Financial Structure and Monetary Transmission in Europe: A Cross-Country Study

de Bondt, G.J.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

Download date: 19 Dec 2018
6 CONSUMPTION AND EXTERNAL FINANCE PREMIUM IN EUROPE: AN EMPIRICAL ANALYSIS

6.1 Introduction

Over the last decade, a large body of literature has examined the process of monetary transmission in general and the credit channels of monetary policy in particular (for an overview see Gertler and Gilchrist, 1992, Ramey, 1993, Dimsdale, 1994, Bernanke and Gertler, 1995 and De Bondt, 1998b). The literature on the relevance of credit channels of monetary policy in a broad sense on consumption is, however, scarce. This is surprising because a necessary condition for the existence of a bank lending channel, the specialness of bank credit, holds for households since they lack access to other forms of credit than bank loans. Although the balance sheet channel is especially applicable to households as small borrowers, the attention paid to the role of consumers' balance sheets in monetary policy transmission is limited compared to the balance sheets of firms. In contrast, consumption has been widely studied, due to the fact that consumption expenditure accounts for more than one half of total spending and is therefore of macroeconomic relevance (for an overview see Muellbauer and Lattimore, 1995). Most empirical consumption studies document an excess sensitivity of consumption to current income, frequently interpreted as evidence of liquidity constraints, that is the inability or unwillingness to use capital markets to smooth consumption.

According to the credit channel theory the bank lending and balance sheet channel work through a so-called external finance premium (EFP), capturing the variation in credit market conditions. Costly monitoring, contract enforcement, informational asymmetries, and incentive problems between borrowers and lenders in credit markets introduce a wedge between the costs of internal and external finance. Any shock to the EFP affects borrowers' decisions, since the premium for external funds affects the overall price of funds that borrowers face. Credit market imperfections therefore distort the real consumption decision regardless of whether there is credit rationing or not. Theory also predicts that the relevance of the bank lending channel and particularly the balance sheet channel may be asymmetric over the business cycle, known as the financial accelerator effect. Informational frictions in credit markets should be stronger, the deeper the economy is in recession and the weaker the balance sheets of households.

Against this background, this chapter studies the macroeconomic relevance of credit channels of monetary policy by examining the impact of the EFP on total private consumption and investigates whether this impact varies over the business cycle.
The present study can be seen as an extension of the literature, in that it introduces a so-called modified λ-model of consumption which incorporates the credit channels and investigates the impact of the EFP on consumption, that may vary over the business cycle along with information asymmetries between borrowers and lenders in credit markets. The model assumes that liquidity-constrained consumers not only use current income for financing their consumption expenditure, but also the available supply of external finance, depending on the EFP. Cross-country comparisons are employed based on an empirical analysis applied to six member states of the European Union (EU) using an identical theoretical framework. The countries considered are Germany, France, Italy, the United Kingdom, Belgium and the Netherlands. The first four are the largest European economies in terms of domestic product, while Belgium and the Netherlands are two small economies with a high degree of openness. The main empirical finding is that in Germany, Italy and the Netherlands, the impact of the EFP on consumption is propagated and amplified as the business cycle is taken into account, as predicted by the credit channel theory. During recessions this financial accelerator effect may lead to a decline in annual consumption growth of about 0.4 percentage point per quarter. In contrast, for France, the United Kingdom, and Belgium no evidence in favour of this financial propagation mechanism has been found.

The remainder of this chapter is organised as follows. Section 6.2 reviews the literature on consumption and credit channels of monetary policy. Section 6.3 introduces the estimating equations by developing a consumption model, closely related to the literature, which incorporates the credit channels of monetary policy. Section 6.4 describes the data, in particular our proxy of the EFP. Section 6.5 discusses some estimation issues, presents the estimation results and assesses the empirical results from a statistical and economic point of view. Finally, Section 6.6 offers some concluding remarks.

6.2 Review on consumption and credit channels

Most consumption studies have focused on the Euler equation framework of optimal consumer behaviour proposed by Hall (1978). In this life cycle (LC) model rational forward-looking consumers maximise expected lifetime utility, subject to intertemporal budget constraints. The resulting model equation implies, assuming that the real interest rate is constant or the intertemporal elasticity of substitution is zero, that changes in consumption should not be predictable. The same result is derived from a permanent income (PI) framework where revisions to the planned consumption path arise from news about future income, which by definition is unpredictable.
Empirical research has shown, however, that some variables have enough predictive power to reject the random walk hypothesis of the LC and PI theory (see, among many others, Antzoulatos, 1994, 1996 and 1997). Some authors provide a cross-country comparison of the excess sensitivity of consumption to current income, trying to attribute it to liquidity constraints (Jappelli and Pagano, 1989 and Campbell and Mankiw, 1991), while others examine the time variation in excess sensitivity (Bayoumi, 1993, Bacchetta and Gerlach, 1997 and Sarno and Taylor, 1998) or explore the asymmetric behaviour of excess sensitivity (Blundell-Wignall et al., 1995 and Shea, 1995).

The present study takes a different approach by taking credit channels of monetary policy into account. We examine the relation between consumption and the EFP, which plays a crucial role in the credit channel theory (see among many others, Bernanke and Gertler, 1995 and De Bondt, 1998b). The EFP forms a potential underlying source of liquidity constraint, since it reflects the costs due to capital market imperfections. Two mechanisms explain the link between monetary policy and the EFP: the bank lending and balance sheet channel.

According to the bank lending channel a contraction of monetary policy drains deposits from the banking system, which forces banks to readjust their portfolio by reducing their supply of loans, given the imperfect substitutability between loans and other assets. This reduction in the supply of bank loans relative to other forms of credit is likely to increase the EFP. In other words, an increase in the cost of funds to banks should shift the supply of loans inward, squeezing out bank-dependent borrowers and raising the EFP. The idea of the balance sheet channel is that the EFP depends inversely on a borrower’s creditworthiness, which in turn depends primarily on macroeconomic conditions and therefore on monetary policy. For example, a monetary policy tightening deteriorates net worth by a fall in asset prices or by a rise in the burden of debt through an unanticipated fall in the price level. The credit channel theory holds that capital market imperfections may act as an essential factor of propagation and amplification of an initial monetary policy shock, known as the financial accelerator effect. This financial propagation mechanism varies over the business cycle along with information asymmetries between borrowers and lenders in credit markets. Credit constraints are likely to be binding across a wider group of consumers in recessions than in booms. In periods of expansion, informational asymmetries are relatively moderate. In this study the financial accelerator effect is taken into account by examining the EFP in conjunction with the business cycle.
Several consumption studies have already investigated a borrowing-lending wedge, a proxy for the EFP, but they do not examine whether the impact of this wedge depends on economic activity. King (1986) introduces a model in which information asymmetries between borrowers and lenders lead to an endogenously determined wedge between borrowing and lending rates. He finds a significant impact of the EFP on British consumption. A cross-country analysis by Jappelli and Pagano (1989) shows no relationship between the estimated excess sensitivity of consumption to current income and the EFP for Italy and the United Kingdom. Finally, Bacchetta and Gerlach (1997) examine the EFP of five countries, including France and the United Kingdom. For these two countries they find that the EFP does not help to predict consumption changes.

6.3 Modelling consumption and credit channels

Following among many others, Winder and Palm (1989), Campbell and Mankiw (1991) and Sarno and Taylor (1998), we assume a representative agent with a time horizon of \(T \) future periods who maximises the following objective function

\[
V_0 = E_0 \sum_{t=0}^{T} \frac{U(C_t)}{(1 + \rho)^t}
\]

(subject to the wealth constraint)

\[
A_{t+1} = (1 + r_t) (A_t + Y_t^\alpha - C_t), \ t = 0, ..., T
\]

where \(U(\cdot) \) is the single-period utility function, \(C_t \) is real per capita consumption at time \(t \), \(\rho \) is the individual rate of time preference, and \(E_t \) the expectation operator conditional on information at time \(t \). We assume strict concavity and double differentiability of the utility function. \(A_t \) represents net real assets at the beginning of period \(t \), \(Y_t^\alpha \) is real labour income during time \(t \) and \(r_t \) is the real rate of interest at which the representative consumer can borrow or lend from the beginning of period \(t \) to the beginning of period \(t+1 \). The first-order conditions for the maximisation of eq. (6.1) subject to eq. (6.2) are equal to a set of Euler equations

\[
1 = E_t \left[\frac{(1 + r_{t+1}) U'(C_{t+1})}{(1 + \rho) U'(C_t)} \right]
\]
Assuming an isoelastic utility function of the form $U(C_t) = \frac{\sigma}{\sigma - 1} \cdot C_t^\sigma$, where σ is the intertemporal elasticity of substitution, and $\ln C_t$, denoted by c_t, and r_t are jointly normally distributed the Euler equation simplifies to

$$E_t \Delta c_{t+1} = \sigma (E_t r'_t - \rho) + \frac{\omega^2_{r+1}}{2\sigma}$$ \hspace{1cm} (6.4)

with

$$\omega^2_{r+1} = \text{Var}_t(\Delta c_{t+1} - \sigma r_t)$$ \hspace{1cm} (6.5)

where $\text{Var}(\cdot)$ denotes conditional variance. Assuming that this conditional variance is constant and lagging eq. (6.4) gives

$$E_{t-1} \Delta c_t = \mu^* + \sigma E_{t-1} r_{t-1}$$ \hspace{1cm} (6.6)

where μ^* is a constant \(^{29}\). An increase in the real interest rate in period $t-1$, r_{t-1}, reduces consumption in period $t-1$ relative to that of current consumption. How much is transferred to the present depends directly on the magnitude of the intertemporal elasticity of substitution ($\sigma > 0$). If the real interest rate is constant or the intertemporal substitution elasticity is zero, then eq. (6.6) shows that consumption just follows a random walk with drift.

The literature argues that if a significant proportion of consumers is unable to smooth consumption because of liquidity constraints, movements in current income may be an additional explanatory factor of consumption. We distinguish two groups of consumers, as suggested by the ‘Keynesian’ rule-of-thumb model of Campbell and Mankiw (1990 and 1991). One group consists of liquidity-constrained consumers for which consumption expenditure is a constant fraction, λ, of income, the other group, $(1 - \lambda)$, is assumed to behave according to eq. (6.6).

\(^{29}\) In fact μ^* is not constant because it includes the conditional variance. We test for autoregressive conditional heteroscedasticity (ARCH) effects in the residual series for the estimated models and discover only in two cases significant ARCH effects, implying that treating this conditional variance term as constant is justified.
This λ-model replaces eq. (6.6) by

$$E_{t-1}\Delta c_t = (1-\lambda)[\mu^*+\sigma E_{t-1}r_{t-1}] + \lambda E_{t-1}\Delta y_t$$

(6.7)

where y is the natural logarithm of per capita real disposable income. Parameter λ denotes the fraction of rule of thumb consumers and $(1-\lambda)$ denotes the fraction of PI consumers. One cannot rule out that the excess sensitivity of consumption to current income derives from the failure of other assumptions of the LC theory, such as the consumers’ ability to make rational forecasts of future income. For example, Winder and Palm (1989) show that the sensitivity to current income is related to a finite planning time horizon.

Of the assumptions underlying the LC and PI hypotheses, the postulate of perfect credit markets has typically been seen as the source of the empirical failure of the theory. If a consumer cannot borrow and lend freely at some stage his desired consumption will probably be constrained by current resources, such as disposable income and the available supply of external finance. We now assume there are two groups of liquidity-constrained consumers. One is assumed to consume a constant fraction, λ_1, of current income and the other group a constant fraction, λ_2, of both current income and the available supply of external finance. In turn, shifts in the availability of external finance are assumed to depend on the change in the EFP one period lagged, because it takes some time to obtain the external finance sources for consumption expenditure after a change in the EFP. In addition, the impact of the EFP on external finance varies over the business cycle along with credit market imperfections. The liquidity-unconstrained group is still the PI group, $(1-\lambda_1-\lambda_2)$. This leads to a modified λ-model with financial accelerator effect equal to

$$E_{t-1}\Delta c_t = (1-\lambda_1-\lambda_2)[\mu^*+\sigma E_{t-1}r_{t-1}] + \lambda_1[E_{t-1}\Delta y_t]$$

$$+ \lambda_2[E_{t-1}\Delta y_t + E_{t-1}\Delta{\text{external finance}}]$$

(6.8)

with

$$\Delta{\text{external finance}} = \alpha_0^* + \alpha_1^*\Delta{EFP}_{t-1} + \alpha_2^*\Delta{EFP}_{t-1} \cdot bc_{t-1}$$

(6.9)

or equivalently
\[\Delta c_t = \mu + \theta c_{t-1} + (\lambda_1 + \lambda_2)\Delta y_t + \alpha_1 \Delta \text{EFP}_{t-1} + \alpha_2 \Delta \text{EFP}_{t-1} \cdot bc_{t-1} + \epsilon_t \]

(6.10)

where \(bc_t \) denotes the business cycle in period \(t \).

\[\mu = (1 - \lambda_1 - \lambda_2)\mu^* + \lambda_2 \alpha_0^*, \quad \theta = (1 - \lambda_1 - \lambda_2)\sigma, \quad \alpha_1 = \lambda_1 \alpha_1^*, \quad \alpha_2 = \lambda_2 \alpha_2^* \]

and the error term, \(\epsilon_t \), is orthogonal to all variables known at time \(t-1 \) or earlier.

Based on eq. (6.10) three consumption models are estimated. First, we estimate the \(\lambda \)-model, assuming in eq. (6.10) \(\lambda_2 = 0 \), that is liquidity-constrained consumers use only current income. The second estimated model is a modified \(\lambda \)-model without financial accelerator effect, that is the impact of the EFP does not vary over the business cycle (\(\alpha_2^* = 0 \)). The third and last model is the modified \(\lambda \)-model with financial accelerator effect with no parameter restrictions.

6.4 Data

6.4.1 General

The sample period starts with the first quarter in 1980 and ends with the last quarter of 1995. It ends two years before the latest available observations to avoid problems arising from later data revisions. This period is particularly interesting to examine, because it is often argued that financial deregulation has relaxed liquidity constraints, particularly in the 1980s. In addition, the impact of derivatives on the real economy has changed dramatically over the last decade (Vrolijk, 1997). The bank lending channel can be reduced through financial innovation and by alternative funding. The balance sheet channel may also have become weaker, since more net worth changes can be hedged. On the other hand, households nowadays perhaps face earlier a change in borrowing costs.

All data except the interest rates used to construct the EFP, are taken from the database of the macroeconomic model for the EU of De Nederlandsche Bank (De Bondt et al., 1997). German data show a structural break in 1991 because of German unification. We examine total private consumption expenditure in stead of consumption of nondurable goods and services, strictly speaking the appropriate notion in the LC theory, since time series of nondurables and services
are not available for Germany, Italy and Belgium. Analysing total private consumption expenditure has the advantage that it is of greater importance in gross domestic product and in this way is more representative for possible macroeconomic effects of the credit channels of monetary policy. Disposable income is the sum of wage, transfer and other income, mostly consisting of financial income, minus tax and social security. If only annual figures are available, in the case of national accounts data for Belgium, then these figures are transformed to quarterly frequency by the Ginsburgh method. Annual population figures are transformed to quarterly frequency by the Lismann method. Consumption and income has been rendered real by using the price deflator of private consumption. Per capita figures are constructed by dividing by total population. The relevant nominal interest rate is assumed to be a weighted average of the short and long-term interest rate, where the fixed weights depend on the credit maturity structure of households as reported in De Bondt (1998a); a weight of the short-term interest rate of 40% for Italy, 20% for the United Kingdom and 10% for the other countries. For the expected inflation component of the real interest rate we use the actual change in the price deflator of private consumption. Business cycle indicators, as constructed by De Nederlandsche Bank, measure the cyclical position (Berk and Bikker, 1995). These indicators are based on an improved variant of the NBER method (Fase and Bikker, 1985, and Bikker and De Haan, 1988) yielding a composite leading indicator characterised by smooth movements and clear turning points.

6.4.2 External finance premium

Any empirical measure of the EFP will necessarily be subject to measurement error, because few data are available on the external and internal finance rate for consumers. A mortgage or similar interest rate is our proxy for the cost of external finance, since this interest rate is expected to be related to the net worth of consumers (balance sheet channel) and owner-occupied housing wealth is the most important single asset of households.

Table 6.1 shows the sample mean of the outstanding stock of housing mortgage loans, personal consumer loans and their sum, scaled by annual consumption. Housing mortgage loans clearly form the largest component of outstanding stock of consumer debt. A striking cross-country

30 The modelling of consumption does not change, because the theory of durable consumption is not really different from the theory of nondurable consumption. Mankiw (1982) notes that the maximisation problem of consumption including durable goods is formally similar to Hall’s framework for nondurable consumption, with the addition of an MA(1) process. If the deterioration of the stock of durables occurs at a constant rate, the purchases of durables obeys a first order moving average process, where the moving average parameter depends only on the rate of depreciation of the stock of durables.

31 The estimation results in the next sections rarely change as the long-term interest rate is used instead of the weighted interest rate. This is not surprising, because of the large weight of the long-term interest rate. The only exception is Italy, where interest rate effects are most significant with a weight of 100% for the short-term interest rate.
difference is the large outstanding stock of consumer debt in Germany and small stock of debt in Italy, both housing mortgages as personal consumer loans. The differences between the other countries are relatively minor. The ratios for Italy and the United Kingdom are almost the same as reported by Jappelli and Pagano (1989) for the period 1961-1985 and 1961-1983, respectively. Jappelli and Pagano report debt-consumption ratios of 7.8 and 2.1 for Italy, against 7.0 and 2.8 for the period 1980-1995. These numbers are for the United Kingdom 46.4 and 9.9, against 47.5 and 7.6. This is surprising, since one expects that financial liberalisation improved the access to credit, particularly in Italy. It is unlikely the small debt-consumption ratios for Italy are due to permanent severe liquidity constraints. It is more likely that the comparatively high level of interest rate in Italy makes consumers borrow less than in other countries. In Italy the sample mean of the external finance rate is 15%, at least 3% higher than in the other countries and even 6% higher than in Germany.

Although housing mortgage loans are generally collateralised and often subject to different tax regimes relative to personal consumer loans, the distinction between the two markets should not be overrated. There is evidence that consumers tend to arbitrage between mortgages and personal consumer loans, often obtaining credit more cheaply in the market for mortgages in order to finance current consumption rather than the purchase of a house (Jappelli and Pagano, 1989). For this reason our proxy of the EFP perhaps underestimates the true EFP. On the other hand, the tax deductibility of the interest rate is not taken into account; a potential source of overestimating the true EFP 32.

For the internal cost of finance a saving deposit or similar rate is used. Because of differences in definitions of the interest rates used, the differences in the mean and standard deviation of the EFP should be regarded as approximate measures of the actual differences in the EFP (see Table 6.2). Based on these definitions the most precise measure of the EFP seems to be for the United

<table>
<thead>
<tr>
<th></th>
<th>Germany</th>
<th>France</th>
<th>Italy</th>
<th>United Kingdom</th>
<th>Belgium</th>
<th>Netherlands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing mortgage loans</td>
<td>55.6</td>
<td>40.5</td>
<td>7.0</td>
<td>47.5</td>
<td>31.8</td>
<td>39.5</td>
</tr>
<tr>
<td>Personal consumer loans</td>
<td>16.4</td>
<td>5.8</td>
<td>2.8</td>
<td>7.6</td>
<td>6.6</td>
<td>3.9</td>
</tr>
<tr>
<td>Total consumer debt</td>
<td>72.0</td>
<td>46.3</td>
<td>9.8</td>
<td>55.1</td>
<td>38.4</td>
<td>43.4</td>
</tr>
</tbody>
</table>

Source: BIS, De Nederlandsche Bank.

32 On balance, we assume that measurement errors do not affect our parameter estimates. An approach to deal with the measurement problem of the cost of external finance, not followed here, is to observe the bank lending rate as a zone rather than as a unique and directly measurable market price (Fase, 1995b).
Kingdom and Belgium, where both finance rates are available for the same type of institution, namely building societies and general savings and pension funds (Caisse Générale d’Épargne et de Retraite, abbreviated as CGER), respectively. For all countries the EFP, by construction, has some term structure elements, since the internal finance rate is a short-term interest rate and the external finance rate a long-term interest rate. The mean of the EFP varies between 4.6% in Italy and 6.1% in Belgium and the standard deviation is 1% in Germany and the Netherlands and about 1.5% in the other countries.

Figure 6.1 plots the EFP in all countries. Broadly speaking, the countries can be split into three groups. The first group consists of Germany, Belgium and the Netherlands, where the EFP at the end of the sample period is almost equal to the value at the start. In between, the EFP is relatively high in the early 1980s and 1990s. The former period is characterised as a period of recession, while the last period is dominated by the German unification, which induced relatively tight credit market conditions. Secondly, the EFP of the United Kingdom is also at the end of the sample period almost equal to 1980. Between 1985 and 1991, however, the EFP is high compared to the first group of countries. For the years 1989 to 1991 the high EFP may be explained by a strong decline in real economic growth, about 2 percentage points per year. The third and last group consists of France and Italy. In both countries the EFP has declined over the sample period and the development in the EFP differs in particular since 1990 compared to the first group of countries. A possible explanation of this decline is that France and especially Italy were subject to relatively high financial regulation in the 1980s, causing a gradual decline in the EFP in the 1990s (De Bondt 1998a).

Table 6.2 Proxies external finance premium, 1980-1995

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>External finance rate</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Internal finance rate</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>0.055</td>
<td>0.010</td>
<td>Mortgages variable rate</td>
<td>Savings deposits with legal period of notice</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>0.050</td>
<td>0.013</td>
<td>Housing credit (min)</td>
<td>Bank accounts on passbooks</td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>0.046</td>
<td>0.015</td>
<td>Bank credits</td>
<td>Savings deposits with banks</td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td>0.057</td>
<td>0.015</td>
<td>Building society mortgage loans (nominal rate)</td>
<td>Building society shares (rates paid to lenders)</td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td>0.061</td>
<td>0.017</td>
<td>Mortgage loans by the CGER</td>
<td>Deposits in ordinary savings banks books with the CGER</td>
<td></td>
</tr>
<tr>
<td>Nether- lands</td>
<td>0.050</td>
<td>0.011</td>
<td>Mortage loans (nominal rate)</td>
<td>Time savings deposits (3 months)</td>
<td></td>
</tr>
</tbody>
</table>
To assess the relation between monetary policy and our proxy of the EFP we estimate a VAR system with 4 lags that includes the short-term interest rate and the EFP, in that order. Figure 6.2 shows the estimated dynamic responses of the short-term interest rate and the EFP to a positive one-standard-deviation shock to the short-term interest rate, which can be interpreted as a monetary policy tightening. The EFP increases and reaches a peak after two or three quarters, bottoming out afterwards just like the movements of the short-term interest rate. Only in Belgium the EFP reacts more slowly to a short-term interest rate shock, reaching its peak after five quarters. The highest rise in the EFP after an one-standard-deviation shock to the short-term interest rate amounts 30 to 40 basis points. In France the EFP significantly rise only in the first three quarters, while the other countries show a significant increase in the EFP in the first six quarters. Overall, the impulse responses clearly show that the EFP significantly increases after a monetary policy tightening, as expected by the credit channel theory.

Other studies examining more or less the EFP in a VAR model with more than two-variables are e.g. Davis and Henry (1994), Tsatsaronis (1995), Barrán (1996) and Kroes (1996).
Figure 6.2 Impulse response functions due to monetary policy shock

Germany

France

Italy

Short-term interest rate
Asymptotic response errors

External finance premium
Asymptotic response errors
Figure 6.2 Impulse response functions due to monetary policy shock

United Kingdom

Belgium

Netherlands

--- Short-term interest rate
--- Asymptotic response errors
--- External finance premium
--- Asymptotic response errors
6.5 Estimation and empirical results

After a discussion of estimation issues (Section 6.5.1), Section 6.5.2 presents the estimation results. The next sections assess the empirical results from a statistical (Section 6.5.3) and economic point of view (Section 6.5.4).

6.5.1 Estimation issues

Since the variables in the model equations represent expected values, it is necessary to estimate the model using instrumental variables (IV) techniques. Our instruments, based on other studies, are consumption income ratio lagged four periods, the second and third lags of dependent and all independent variables, fourth difference of the term spread and first difference of the inflation rate. Inflation is defined as the four-quarter growth rate in consumption price. The change in the spread and the change of inflation are also appealing instruments, since there is considerable evidence that both variables help to forecast changes in income. The instruments are lagged more than one period so that there is at least a two-period time gap between instruments and explanatory variables, and the residuals are assumed to follow an MA(1) process. Lagged variables are only valid instruments if they are stationary. Preliminary unit root tests indicate that the model variables and instruments are all apparently I(0). For some countries, additional AR or MA terms are included based on the autocorrelations and partial correlations of the residuals.

There are several reasons for the extra lags in the instruments and the assumed MA(1) structure of the residuals (Campbell and Mankiw, 1990 and 1991). First, modelling consumption of durable goods can lead to a MA(1) error structure, in which the moving average parameter is related to the rate of depreciation of durable goods (Mankiw, 1982). One obtains consistent estimates by lagging the instruments twice. Secondly, the MA(1) structure and twice-lagged instruments take into account possible white noise measurement error in the levels of the EFP and other model variables. Thirdly, the underlying consumption model applies to variables measured at points in time, whereas available data are time-averaged, which can produce spurious first-order auto and crosscorrelations. Finally, lagging the instruments two quarters mitigate the problem of delays in the publication of model variables.

Appropriate instruments should be correlated with the explanatory variables and uncorrelated with the error-term. The next tables, therefore, report the adjusted R^2 from OLS first stage regression of the independent model variables on the instruments and of the regression of the IV-residuals (IV-res) on the instruments. The tables also contain the p-value of a Wald test of the null hypothesis that all coefficients with respect to the instruments in the regression are jointly
zero. Moreover, the p-value from a Lagrange Multiplier (LM) test of the over-identifying restrictions of the model is given. The statistic is computed by multiplying the R^2 from the regression of the IV-residuals on the instruments with the sample size of 64 and is chi-squared distributed with the number of degrees of freedom equal to the number of over-identifying restrictions.

It is essential to treat seasonally unadjusted data in such a way that seasonal factors do not drive our results. One possibility is to regress the data on seasonal dummies, but we found that this does not adequately remove seasonal pattern. For example, in the Netherlands and Italy the seasonal variation has changed during the sample period. Therefore we use annual growth rates and include quarterly dummies for the years where the seasonal pattern has changed in Italy and the Netherlands. This procedure is conservative in that it minimises the probability that the random walk hypothesis of the LC and PI theory can be rejected by inappropriate handling of seasonality. It also reduces the power of our tests, because annual growth rates (fourth difference) are harder to forecast than near-term quarterly growth rates (first difference).

6.5.2 Estimation results

6.5.2.1 λ-model

Table 6.3 contains the estimation results of the λ-model. In the United Kingdom and Belgium, income growth contributes significantly to consumption growth and in the Netherlands the real interest rate. In the United Kingdom and Belgium the excess sensitivity of consumption to current income is so strong that the PI model has to be rejected in favour of the λ-model. In the other countries consumers do not appear to be liquidity constrained. The relative low R^2 for Belgium is due to the poor quality of the Belgian data, since for Belgium only annual national account figures are available. In all countries except Italy and the United Kingdom the instruments used are appropriate, since they explain the real interest rate and income growth and are uncorrelated with the IV-residuals.

Other cross-country studies document significant excess sensitivity parameters of about 0.5 for Italy and the United Kingdom (Jappelli and Pagano, 1989), of 0.4 and 0.7 for France and the United Kingdom, respectively (Campbell and Mankiw, 1991) and of around 0.2 for France and the United Kingdom (Bacchetta and Gerlach, 1997). Blundell-Wignall et al. (1995) find for Germany a significant excess sensitivity parameter of 1.04 for the 1980s/90s. They present, however, for France, Italy and the United Kingdom insignificant λ-values for the 1980s/90s,
compared with significant values in earlier periods. They contribute this to an easing of liquidity constraints by financial liberalisation. Overall, our estimated λ-values are low compared to the literature, probably due to a recent sample period.

Jappelli and Pagano (1989) suggest that the departure from the predictions of the LC and PI theory would be larger in countries with more imperfect capital markets than in countries where they are well developed and highly competitive. This does not appear to be the case; Italy is one of the countries with no significant excess sensitivity of consumption to current income, while it has one of the least developed capital markets of the countries considered. At the other side of

<table>
<thead>
<tr>
<th>Table 6.3 λ-model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>r_{-1}</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Δy</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>R^2</td>
</tr>
<tr>
<td>R^2 (adjusted)</td>
</tr>
<tr>
<td>SE of regression</td>
</tr>
<tr>
<td>Wald test, p-value</td>
</tr>
<tr>
<td>H_0: PI model</td>
</tr>
<tr>
<td>Validity instruments</td>
</tr>
<tr>
<td>R^2 (adjusted) r_{-1}</td>
</tr>
<tr>
<td>Wald test, p-value</td>
</tr>
<tr>
<td>R^2 (adjusted) Δy</td>
</tr>
<tr>
<td>Wald test, p-value</td>
</tr>
<tr>
<td>R^2 (adjusted) IV-res</td>
</tr>
<tr>
<td>Wald test, p-value</td>
</tr>
<tr>
<td>LM test, p-value</td>
</tr>
</tbody>
</table>

Explanatory notes: IV estimates of $\Delta c_t = \mu + \lambda_1 \Delta y_t + \theta r_{t-1} + \epsilon_t$ based on eq. (6.10) with $\lambda_2 = 0$; ***, ** and * denote significance at the 1%, 5% and 10% level, respectively; absolute Newey-West heteroscedasticity and autocorrelation corrected t-statistics between parentheses; MA(1) errors assumed; additional AR or MA terms included based on autocorrelations and partial correlations and dummies because of structural (seasonal) break; instruments are consumption income ratio lagged four periods, lags two to three of dependent and independent variables, fourth difference of spread, and first difference of inflation; p-value below R^2 (adjusted) is the p-value of a Wald test that all coefficients with respect to the instruments are jointly zero; p-value LM test indicates the validity of the over-identifying restrictions.
the spectrum is the United Kingdom, which shows a significant excess sensitivity of consumption to current income.

6.5.2.2 Modified λ-model without financial accelerator effect

Table 6.4 presents the estimation results of the consumption model, which incorporates the credit channels of monetary policy without taking into account the possibility of a financial propagation mechanism. Real interest rate movements significantly explain consumption in Germany and the Netherlands. In most countries 80% to 100% of all consumers are liquidity unconstrained. The exceptions are the United Kingdom and Belgium, where in view of our results about 50% of the consumers are liquidity constrained. In all countries excluding Germany, the impact of the EFP is not significantly different from zero. In Germany a rise in the

<table>
<thead>
<tr>
<th></th>
<th>Germany</th>
<th>France</th>
<th>Italy</th>
<th>United Kingdom</th>
<th>Belgium</th>
<th>Netherlands</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_i</td>
<td>0.589***</td>
<td>0.038</td>
<td>0.056</td>
<td>(2.69)</td>
<td>(0.27)</td>
<td>(0.55)</td>
</tr>
<tr>
<td>Δy</td>
<td>0.062</td>
<td>0.186*</td>
<td>0.185</td>
<td>(0.49)</td>
<td>(1.75)</td>
<td>(1.32)</td>
</tr>
<tr>
<td>$\Delta \text{EFP},_t$</td>
<td>-0.733***</td>
<td>-0.206</td>
<td>0.049</td>
<td>-0.435</td>
<td>(4.29)</td>
<td>(5.18)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.711</td>
<td>0.641</td>
<td>0.949</td>
<td>0.794</td>
<td>0.353</td>
<td>0.592</td>
</tr>
<tr>
<td>R^2 (adjusted)</td>
<td>0.668</td>
<td>0.603</td>
<td>0.941</td>
<td>0.772</td>
<td>0.297</td>
<td>0.486</td>
</tr>
<tr>
<td>SE of regression</td>
<td>0.014</td>
<td>0.007</td>
<td>0.006</td>
<td>0.013</td>
<td>0.017</td>
<td>0.013</td>
</tr>
<tr>
<td>Wald test, p-value</td>
<td>0.014**</td>
<td>0.196</td>
<td>0.211</td>
<td>0.000***</td>
<td>0.000***</td>
<td>0.272</td>
</tr>
<tr>
<td>H_0: PI model</td>
<td>0.004***</td>
<td>0.260</td>
<td>0.629</td>
<td>0.283</td>
<td>0.216</td>
<td>0.119</td>
</tr>
<tr>
<td>Validity instruments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2 (adjusted) r_i</td>
<td>0.586</td>
<td>0.849</td>
<td>0.901</td>
<td>0.894</td>
<td>0.502</td>
<td>0.596</td>
</tr>
<tr>
<td>Wald test, p-value</td>
<td>0.000***</td>
<td>0.000***</td>
<td>0.000***</td>
<td>0.000***</td>
<td>0.000***</td>
<td>0.000***</td>
</tr>
<tr>
<td>R^2 (adjusted) Δy</td>
<td>0.622</td>
<td>0.602</td>
<td>0.905</td>
<td>0.740</td>
<td>0.493</td>
<td>0.739</td>
</tr>
<tr>
<td>Wald test, p-value</td>
<td>0.000***</td>
<td>0.000***</td>
<td>0.000***</td>
<td>0.000***</td>
<td>0.000***</td>
<td>0.000***</td>
</tr>
<tr>
<td>R^2 (adjusted) $\Delta \text{EFP},_t$</td>
<td>0.483</td>
<td>0.600</td>
<td>0.444</td>
<td>0.701</td>
<td>0.737</td>
<td>0.471</td>
</tr>
<tr>
<td>Wald test, p-value</td>
<td>0.000***</td>
<td>0.000***</td>
<td>0.000***</td>
<td>0.000***</td>
<td>0.000***</td>
<td>0.000***</td>
</tr>
<tr>
<td>R^2 (adjusted) IV-res</td>
<td>0.066</td>
<td>0.072</td>
<td>0.121</td>
<td>0.032</td>
<td>-0.047</td>
<td>-0.200</td>
</tr>
<tr>
<td>Wald test, p-value</td>
<td>0.258</td>
<td>0.205</td>
<td>0.134</td>
<td>0.335</td>
<td>0.672</td>
<td>0.947</td>
</tr>
<tr>
<td>LM test, p-value</td>
<td>0.026**</td>
<td>0.078*</td>
<td>0.011**</td>
<td>0.138</td>
<td>0.370</td>
<td>0.173</td>
</tr>
</tbody>
</table>

Explanatory notes: IV estimates of $\Delta c_i = \mu + (\lambda_1 + \lambda_2)\Delta y_i + \theta r_{t-1} + \alpha_1 \Delta \text{EFP},_{t-1} + s_i$ based on eq. (6.10) with $\alpha_2^* = 0$; see also notes to Table 6.3.
EFP by 1 percentage point leads to a 0.7% decrease in consumption. It is obvious that only for Germany the λ-model has to be rejected in favour of the modified λ-model without financial accelerator effect. In all countries the IV-residuals are now uncorrelated with the instruments. The LM test, however, indicates that the over-identifying restrictions are rejected for Germany and Italy.

The question which arises is why the credit channels are only relevant for Germany? Germany is the classic example of a bank-oriented financial system, but the dependence on finance from financial intermediaries in Germany is of the same order as in Italy and the Netherlands and only a little stronger than in the other countries. Financial intermediaries account for about 95% of credit to the private sector in the first group of countries, against 90% in the other group (De Bondt, 1998a). An argument is that Germany has the smallest bank concentration of the countries considered. It implies comparatively strong credit market imperfections in Germany, assuming that the degree of asymmetric information between borrowers and lenders and information costs is inversely related to bank size. Although strong banking relationships in Germany (house banks) partly offset information asymmetries, these are typically between banks and firms. Moreover, only the three major German banks and some other commercial banks are engaged in relationship banking and they constitute a relatively small part of the banking system.

6.5.2.3 Modified λ-model with financial accelerator effect

Table 6.5 summarises the estimation results for the model with a financial propagation mechanism. Again, the real interest rate significantly explains consumption in Germany and the Netherlands. Income significantly explains consumption in all countries excluding Germany and the Netherlands. In Italy, the United Kingdom and Belgium about 50% of all consumers are liquidity unconstrained, while in the other countries this figure varies between 76% and 100%. In all cases, the change in the EFP in isolation has no significant impact on consumption growth. However, when combined with the cyclical indicator the impact of the EFP is significant in Germany, Italy and the Netherlands. For these three countries the negative impact of the EFP on consumption is stronger, the deeper the economy is in recession and the modified λ-model without financial accelerator effect has to be rejected in favour of the consumption model with financial propagation. For the other countries no significant effect is found for the interaction term and the λ-model is the appropriate consumption model. In all cases except Italy, the statistics indicate that the instruments are valid.
That there is no evidence in favour of the relevance of credit channels on consumption in France, the United Kingdom and Belgium is perhaps due to the fact that disintermediation is more common than in the other countries (De Bondt, 1998a). The significant financial accelerator effect for Germany and Italy supports the findings of Kashyap and Stein (1997b) and De Bondt (1998c). Kashyap and Stein review different potential important credit channel variables such as the availability of non-bank finance, the importance of small banks and bank health. Italy appears to be clearly sensitive to the credit channels, while the United Kingdom emerges as the country with potentially weak credit channels. For the other countries the picture is mixed, but

Table 6.5 Modified λ-model with financial accelerator effect

<table>
<thead>
<tr>
<th></th>
<th>Germany</th>
<th>France</th>
<th>Italy</th>
<th>United Kingdom</th>
<th>Belgium</th>
<th>Netherlands</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_{i1}</td>
<td>0.997**</td>
<td>0.020</td>
<td>0.122</td>
<td>0.202</td>
<td>0.309</td>
<td>0.978***</td>
</tr>
<tr>
<td></td>
<td>(2.18)</td>
<td>(0.15)</td>
<td>(1.31)</td>
<td>(0.72)</td>
<td>(0.96)</td>
<td>(3.04)</td>
</tr>
<tr>
<td>Δy</td>
<td>0.153</td>
<td>0.244**</td>
<td>0.405***</td>
<td>0.546***</td>
<td>0.460***</td>
<td>-0.050</td>
</tr>
<tr>
<td></td>
<td>(1.35)</td>
<td>(2.31)</td>
<td>(2.97)</td>
<td>(4.82)</td>
<td>(5.08)</td>
<td>(0.28)</td>
</tr>
<tr>
<td>ΔEFP_{i1}</td>
<td>0.437</td>
<td>-0.201</td>
<td>0.093</td>
<td>-0.545*</td>
<td>-0.309</td>
<td>0.205</td>
</tr>
<tr>
<td></td>
<td>(0.92)</td>
<td>(1.16)</td>
<td>(0.84)</td>
<td>(1.70)</td>
<td>(1.32)</td>
<td>(0.64)</td>
</tr>
<tr>
<td>$\Delta EFP_{i1, bc1}$</td>
<td>1.307**</td>
<td>-0.135</td>
<td>0.374**</td>
<td>0.022</td>
<td>0.044</td>
<td>0.889***</td>
</tr>
<tr>
<td></td>
<td>(2.17)</td>
<td>(0.60)</td>
<td>(2.26)</td>
<td>(0.10)</td>
<td>(0.15)</td>
<td>(2.82)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.664</td>
<td>0.636</td>
<td>0.966</td>
<td>0.820</td>
<td>0.346</td>
<td>0.607</td>
</tr>
<tr>
<td>R^2 (adjusted)</td>
<td>0.608</td>
<td>0.590</td>
<td>0.960</td>
<td>0.798</td>
<td>0.278</td>
<td>0.495</td>
</tr>
<tr>
<td>SE of regression</td>
<td>0.015</td>
<td>0.007</td>
<td>0.005</td>
<td>0.012</td>
<td>0.018</td>
<td>0.013</td>
</tr>
<tr>
<td>Wald test, p-value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H_0: PI model</td>
<td>0.020**</td>
<td>0.094*</td>
<td>0.012**</td>
<td>0.000***</td>
<td>0.000***</td>
<td>0.054*</td>
</tr>
<tr>
<td>H_0: λ-model</td>
<td>0.099*</td>
<td>0.450</td>
<td>0.088*</td>
<td>0.108</td>
<td>0.330</td>
<td>0.024**</td>
</tr>
<tr>
<td>H_0: mod. λ-model without accelerator</td>
<td>0.034**</td>
<td>0.553</td>
<td>0.028**</td>
<td>0.921</td>
<td>0.878</td>
<td>0.007***</td>
</tr>
<tr>
<td>Validity instruments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2 (adjusted) r_{i1}</td>
<td>0.596</td>
<td>0.846</td>
<td>0.898</td>
<td>0.894</td>
<td>0.523</td>
<td>0.640</td>
</tr>
<tr>
<td>Wald test, p-value</td>
<td>0.000***</td>
<td>0.000***</td>
<td>0.000***</td>
<td>0.000***</td>
<td>0.000***</td>
<td>0.000***</td>
</tr>
<tr>
<td>R^2 (adjusted) Δy</td>
<td>0.636</td>
<td>0.662</td>
<td>0.908</td>
<td>0.740</td>
<td>0.485</td>
<td>0.732</td>
</tr>
<tr>
<td>Wald test, p-value</td>
<td>0.000***</td>
<td>0.000***</td>
<td>0.000***</td>
<td>0.000***</td>
<td>0.000***</td>
<td>0.000***</td>
</tr>
<tr>
<td>R^2 (adjusted) ΔEFP_{i1}</td>
<td>0.513</td>
<td>0.588</td>
<td>0.422</td>
<td>0.713</td>
<td>0.758</td>
<td>0.618</td>
</tr>
<tr>
<td>Wald test, p-value</td>
<td>0.000***</td>
<td>0.000***</td>
<td>0.000***</td>
<td>0.000***</td>
<td>0.000***</td>
<td>0.000***</td>
</tr>
<tr>
<td>R^2 (adj) $\Delta EFP_{i1, bc1}$</td>
<td>0.373</td>
<td>0.293</td>
<td>0.825</td>
<td>0.568</td>
<td>0.408</td>
<td>0.302</td>
</tr>
<tr>
<td>Wald test, p-value</td>
<td>0.001***</td>
<td>0.004***</td>
<td>0.000***</td>
<td>0.000***</td>
<td>0.000***</td>
<td>0.017**</td>
</tr>
<tr>
<td>R^2 (adjusted) IV-res</td>
<td>-0.146</td>
<td>0.064</td>
<td>0.338</td>
<td>0.087</td>
<td>-0.072</td>
<td>-0.295</td>
</tr>
<tr>
<td>Wald test, p-value</td>
<td>0.903</td>
<td>0.246</td>
<td>0.003**</td>
<td>0.187</td>
<td>0.755</td>
<td>0.999</td>
</tr>
<tr>
<td>LM test, p-value</td>
<td>0.309</td>
<td>0.073*</td>
<td>0.000**</td>
<td>0.053*</td>
<td>0.385</td>
<td>0.313</td>
</tr>
</tbody>
</table>

Explanatory notes: IV estimates of $\Delta_4c_t = \mu + (\lambda_1 + \lambda_2)\Delta_4y_t + \theta r_{t+1} + c_1 \Delta_4EFP_{t+1} + c_2 \Delta_4EFP_{t, bc_{t+1}} + \epsilon_t$, based on eq. (6.10), see also notes to Table 6.3.
Germany and France are close to Italy, while Belgium and the Netherlands are closer to the United Kingdom. De Bondt's (1998c) bank-level panel data study shows empirical evidence in favour of the bank lending channel in continental Europe and of the balance sheet channel in Germany and Italy, suggesting that it is especially the balance sheet channel that enhances the financial propagation mechanism.

6.5.3 Statistical assessment empirical results

6.5.3.1 Cointegration

One potential criticism of the consumption models estimated is that according to the cointegration literature the models are specified only in first-differences, the short-term relationships, and ignore completely any cointegration relationship. The implicit restriction of any long-run relationship to be zero, if cointegration does exist, may affect the power of the tests reported. To allow for the possibility of any equilibrium relationship between consumption and income, as introduced in the consumption literature by Davidson et al. (1978) and Davidson and Hendry (1981), the modified λ-model is respecified including the consumption income ratio lagged four periods. The long-run relationship is modelled simultaneously with the short-run adjustment process and the existence of cointegration is directly tested by examining the significance of the coefficient of the error correction term using the critical values as proposed by Kremers et al. (1992) or Boswijk (1994).

Table 6.6 reports the estimation results of the error correction term. In all cases, the consumption income ratio appears with the expected negative sign, but insignificant. Thus, ignoring a cointegration relationship between consumption and income is statistically appropriate.

<table>
<thead>
<tr>
<th></th>
<th>Germany</th>
<th>France</th>
<th>Italy</th>
<th>United Kingdom</th>
<th>Belgium</th>
<th>Netherlands</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(c - y)_4$</td>
<td>-0.146</td>
<td>-0.088</td>
<td>-0.102</td>
<td>-0.022</td>
<td>-0.011</td>
<td>-0.007</td>
</tr>
<tr>
<td></td>
<td>(0.69)</td>
<td>(0.87)</td>
<td>(0.56)</td>
<td>(0.20)</td>
<td>(0.83)</td>
<td>(0.20)</td>
</tr>
</tbody>
</table>

Explanatory notes: IV estimates of $\Delta c_t = \mu + (\lambda_1 + \lambda_2)\Delta y_t + \theta c_{t-1} + \alpha_1 \Delta EFP_{c,t} + \alpha_2 \Delta EFP_{c,t} + \beta (c - y)_{t-4} + \epsilon_t$; see also notes to Table 6.3.
6.5.3.2 Other proxies to capture financial accelerator effect

To further evaluate the modified λ-model we perform specification tests by incorporating the financial propagation mechanism in a different way. From a statistical point of view one may be suspicious that the results in Table 6.5 are driven by not taking into account the business cycle as a separate explanatory variable. In a theoretical context the business cycle fits in the modified λ-model under the assumption that the supply of external finance for consumption expenditure also depends on the business cycle. If we add bc_{t-1} as explanatory variable in eq. (6.9) gives

$$\Delta \text{external finance}_t = \alpha_0 + \alpha_1 \Delta \text{EFP}_{t-1} + \alpha_2 \Delta \text{EFP}_{t-1} \cdot bc_{t-1} + \alpha_3 bc_{t-1}$$

(6.11)

where α_3 reflects the willingness of banks to lend for consumption expenditure. The willingness to lend is expected to depend positively on the business cycle. Another economic interpretation of the inclusion of the business cycle is that the willingness of consumers to consume is positively related to the business cycle. In this way, the separate business cycle term reflects the 'state of confidence' in the economy, as mentioned by Keynes (Wolfson, 1996). Two basic determinants of this state can be distinguished. The first is the 'state of credit', which is governed by the confidence that lenders have in financing consumption expenditure (willingness to lend). The second is consumers' belief about prospective yields from financial and labour income (willingness to consume). Another argument, related to the last one, is precautionary saving. Households save more and consume less during recessions.34

Table 6.7 presents the estimation results of this modified λ-model with financial accelerator effect and 'state of confidence'.35 For France, the United Kingdom and Belgium the impact of the change in the EFP and for the other countries the effect of the interaction term between the EFP and the business cycle become statistically more significant by taking the 'state of confidence' into account. The EFP now explains significantly British and Belgian consumption at the 1% level. In both Italy and the Netherlands, the financial accelerator effect is now significant at the 1% level. In all cases, the cyclical indicator has a positive impact on consumption and is especially relevant in the United Kingdom, Belgium and the Netherlands.

34 For the same reason money demand studies include a cyclical indicator, capturing speculation and precautionary motives (Fase, 1998).
35 The statistics with respect to the validity of the instruments are not reported in order to save space, but are available on request. The same holds for Table 6.8.
Table 6.7 Modified λ-model with financial accelerator effect and 'state of confidence'

<table>
<thead>
<tr>
<th></th>
<th>Germany</th>
<th>France</th>
<th>Italy</th>
<th>United Kingdom</th>
<th>Belgium</th>
<th>Netherlands</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_t</td>
<td>0.957**</td>
<td>0.072</td>
<td>0.115</td>
<td>-0.176</td>
<td>0.390</td>
<td>0.753***</td>
</tr>
<tr>
<td>(2.07)</td>
<td>(0.67)</td>
<td>(1.15)</td>
<td></td>
<td>(0.69)</td>
<td>(1.22)</td>
<td>(2.81)</td>
</tr>
<tr>
<td>Δ_y</td>
<td>0.158</td>
<td>0.201**</td>
<td>0.516***</td>
<td>0.369***</td>
<td>0.268***</td>
<td>0.163</td>
</tr>
<tr>
<td>(1.38)</td>
<td>(2.32)</td>
<td>(3.43)</td>
<td></td>
<td>(2.03)</td>
<td>(3.24)</td>
<td>(1.58)</td>
</tr>
<tr>
<td>ΔEFP_{t-1}</td>
<td>0.295</td>
<td>-0.255</td>
<td>0.104</td>
<td>-1.280***</td>
<td>-0.667***</td>
<td>-0.136</td>
</tr>
<tr>
<td>(0.69)</td>
<td>(1.58)</td>
<td>(1.07)</td>
<td></td>
<td>(4.84)</td>
<td>(2.95)</td>
<td>(0.62)</td>
</tr>
<tr>
<td>$\Delta EFP_{t-1} \cdot bc_{t-1}$</td>
<td>1.288**</td>
<td>-0.335</td>
<td>0.370***</td>
<td>-0.129</td>
<td>-0.257</td>
<td>0.850***</td>
</tr>
<tr>
<td>(2.36)</td>
<td>(1.34)</td>
<td>(2.82)</td>
<td></td>
<td>(0.88)</td>
<td>(1.15)</td>
<td>(4.29)</td>
</tr>
<tr>
<td>bc_{t-1}</td>
<td>0.001</td>
<td>0.001</td>
<td>0.003</td>
<td>0.010</td>
<td>0.015***</td>
<td>0.006*</td>
</tr>
<tr>
<td>(0.46)</td>
<td>(0.21)</td>
<td>(0.84)</td>
<td></td>
<td>(1.65)</td>
<td>(3.99)</td>
<td>(1.97)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.672</td>
<td>0.596</td>
<td>0.972</td>
<td>0.823</td>
<td>0.525</td>
<td>0.717</td>
</tr>
<tr>
<td>R^2 (adjusted)</td>
<td>0.610</td>
<td>0.537</td>
<td>0.966</td>
<td>0.797</td>
<td>0.466</td>
<td>0.629</td>
</tr>
<tr>
<td>SE of regression</td>
<td>0.015</td>
<td>0.008</td>
<td>0.004</td>
<td>0.012</td>
<td>0.015</td>
<td>0.011</td>
</tr>
</tbody>
</table>

Wald test, p-value

- H_0: Pl model: 0.006*** 0.019** 0.000*** 0.000*** 0.000*** 0.001***
- H_0: λ-model: 0.093* 0.402 0.030** 0.000*** 0.003*** 0.001***
- H_0: mod. λ-model without accelerator: 0.054* 0.403 0.015** 0.242 0.001*** 0.000***

Explanatory notes: IV estimates of $\Delta c_t = \mu + (\lambda_1 + \lambda_2)\Delta y_t + \theta r_{t-1} + \alpha_1 \Delta EFP_{t-1} + \alpha_2 \Delta EFP_{t-1} \cdot bc_{t-1} + bc_{t-1} + e_t$, based on eq. (6.8) and eq. (6.11); see also notes to Table 6.3.

Another way to incorporate the financial propagation mechanism in the modified λ-model is to look explicitly at periods of weak economic activity, replacing eq. (6.9) by

$$\Delta external\ finance_t = \alpha_0^* + \alpha_1^* \Delta EFP_{t-1} + \alpha_2^* \Delta EFP_{t-1} \cdot dumbc_{t-1}$$ \hspace{1cm} (6.12)

where dumbc is a dummy variable which has the value 1 as the business cycle is below its trend value and 0 otherwise. On the one hand, this way of incorporating the credit channels of monetary policy stresses the asymmetric nature of the financial propagation mechanism (Bernanke and Gertler, 1989 and De Bondt, 1998b). On the other, the dummy variable implies an arbitrary choice of when the financial accelerator effect is effective.
Table 6.8 Modified λ-model with financial accelerator effect captured by cyclical indicator below trend value

<table>
<thead>
<tr>
<th></th>
<th>Germany</th>
<th>France</th>
<th>Italy</th>
<th>United Kingdom</th>
<th>Belgium</th>
<th>Netherlands</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_{-1}</td>
<td>0.677***</td>
<td>0.015</td>
<td>0.003</td>
<td>0.170</td>
<td>0.349</td>
<td>0.906***</td>
</tr>
<tr>
<td></td>
<td>(2.84)</td>
<td>(0.12)</td>
<td>(0.02)</td>
<td>(0.51)</td>
<td>(1.12)</td>
<td>(2.69)</td>
</tr>
<tr>
<td>$\Delta \Delta y$</td>
<td>0.185</td>
<td>0.257**</td>
<td>0.277**</td>
<td>0.526***</td>
<td>0.461***</td>
<td>-0.155</td>
</tr>
<tr>
<td></td>
<td>(1.43)</td>
<td>(2.31)</td>
<td>(2.57)</td>
<td>(4.19)</td>
<td>(5.16)</td>
<td>(8.1)</td>
</tr>
<tr>
<td>$\Delta \Delta EFP_{t}$</td>
<td>0.761</td>
<td>-0.475</td>
<td>0.135</td>
<td>-0.448</td>
<td>-0.438</td>
<td>0.805*</td>
</tr>
<tr>
<td></td>
<td>(1.32)</td>
<td>(1.49)</td>
<td>(0.67)</td>
<td>(0.88)</td>
<td>(1.22)</td>
<td>(1.80)</td>
</tr>
<tr>
<td>$\Delta \Delta EFP_{t} \cdot \text{dumbc}_{t}$</td>
<td>-1.386**</td>
<td>0.301</td>
<td>-0.194</td>
<td>-0.355</td>
<td>0.268</td>
<td>-1.082*</td>
</tr>
<tr>
<td></td>
<td>(1.98)</td>
<td>(0.63)</td>
<td>(0.80)</td>
<td>(1.12)</td>
<td>(0.55)</td>
<td>(1.66)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.695</td>
<td>0.590</td>
<td>0.955</td>
<td>0.811</td>
<td>0.338</td>
<td>0.588</td>
</tr>
<tr>
<td>R^2 (adjusted)</td>
<td>0.644</td>
<td>0.539</td>
<td>0.947</td>
<td>0.788</td>
<td>0.268</td>
<td>0.471</td>
</tr>
<tr>
<td>SE of regression</td>
<td>0.015</td>
<td>0.008</td>
<td>0.005</td>
<td>0.013</td>
<td>0.018</td>
<td>0.013</td>
</tr>
</tbody>
</table>

Wald test, p-value

- H_0: PI model
- H_0: λ-model
- H_0: mod. λ-model without accelerator
- H_0: $\alpha_1 = \alpha_2$

<table>
<thead>
<tr>
<th></th>
<th>H_0: PI model</th>
<th>H_0: λ-model</th>
<th>H_0: mod. λ-model without accelerator</th>
<th>H_0: $\alpha_1 = \alpha_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p-value$</td>
<td>0.039**</td>
<td>0.129</td>
<td>0.053*</td>
<td>0.084*</td>
</tr>
<tr>
<td></td>
<td>0.107</td>
<td>0.236</td>
<td>0.529*</td>
<td>0.307</td>
</tr>
<tr>
<td></td>
<td>0.050**</td>
<td>0.714</td>
<td>0.429*</td>
<td>0.456</td>
</tr>
<tr>
<td></td>
<td>0.000***</td>
<td>0.014**</td>
<td>0.269*</td>
<td>0.906</td>
</tr>
<tr>
<td></td>
<td>0.000***</td>
<td>0.385</td>
<td>0.584*</td>
<td>0.380</td>
</tr>
<tr>
<td></td>
<td>0.338</td>
<td>0.186</td>
<td>0.096*</td>
<td>0.071*</td>
</tr>
</tbody>
</table>

Explanatory notes: IV estimates of $\Delta c_t = \mu + (\lambda_1 + \lambda_2)\Delta y_t + \theta r_{t-1} + \alpha_1 \Delta EFP_{t-1} + \alpha_2 \Delta \Delta EFP_{t-1} \cdot \text{dumbc}_{t-1} + \varepsilon_t$, based on eq. (6.8) and eq. (6.12); see also notes to Table 6.3.

Table 6.8 shows the estimation results of this version of the modified λ-model. Again, for the same three countries the financial accelerator effect is evident. The impact of the EFP on consumption during periods of a cyclical position below trend is negative, while it is otherwise positive. Last effect is especially large in Germany and the Netherlands. When economic activity is above trend, an increase of the average EFP for consumers may imply that banks tend to lend to more risky borrowers leading to an increase in consumption. For Germany and the Netherlands the hypothesis that the impact of the EFP equals that of the impact during periods when the business cycle is below trend value is rejected at the 10% significance level (see Wald test $\alpha_1 = \alpha_2$). For France, the United Kingdom and Belgium the coefficient with respect to the EFP is about -0.45, though not significant.
6.5.4 Economic assessment empirical results

6.5.4.1 Intertemporal elasticity of substitution

The first economic assessment of the empirical results focuses on the real interest rate sensitivity of consumption. Table 6.9 summarises the implied intertemporal elasticities of substitution, σ, according to the different consumption models. The table shows substantial cross-country differences in the degree of the sensitivity of consumption to the real interest rate. A 1% rise in the real interest rate lowers current consumption by at most 0.2% in France and Italy, about 0.5% in the United Kingdom and Belgium, and around 0.9% in Germany and the Netherlands.

For the United Kingdom the elasticities are close to the values of 0.2 and 0.4, as reported by Sarno and Taylor (1998) and Bayoumi (1993), respectively. Other studies, examining only nondurable consumption, broadly speaking do not find significant real interest rate effect, perhaps because nondurable consumption is less sensitive to monetary policy shocks than the consumption of durable goods as shown by Bernanke and Gertler (1995). Moreover, the strong interest rate effects can be due to the sample period, which is characterised as a period of financial deregulation (Muellbauer and Lattimore, 1995). This may also explain the low interest rate sensitivity of French and Italian consumption, since these two countries were still comparatively highly financially regulated in the 1980s (De Bondt, 1998a).

Table 6.9 Implied intertemporal elasticity of substitution

<table>
<thead>
<tr>
<th></th>
<th>Germany</th>
<th>France</th>
<th>Italy</th>
<th>United Kingdom</th>
<th>Belgium</th>
<th>Netherlands</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ-model</td>
<td>0.376</td>
<td>0.025</td>
<td>-0.016</td>
<td>0.217</td>
<td>0.773</td>
<td>1.035</td>
</tr>
<tr>
<td>Accelerator effect modified λ-model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>0.628</td>
<td>0.046</td>
<td>0.068</td>
<td>0.716</td>
<td>0.673</td>
<td>0.901</td>
</tr>
<tr>
<td>$\Delta_\text{EFP-bc}$</td>
<td>1.177</td>
<td>0.026</td>
<td>0.205</td>
<td>0.445</td>
<td>0.573</td>
<td>0.931</td>
</tr>
<tr>
<td>$\Delta_\text{EFP-bc + bc}$</td>
<td>1.136</td>
<td>0.090</td>
<td>0.237</td>
<td>-0.279</td>
<td>0.533</td>
<td>0.899</td>
</tr>
<tr>
<td>$\Delta_\text{EFP-dumbc}$</td>
<td>0.831</td>
<td>0.020</td>
<td>0.005</td>
<td>0.359</td>
<td>0.648</td>
<td>0.784</td>
</tr>
<tr>
<td>Mean $a)$</td>
<td>0.760</td>
<td>0.050</td>
<td>0.103</td>
<td>0.347</td>
<td>0.734</td>
<td>0.927</td>
</tr>
<tr>
<td>Modified λ-models</td>
<td>0.943</td>
<td>0.046</td>
<td>0.129</td>
<td>0.380</td>
<td>0.607</td>
<td>0.879</td>
</tr>
</tbody>
</table>

Explanatory notes: implied σ computed as estimated θ multiplied by estimated fraction of liquidity-unconstrained consumers, as reported in Table 6.3, 6.4, 6.5, 6.7 and 6.8, respectively; a) negative numbers are set to zero.
6.5.4.2 Financial accelerator effect

The second and last economic evaluation concerns the potential impact of the financial accelerator effect on consumption by focusing on an episode where the interaction between the EFP and the cyclical indicator reaches its absolute minimum, because credit market imperfections matter most in severe recessions. The minimum occurs in one of the quarters of 1981 (see Table 6.10). The highest nearby value of the interaction term occurs around one and half year earlier. The cumulative and average decline in consumption during this episode due to the financial accelerator effect is presented in Table 6.10.

For France, the United Kingdom and Belgium, the impact of the financial accelerator effect is small. For the other countries the cumulative impact on consumption during this episode varies between -2.1% in Italy to -4% in Germany. Assuming that this decline is evenly distributed over the quarters involved, it implies that annual consumption growth can decline due to the financial accelerator effect with about 0.4 percentage point on average per quarter in Germany, Italy and the Netherlands.

Table 6.10 Impact financial accelerator effect

<table>
<thead>
<tr>
<th></th>
<th>Germany</th>
<th>France</th>
<th>Italy</th>
<th>United Kingdom</th>
<th>Belgium</th>
<th>Netherlands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of quarters</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Change in % consumption</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cumulative</td>
<td>-3.99</td>
<td>0.52</td>
<td>-2.08</td>
<td>-0.27</td>
<td>-0.30</td>
<td>-2.76</td>
</tr>
<tr>
<td>Average per quarter</td>
<td>-0.44</td>
<td>0.07</td>
<td>-0.35</td>
<td>-0.07</td>
<td>-0.07</td>
<td>-0.46</td>
</tr>
</tbody>
</table>

Explanatory notes: impact based on estimates reported in Table 6.5.

6.6 Concluding remarks

For the monetary authorities perhaps the most relevant conclusion - besides more general insights in consumption behaviour in Europe - is that this study supports the view that credit channels of monetary policy are a macroeconomic relevant financial propagation mechanism. The degree of relevance, however, differs between the European countries considered. The empirical results show a significant accelerator effect of the EFP on total private consumption for Germany, Italy and the Netherlands. In recessions this financial accelerator effect may lead to a decline in annual consumption growth by about 0.4 percentage point per quarter. In contrast,
for France, the United Kingdom and Belgium no significant financial propagation mechanism has been found.

Another implication for monetary policy, especially within EMU context, is the cross-country difference regarding the intertemporal elasticity of substitution. Consumption is comparatively insensitive to movements in the real interest rate in France and Italy, probably because both countries were subject to relatively high financial regulation in a part of the sample period. If this is the case, it illustrates that financial liberalisation increases the interest rate sensitivity of consumption. The estimation results show that an increase in the real interest rate with 1 percentage point leads to a decline in current real per capita consumption of at most 0.2% in France and Italy, around 0.5% in the United Kingdom and Belgium and about 0.9% in Germany and the Netherlands.