables reveals all 

private information leading to no trade at all17. To circumvent this problem Blume et.al.[1994] 

therefore adopt the Hellwig[1982] strategy and assume that prices and volume can only be 

observed ex post. The complexity of the model introduces a non-linearity that makes explicit 

closed formula impossible to derive. Using simulations Blume et.al.[1994] show how rational 

agents engage in technical analysis using both volume and price sequences for their trading 

decisions. Technical analysis is necessary for all agents to learn about some underlying un­

certainty in the economy. They also show that if the information precision of price sequences 

is high, watching market data is less valuable. The reverse applies to low informative price 

sequences. This implies that technical analysis may be appropriate for especially "small, less 

widely" followed stock. 

An interesting paper by Romer[1993] also incorporates uncertainty of information about 

the information precision of agents. He proposes two situations for which such an uncer­

tainty arises: uncertainty about the precision of the economy, or uncertainty about the relative 

precision of private information. Though his model cannot be solved explicitly, he shows, 

using simulations to illustrate his findings, that even in the absence of additional information 

shocks, agents may want to revise their beliefs, due to the fact that they learn about the 

relative precision of their own information. This can lead to large price shocks, even if news 

is absent. Using this result, Romer[1993] motivates a rational explanation for the 1987 crash. 

2.3.2 MULT I -PERIOD MODELS 

In this section we focus our attention on models that allow for an arbitrary number of trades 

before the asset is liquidated. We start our description with Slezak[1994] who extended the 

Brown and Jennings[1989] model. Following this effort, we discuss the Vives[1995] model 

that, though incorporating a risk neutral market-making sector, provides a structure that can 

be solved explicitly. Brennan and Cao[1996] provide a multi-period extension of the Hell-

wig[1980] model that is both very rich, and can be solved explicitly as well. We end with a 

discussion of He and Wang[1995] who apply a similar framework, but include a correlation 

between subsequent supply shocks. Explicit solutions cannot be found in this environment. 

17If  agents have common preferences and endowments and additionally have the same information, they want 

to make the same trade. The only consistent outcome is no trade. 
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Many striking empirical observations have been reported concerning patterns in volatility 

and volume. Examples are the U-shapes of intra-day volatility and volume, and the abnormally 

low variances of weekend or holiday returns. Slezak[1994] motivates these regularities using 

a noisy rational expectations model. In his model, in each period informed investors receive 

a private information signal about the risky asset. The uninformed learn this signal only just 

before the next trading round. As in Vives[1995] and Brennan and Cao[1996] it is assumed that 

the asset is ultimately liquidated, and investors maximize their CARA utility at the liquidation 

date. Slezak[1994] however allows the per capita excess supply to be mean-reverting. The 

latter gives rise to correlations between subsequent price changes. This feature has a major 

impact on agents' resulting demand schedules. As such, his model has a similar feature as the 

Brown and Jennings[1989] model that also includes a correlation between subsequent supply 

shocks. As Slezak[1994] shows, the demand function of each agent can be written as follows 

dht = (pY.1)-1 ((E](Pt+1) - Pt + 7 î E ; « m ) ) ) 

The demand function of each agent consists of two parts, an unconditional holding in the 

asset represented through the second term on the left hand side, and a conditional holding 

that enters through the first term. The whole demand is weighted with the inverse of Eft, 

which measures the effective uncertainty of investor i. This variance matrix also takes into 

account the dynamic diversification ability of investor i through the possibility of re-trade, 

and in the period prior to liquidation equals the conditional variance of the liquidation value 

of the asset. 

Slezak[1994] considers the situation in which the financial market is closed in some peri­

ods. The implication is that uninformed investors have to estimate both the current signal and 

the signal informed received during the market close. A closure in particular affects the risk 

faced by agents. After the closure, uninformed risk has increased due to the accumulation of 

uncertainty during the market close. Informed on the other hand, do not face a change in risk 

after the closure. Both informed and uninformed agents, however, face greater uncertainty 

prior to the closure. The increase in risk is larger for the informed, given that their advantage 

over the uninformed is smaller through the less predictive power of private information in 

this situation. The result is a complicated change in risk characteristics of the market, leading 

to innovations in both mean and variance of price returns. Slezak[1994] shows that many of 

the reported empirical patterns are consistent with a market where relatively few informed 

investors are active. If the fraction of informed is low, liquidity costs are mainly determined 

through the uncertainty of the uninformed agents. The return variance during closure is smaller 

in that case, due to the reduced sensitivity of price to news, given the greater uncertainty of 
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the informed agents. The mean return over market closures is relatively low. The cause is the 

increase in uncertainty in the post-closure period, which magnifies liquidity costs, and hence 

depresses the post-closure price. 

Vives [1995] considers N trading periods before at N + 1 the asset is liquidated at its 

fundamental value v. Apart from rational traders, there are noise traders whose aggregate 

demands, {zt}^=1, follow an i.i.d. normal process . These demands add, so there is no mean 

reversion and liquidity follows a pure random walk. At any period, agent i receives a private 

signal Su = v + êit for which the usual assumptions apply. The precision of the signals T€I 

is the same across agents, but may differ across periods. There is a market maker who sets 

prices, conditional on current and past order flow, to the expected liquidation value. Note that 

as such we have a Kyle type of market-clearing mechanism combined with a Hellwig type of 

investor. To ease our discussion, define the best estimator of û conditional on all signals up 

until time n, by sin = ( E L i 7 ^ ) - 1 £?= iT eÀ- N o t e t n a t t m s quantity is a sufficient statistic 

for all previous signals. This allows us to significantly reduce the state space. 

The aggregate demand Ln in period n, observed by the market maker is given by the sum 

of the changes in the aggregate desired holdings of the rational and noise trader community. 

Hence, 

Ln{-) = / dmdi - / din-idi + zn Jo Jo 

Vives uses the fact that agents only differ in the realization of their private signal, sin, and 

proposes a demand function of the form 

dn{sin,Pn)=ansin + <;n{P
n) 

where an measures the trading aggressiveness at time n. Using this expression, the aggregate 

order flow follows as 

Ln(.) = ~gn + UPn)-(,n-i{Pn-1) 

where gn = Aanü + zn, and Aan = an — an_i. The market maker observes the sequence of 

prices {Pi,..., Pn} which is equivalent to the observation of the sequence gn — { Qi, ••-,5n}-

He sets prices competitively, yielding each price a sufficient statistic for all public informa­

tion. Hence, the market-clearing price is a function of the previous price realization and the 

realization of g only. As Vives shows, this implies that the price can be written as 

Pn = E[ü\gn] = \ngn + (1 - AnAan)Pn_! 

where An = r „Aan / r n , and Tn = TV + TU £™=1(Aa()
2. 
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Armed with this expression, Vives first focuses on the properties of the equilibrium that 

prevails if investors have short time horizons. As usual, the demand of each trader can be 

written as 

di_ E[Pt+i - Pt\lt] 

pva,r{Pt+1 - P,\lt] 

In the myopic investors case, an elegant expression can be found, in the form of 

dt = at(su - Pt) 

where at = /0_ 1( (£ '= 1
 Te,)~l + C^+i)- 1) - 1- This expression can be understood as follows. 

The expected price of the next period is given by a linear combination of the fundamental 

value ü and the current market-clearing price Pt. The optimal estimator is given by sit. Hence, 

investors submit a demand proportional to the difference between sit and Pt. The quantity at, 

the trading aggressiveness, is simply the precision of the information of the investor regarding 

the future price weighted with his risk tolerance. The following remarks can be made regarding 

the equilibrium. First, the trading intensity strictly increases with t. This can be understood 

from the fact that there is resolution of uncertainty regarding the fundamental value, which 

in turn follows from the increasing informativeness of prices with t. This increase in trading 

intensity is similar to the findings of Dow and Gorton[1994]. 

In the long term investment case, agents are assumed to maximize their expected utility at 

the liquidation time T. Interestingly, the demand schedule in this case is simpler than in the 

short-term investors case, since it allows for an explicit solution (a similar solution is found 

by Brennan and Cao[1996]). The demand function in this case is given by 

4 = at(su -Pt) 

with at = p~1£-=iTV t-

Note that this demand is exactly the same as if the agent can only trade once and hold his 

position until liquidation. The reason is, that the noise introduced by the liquidity traders is 

persistent. Because of this, agents cannot profit from temporary distortions. From the demand 

function it can be directly assessed that agents trade more aggressively compared to the 

myopic case. The reason is that agents do not suffer from the additional risk introduced by 

the liquidity traders which affects the price in each period. 

Vives[1995] also considers the informativeness of prices for the two different cases. He 

shows that it depends on the way information arrives which of the two economies exhibits a 

higher informativeness. Specifically he shows that with concentrated information arrival the 

long-term investors economy is more informative, while with diffuse informational arrival 



2.3. Multi-period Noisy Rational Expectations Models 39 

short-term investors enhance the informativeness of prices. 

An interesting contribution concerning multi-period noisy rational expectations models is by 

Brennan and Cao[ 1996]. It is unique in that it captures the intertemporal aspects of information 

asymmetry while allowing for an explicit closed form representation of the equilibrium. Their 

framework is a direct extension of the Hellwig[1980] framework, with information dispersion 

across investors. Additionally, they explicitly allow for a term structure of public signals, 

private information signals, and supply shocks. Given the connection with the Hellwig[1980] 

approach, and the closed form specification of the equilibrium, we elaborate on some of the 

technicalities of the model. 

Let us introduce a slightly modified setup of the model. Adopting the notation of the 

previous sections, we assume that there is a single risky asset which is liquidated at an 

uncertain value ü ~ N[uo, h^1]. Agents can trade the asset in the T trading sessions that 

proceed the liquidation period. As in the limiting economy of Hellwig[1980], a continuum of 

agents is present indexed by i e [0,1]. Each agent maximizes the expectation of a constant 

relative risk aversion function that is determined through his final wealth at the liquidation 

date. In each period, prior to trading, a public information signal is revealed denoted by 

vt = ü + f\t, with rj t~N[0, / i - 1 ] . Furthermore, agents receive a private information signal 

yit = û -f £rtj where ea ~ N[0, s~t
1]. Finally, in each period a per capita supply shock Zt 

affects the market, where the innovation in supply is given by zt ~ JV[0, xf1] . Brennan and 

Cao[1996] incorporate this element through the endowment of investors. This allows them to 

consider the Pareto optimality of the equilibria that are derived. In the following we present 

a heuristic derivation of the equilibrium. 

For expositional purposes, we introduce some additional notation. We define T\ as the 

total, pre-trading, information set of investor i at time t. Denoting by At = (A\,..., A ) the 

history of realizations of a stochastic process {Ät} up and to time t, this information set 

can be written as Tt = {lo,Pt-i,Ut,y.it}- Denote the information signal in prices by It, i.e. 

{Zo,Et-i,Ut} & {2oiIt-i>2Jt}> a n d t n e precision of I, by pt. 

Assume now that agents choose their demand in each period as if they are only allowed 

a single trade. Under this assumption, the pricing kernel in each period should reduce to the 

Hellwig[1980] type of pricing kernel. This pricing kernel can be written as follows 

Ti u ' ,1' duti) - I > z, Pt 
\u-\H) 

E [ « | I ; ] - P , ... /A 
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To explicitly determine price, we need the expectations of each agent. It readily follows that 

E[u\Tt] 
hup + Ej=o hjVj + E j= 0Pj / j + E,=o SjjVij 

h + T!']= o{hj+Pj +Sij) 
t 

3=0 

Substituting these expressions, we have, using the definitions r = ƒ r,dß{i) and Sj 

jr tstJdjj,(i), 

Pi = Kl -hu0 + rY^ hjVj +rJ2 Sj(Sj XVih û — r 1sJ
 lZj) (2.16) 

where Kt = {h + E ^ o f e + p} + fij)) • 

Our next goal is to pin down the signal It, which we left unspecified so far. For expositional 

purposes, define wt = ü — r_1St zt. The pricing functional at time t, maps information 

signals into price space, i.e. Pt : {uQ,vt,wt} —• K+. The innovation signal in price ït must 

be orthogonal to the public information set at time t represented through {uo,üt,ÜLt-i}-

Necessarily, therefore It is spanned by wt. By definition, this signal is an unbiased estimator 

of ü. Hence, it follows that /( = wt = ù—r~ls~[ zt, with corresponding precision pj = Xjr2s? 

Substituting this expression for It in the price function(2.16), we obtain 

Pt = K;1 
r h u o + r ^ 2 h j V j + r ^ S J { X J T * S J + l ) ( ù • 

3=0 j=0 
r-'sj'zj] 

with K, = I h + J2)=o(hj + XjT 2s| + s,)) . This is indeed exactly the pricing functional found 

by Brennan and Cao[1996]. The loose end that remains is the optimization problem of in­

vestors, who we have assumed to behave as if only one trading round is available. Brennan 

and Cao[1996] show by backward induction, however, that this trading strategy is optimal 

even if agents anticipate the possibility of intermediate trade. 

The demand of investor i can be written as 

t t 

du = ri[hu 0 + YKhjVj + Xjr2s]ïj + Syjjy) - (h + ^ ( ^ + x^s) + stj))Pt] 
3=0 j=0 

t 

= niYsisijViJ - SJ(ü - V r ) ) - 0 y - Sj)Pt}] 
3=0 

Here, an interesting result can be observed. Agents who are less well informed than the 

representative agent (s^ < s;) , tend to increase their demand with increasing price, while 
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better-informed agents do the opposite. Brennan and Cao[1996] use this feature to motivate 

why many investors are trend-followers. 

Brennan and Cao[1996] focus their attention to the impact of multiple trading sessions 

on the welfare of the economy. They show that generally all market participants gain from 

additional market sessions. Moreover, the limiting continuous time economy is shown to be 

even Pareto efficient. 

They also make an interesting case regarding the implication of the trading strategies of 

investors. To illustrate this, consider the change in demand of an investor in the absence 

of additional supply shocks. Assume that there are no additional private information signals 

following the first period. The investors' demand can then be written as 

da = n[siVi - s(u - z/r)) - (si - s)Pt] 

The change in demand is given by Adit+ i = —rj(si — s)AP( + 1, and allows us to write the 

demand as 
t 

dit = dlQ - ^ r , ( . s , - s)APj 

3=1 

Clearly the trading activities of agents are predetermined after the initial position in the asset. 

Agents apply a dynamic trading strategy that resembles an option replication strategy. Indeed, 

taking the continuous time limit, one obtains the following demand 
rT rPT 

drT = rf,:o - / ri($i - s)dPtdt = d,Q - / r,{sl - s)PdP 
J0 JPo 

= d,0 - ri(s, - s){PT - Po) 

Hence, agents replicate a quadratic option through their dynamic trading strategy. This fas­

cinating result motivates Brennan and Cao[1996] to consider a market in which additionally 

options are traded. They show that a single trading session with the availability of quadratic 

options achieves,the same effect as a market in which the security can be traded continuously: 

Pareto optimality. Brennan and Cao[1996] further discuss some generalizations of their model, 

as well as other market statistics such as volume and market depth. 

In Brennan and Cao[1997] a multi-asset extension of the Brennan and Cao[1996] model is 

considered. This extension is, given the single asset version, relatively straightforward, and 

underscores the elegance and tractability of this approach. Brennan and Cao[1997] use the 

model to capture the dynamics of international portfolio flows. The motivation for this study 

stems from the numerous empirical reports on so-called home-country biases in equity port­

folios. Such biases seems to neglect the international diversification ability, and hence violate 

optimality against conventional optimal portfolio theory. The basic assumption that Brennan 
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and Cao[1997] invoke to rationalize the home-country bias, is that domestic investors have 

an information advantage over foreign investors about their domestic market. In order to find 

empirical support for this hypothesis, features derived in the Brennan and Cao[1996] model 

are used. In the discussion of Brennan and Cao[1996], it was already shown that investors 

who are less well informed relative to the market average tend to be trend-followers. This 

result is used in Brennan and Cao[1997] to demonstrate how domestic investors tend to be 

contrarians in their domestic market, while foreign investors are trend-followers. Additionally, 

they demonstrate that under information asymmetry, portfolio flows depend on all market in­

dices, while under symmetric information the portfolio flow only depends on the host market 

return. Having stated this idea in terms of implications for the regression coefficients between 

shifts in portfolio holdings and market index returns, Brennan and Cao[1997] next undertake 

an empirical study of portfolio flows between countries. They indeed find evidence for the 

asymmetric information hypothesis. Their results also indicate that while US investors have 

an information disadvantage compared to the domestic investors in foreign markets, foreign 

investors seem to be equally informed about the US market. 

In He and Wang[1995] a model similar to Brennan and Cao[1996] is used to consider 

volume and its relation to information flow. The model differs in the more complex process 

that is imposed on liquidity supply. An interesting point to note is that all of the above 

models assume that shocks to liquidity are persistent. This presents no problem if the asset 

is ultimately liquidated. The virtue of this assumption is the simple solution it creates to 

the long time horizon problem. However, these types of models cannot be implemented in a 

stationary infinite time economy. Ultimately, the liquidity level should always revert to some 

mean for else it grows without bounds. Though He and Wang[1995] also assume liquidation 

of the asset, they do allow supply to follow a process to more accords to reality. Adopting 

the notation of previous section, liquidity supply follows the process 

Zt+i = aZ t + f)t 

where —1 < o < 1, and r\t is i.i.d. normal. The drawback of this assumption is that it 

complicates the analysis due to the correlation between subsequent supply shocks. The result 

is that the demand functions do not collapse to the simple myopic form derived in Vives[1995] 

and Brennan and Cao[1996], Hence, the analysis that follows does not allow for an explicit 

solution as in Brennan and Cao[1996]. He and Wang[1995] point out that with heterogeneously 

informed agents in the spirit of Hellwig[1980], in an intertemporal setting, the problem of 

higher order expectations arises. Higher order expectations concern expectations about other 
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agents' expectations. They arise through price realizations that are a combination of an average 

belief of agents and the true value of the asset. The belief of each agent in turn depends 

on the history of public and private signals. The problem is that each agent has to form 

expectations about the average expectations of agents, which generally leads to an infinite 

regress problem (Townsend[1983]). However, as He and Wang[1995] show, higher order 

expectations (in the form of an expectation about the market average expectation) are spanned 

by the common information and private information set of each investor. Hence, the potentially 

infinite dimensional state space collapses to a two-dimensional one. Ultimately this result can 

be ascribed to the continuum of investors that are present in the market. The law of large 

numbers then takes care of the collision into the two-dimensional information space. 

He and Wang[1995] use numerical procedures to derive implications for the dependency 

of volume and volatility on information flow. Several interesting results are presented. First, 

they show that even in absence of new information, trading persists until the liquidation date. 

The cause is the supply shocks that keep on entering the market. The non-informational trade 

that occurs in each period discloses some of the private information of investors, inducing 

further trade. In fact, volume can even display an uni-modal time-pattern while no additional 

information enters the market. Two effects accumulate to establish this pattern. On the one 

hand investors tend to trade more aggressively given their higher information precision re­

garding the liquidation value. On the other hand, the shorter the time to liquidation, the less 

they can dynamically diversify their holding in the asset, decreasing the aggressiveness of 

investors. Additionally, it is shown that prior to public announcements, investors increase their 

positions to speculate on the outcome, and subsequently close their positions right after the 

announcement. The result is a peak in volume around announcement dates. The authors fur­

ther argue that release of public information causes both high volume and large price shocks, 

while release of private information may generate high volume combined with small price 

changes. 

2.3.3 I N F I N I T E - P E R I O D M O D E L S 

An alternative means to model the intertemporal behavior prices under information asymmetry 

is presented by Wang[1993,1994]. Instead of assuming investors with a finite consumption 

horizon that coincides the assets liquidation date, Wang[1993] assumes agents with infinite 

horizons. Accordingly, the asset is infinitely long lived, and generates a continuous stream of 

dividends. Specifically, Wang[1993] assumes that the dividend rate D follows the diffusion 
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process 

dD = (n - k,D)dt + bDdw 

where II follows a mean reversion process given by 

dn = an(n - U)d.t + bndw 

and to is a three dimensional vector of Wiener processes. Another source of uncertainty stems 

from the varying supply of the risky asset. The supply is given by 1 + 0 , where 0 is a 

stochastic variable that follows a mean reversion process 

dQ = —a@Qdt + bsdw 

The investors maximization problem is now replaced by 

max E e^ ' -c ' ( s )ds | i ; 

where d(s) is the consumption of investor i at time s and p the discount factor (time-

impatience parameter). The variable X1 represents the holding in the risky asset. The maxi­

mization problem is solved under the budget constraint 

dWi = (rW* - c')dt + X'dQ 

where Wl is the agents wealth and Q is return on the risky asset. 

The information structure is assumed hierarchical, with uninformed investors who observe 

only public signals displayed through the price Pt and the instantaneous dividend rate Dt, and 

informed investors who additionally observe the state variable 11. The uninformed investors 

are thus faced with the problem of estimating If. Agents do so by means of a Kalman filter. 

The usage of a Kalman filter replaces the need of agents to consider the whole history of prices 

and dividends to estimate II. Instead, the Kalman filter produces an equivalent representation 

of the information structure, and agents only need to consider its innovation process to opti­

mally update their beliefs. The nature of agents' maximization problem allows Wang[1993] 

to use the Bellman equations to derive the optimal demands of investors. Conform what we 

derived in the beginning of the section, this demand is a quadratic form in the state variables. 

An explicit closed form solution is however not possible given the complexity of the market-

clearing condition. Wang[1993] therefore uses numerical procedures to consider the impact of 

information asymmetry on market statistics. He shows that the innovation variance of prices is 

strictly larger under information asymmetry. Also, the risk premium on stock is increasing in 

the fraction of informed investors. The reason is that the absolute value of the stock decreases 
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with higher informativeness about fundamentals. Wang[1993] also considers the correlation 

in stock returns. Within his model, due to the mean reverting nature of supply shocks, price 

returns exhibit negative auto-correlation. Only for high persistence of liquidity combined with 

high interest rate levels, autocorrelations become positive. Another interesting feature is that, 

under information asymmetry, uninformed investors may exhibit trading characteristics that 

are quite different from homogeneously informed economies. Under information asymmetry 

uninformed investors can behave as trend-followers. This result is due to the different impact 

of public signals on uninformed investors' updates of beliefs and prices. In homogeneously 

informed economies the informative part of prices is identical to the update of investors' 

beliefs. With informed investors present, the informative part of prices combines both private 

and public information. Hence, public information has a smaller impact on prices than on un­

informed investors' beliefs. Uninformed investors' demands reflect the public signal, and so 

do prices. Hence follows the trend-following behavior of uninformed investors in this model. 

Wang[1994] applies a similar, yet discrete, framework to consider how volume is impacted 

in the presence of information asymmetry. Additionally, an interesting alternative for the 

source of noise is presented. Instead of the usual liquidity driven supply noise, he endows 

agents with private production technologies. The return on investment in these private tech­

nologies follows an AR(1) process. The key is that the shocks to these returns are correlated 

with the dividend generation process. Hence, agents have the ability to hedge their expo­

sure in their private investment opportunity through position taking in the risky asset. This 

gives informed agents an additional non-information based demand component that enters the 

market-clearing price as if liquidity noise is present. The advantage of this setup is however 

that it allows for welfare analysis. 

The equilibrium is solved in a similar manner as in Wang[1993]. Again, the equilibrium 

cannot be solved explicitly, and Wang[1994] uses numerical procedures to extract results. 

The main implications of his analysis concern trading volume. He shows that trading volume 

is decreasing in information precision of the informed. A result that is in part due to the 

dual character of informed traders. They are both liquidity as well as informed traders. Trade 

thus always takes place between informed traders and uninformed traders. The higher the 

information precision of informed investors, the higher the adverse selection effect between 

uninformed and informed. The informed character of informed traders then becomes more 

dominant, increasing information asymmetry, and ultimately leading to a decrease in the at­

tractiveness of trade for the uninformed investors. Additionally, Wang[1994] considers how 

volume relates to price movements and unanticipated dividend changes. Volume is shown to 
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be positively correlated with both absolute price changes and dividend changes. The reason is 

that public information, through the observation of information signals or dividend pay-outs, 

affects the updates of informed and uninformed differently, leading to additional trade com­

pared to the symmetric information economy. 

2.4 Concluding Remarks 

In this survey we focused on the competitive rational expectations paradigm, and in particular 

the multi-period extensions. Though not exhaustive, the main contributions in this area have 

been described. It should be noted, however, that within the literature on the dynamics of 

trading under differential information, alternative approaches have been developed. In partic­

ular, the Kyle[1985,1989] type of structure, which differs fundamentally from the competitive 

models, is often used. Examples of these imperfect competition models in a dynamic setting 

include Kyle[1985], Palomino[1996], and Dow Gorton[1994]. Another approach that has in­

spired others can be found in Glosten and Milgrom[1985] who consider price formation in 

the presence of a monopolistic risk neutral market-marking sector. 

The approach we adopt in this thesis differs on several accounts from the models that 

we have discussed in this survey. In particular, this applies to the way in which the asset 

is modeled. Most models, with the exception of Wang[1993,1994], assume that the asset is 

ultimately liquidated, and that agents' consumption horizon coincides with the corresponding 

liquidation date. However, shares are rarely liquidated. Moreover, in these models there is 

resolution of uncertainty regarding the liquidation value. This introduces a time-dependency in 

the properties of the equilibrium. For instance, in Vives[1995] agents trade more aggressively 

when they near the liquidation date. A result that is solely due to the resolution effect, since 

generally a short time till liquidation implies that agents trade less aggressively. Additionally, 

when one considers the results of He and Wang[1995], one has to conclude that some results18 

can be ascribed to the liquidation date that is imposed. 

If one wants to study technical trading rules, or derive implications for unconditional mo­

ments of price changes, a steady state equilibrium is needed. We therefore adopt an approach 

18In particular the uni-modal pattern of volume discussed in He and Wang[1995]. Two effects accumulate 
to achieve this pattern: agents on the one hand trade less aggresively nearing their consumption horizon, on 
the other hand the resolution of uncertainty makes them trade more aggresively. Both effects disappear in a 
steady state economy. There is no resolution of uncertainty, and the time independence implies that the average 
consumption horizon is constant through time. 
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in which assets are infinitely long lived, which allows for such a stationary solution. A con­

sequence of this assumption is that the inclusion of multi-horizon investors, who are outlived 

by the asset, introduces a dimension that is not present in all of the models discussed. The 

economy necessarily consists of agents with different time horizons. This contrasts previous 

approaches, including Wang19[1993,1994], in which investors are homogenous in the length 

of their time horizon. Additionally, an infinite period model imposes constraints on the way 

in which supply can be modeled. Persistence of supply shocks cannot be maintained in such 

an environment. It would create bubbles, which violates the rationality requirement. Conse­

quently, one needs to incorporate a mean reversion component in the level of supply. As in 

Brown and Jennings[1989], Slezak[1994] and He and Wang[1995], an explicit solution can 

therefore not be found. Consequently one needs to resort to the usage of numerical procedures 

to extract implications. 

In Wang[l993,1994] investors are all infinitely long lived. 
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2.A Relations Useful to the Noisy Rational Expectations Approach 

This appendix repeats some basic mathematical results that are of use in many of the problems that 

are encountered when applying the rational expectations approach. 

A The Projection Theorem 

The conditional expectation is of particular importance for asymmetric information models. A central 

theorem in the calculation of these expectations is the projection theorem. Denote by X and Y random 

vectors that are distributed normally with mean /.t = (/J,'X,/J! )' and variance-covariance matrix 

cov(X, Y) = E ^ J ï 2->xy 

y' y 

Then conditional on the observation of Y, X is distributed normally with mean 

E[X\Y] = ßx + ZxyZ-j(Y-ßy) 

and variance-covariance matrix 

cov{X,X\Y) = ^lx-^xŷ - x̂y 

These expressions can also be derived using the Kalman filter equations (see further in the appendix). 

B. Expectation of a exponential quadratic from 

The following formula is convenient when calculating expected utilities. Assume that the vector Z 

is normal with mean 0 and covariance matrix E. Define the quadratic form cj) as 

4> = a + b'Z + Z'cZ 

Then the expectation E[exp(—tf>)\ is given by 

E[exp(-0)] = lEpslE"1 +2c|-2exp a + h'(il-1 + 2c) \ 

For unconditional utilities, the following special case can be of help. Using the above expression it 

can be derived immediately that 

(E[Z]ft] 
E e -tz

2 1 

if  Z has zero mean and variance-covariance of 1. 

exp l + 2t 
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C. Inverse of a Partitioned Matrix 

Another result that often comes handy in this line of field is the inverse rule for partitioned matrices. 

Given a partitioned matrix A, where 

f An A12 

\ A2i A22 

we have that (if all necessary inverses exist) its inverse is given by 

(Au - A12A22A21)-1 -(An - AÏ2A  ̂ A2l)~
lA12A 2̂

l 

- A ^ i ^ n - A12A22
lA21)-

1 (A22 - A-nA^An)-1 

D. The Kalman Filter Equations 

The Kalman filter equations prescribe how to estimate the first two momentums of the distribution 

of an unobservable vector Xt that follows an AR process conditional on the observation of a correlated 

signal Yt that follows an AR process as well. The importance of these equations lies in the fact that 

they are recursive. As such, though even observations that lie an arbitrary number of periods in the past 

contribute to the estimate of Xt, one only needs to use the last estimate and the current observation 

of Yt, to generate an optimal prediction for Xt. We present the Kalman equations in case Xt and Yt 

follow an AR(1) process20. Assume that Xt and Yt follow the AR(1) processes 

Xt = AXt-i + £,. 

Yt = BXt-i+Vt 

The quantities et and r\t are white noise, i.e. distributed normal with zero mean and variance-covariance 

matrix which we denote by 

/ \ I t-'xx 2-ixy 
cov(et,Vt) = 

\ ^xy ^TO 

Further, we denote by Xt the conditional expectation of Xt and by Vj the conditional variance-

covariance matrix of Xt. Denote by It the information set at time t, i.e. Xt = {Yt,Yt-\,Yt-2, •••}• 

Hence, we have the definitions 

Xt = E[Xt\Xt] 

Vt = cov(Xt\Xt) 

20The analysis easily extended to the more general case where the variance-covariance matrix of the noise 

and the AR coefficients are time-dependent. Also extensions toward higher order processes can be done easily 

by extending the state space with additional variables that represent lagged realizations of Xt and Yt. 
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The Kalman filter equations then tell us that Xt and Vt are updated according to 

Xt = AXt-i + Ht(Yt-~BXt-i),and 

Vt = Exx + AVt-iA'-Ht(£'xy + BVt-iÄ) 

where 

Ht = {T,xy + AVt-iB')C£yy + BVt-iB')-1 

Some variations that are useful for the models which are employed in this thesis are considered next. 

Extension I 

Consider the case in which the observable is dependent on the state of the vector X at time t, i.e. 

Yt = BXt + Vt 

Then we can write 
Y, = BAXt-x + Bet +Vt = DXt-i + Ci 

The covariance matrix then becomes 

2->xx ^xx^ i Z-'xy 
cov(et,Ct) 

^•'xy  + BT,'XX T,yy + BT.XXB' 

Using the above relations, the adjusted Kalman filter is given by 

Xt = AXt-t+HtÇYt-BAXt^), and 

Vt = Hxx + AVt-xA' -Ht{Y.'xy + BY,'xx+BAVt-lÀ) 

with 

Ht = {ZXXB' + Zxy + AVt-iÀ B'){T.yy + BEXXB' + BAVt^A'B')-1 

Extension II 

Most rational expectations model assume that observation and process noise are uncorrelated, i.e. 

^xy = 0. Using the above, the Kalman equations are 

Xt = AXt-i+HtOTt-BXt-i), and 

Vt = Y.xx + AVt^Ä-HtB{Y,'xx + AVt-XÀ) 

with 

Ht = {T,xx + AVt-^B'ÇByy + B(EXX + A V U ^ S ' ) " 1 

This is the form which is found in Wang[1993, 1994] and is used in the chapters 6 and 7 of this thesis 

to determine the optimal demand of technical analysts. 


