Genetic loci associated with fluoride resistance in streptococcus mutans

Liao, Y.; Yang, J.; Brandt, B.W.; Li, Jiyao; Crielaard, W.; van Loveren, C.; Deng, D.M.

Published in:
Frontiers in Microbiology

DOI:
10.3389/fmicb.2018.03093

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Supplementary Table 1. Primers used in this study.

<table>
<thead>
<tr>
<th>Gene name</th>
<th>Primer</th>
<th>Sequence(5'-3')</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>eno</td>
<td>Forward</td>
<td>CGGATATGATGTTCTGAT</td>
<td>Real-time PCR</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>ACCAAGAATAGCATTAGCA</td>
<td></td>
</tr>
<tr>
<td>glpF</td>
<td>Forward</td>
<td>GTTACCAGATACATTACCA</td>
<td>Real-time PCR</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>TACTGCTCTACTCGTAT</td>
<td></td>
</tr>
<tr>
<td>mut</td>
<td>Forward</td>
<td>ATGGTGGAGCGATATGTA</td>
<td>Real-time PCR</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>TGTTTAGAAAGACGAATGACT</td>
<td></td>
</tr>
<tr>
<td>perA</td>
<td>Forward</td>
<td>TTAATGCTGCTGTGATG</td>
<td>Real-time PCR</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>TGCTGATAAGGTAAAACTGTTAG</td>
<td></td>
</tr>
<tr>
<td>perB</td>
<td>Forward</td>
<td>AGATATGCTATCCTGGTA</td>
<td>Real-time PCR</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>TATGGTCTTCCTCTTCAA</td>
<td></td>
</tr>
<tr>
<td>pepX</td>
<td>Forward</td>
<td>TATGGCTGACTGGAATGG</td>
<td>Real-time PCR</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>TTCCGCAATAATGACCTTA</td>
<td></td>
</tr>
<tr>
<td>pyk</td>
<td>Forward</td>
<td>GGTGAAGATGGCTATGG</td>
<td>Real-time PCR</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>CATGGCTGCTTCGTAAT</td>
<td></td>
</tr>
<tr>
<td>mutp_gfp</td>
<td>Forward</td>
<td>CATATGAGCCTCTCCTTTACTTTA</td>
<td>Construction of reporter strains</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>GCAATGCACTGATATTACTGGCTATA</td>
<td></td>
</tr>
</tbody>
</table>
Supplementary Table 2. Single nucleotide polymorphisms identified from the genomes of *S. mutans* UA159 and UA159-FR

<table>
<thead>
<tr>
<th>SNP base</th>
<th>Amino acid</th>
<th>SNP base</th>
<th>Amino acid</th>
<th>mutation type</th>
<th>Gene annotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>V</td>
<td>T</td>
<td>F</td>
<td>non_syn(^a)</td>
<td>transcriptional regulator (SMU_112c)</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>C</td>
<td>S</td>
<td>non_syn</td>
<td>hypothetical protein (SMU_448)</td>
</tr>
<tr>
<td>C</td>
<td>S</td>
<td>G</td>
<td>*(^b)</td>
<td>non_syn</td>
<td>DNA-directed RNA polymerase subunit omega (rpoZ)</td>
</tr>
<tr>
<td>AA</td>
<td>N</td>
<td>CG</td>
<td>R</td>
<td>non_syn</td>
<td>glucosyltransferase-1 (gtfB)</td>
</tr>
<tr>
<td>C</td>
<td>R</td>
<td>T</td>
<td>C</td>
<td>non_syn</td>
<td>GMP synthase (guaA)</td>
</tr>
<tr>
<td>C</td>
<td>T</td>
<td>T</td>
<td>I</td>
<td>non_syn</td>
<td>histidine kinase sensor CiaH (ciaH)</td>
</tr>
<tr>
<td>A</td>
<td>E</td>
<td>G</td>
<td>G</td>
<td>non_syn</td>
<td>pyruvate kinase (pyk)</td>
</tr>
<tr>
<td>C</td>
<td>T</td>
<td>T</td>
<td>I</td>
<td>non_syn</td>
<td>enolase (eno)</td>
</tr>
<tr>
<td>A</td>
<td>*</td>
<td>T</td>
<td>L</td>
<td>non_syn</td>
<td>hypothetical protein (SMU_1292c)</td>
</tr>
<tr>
<td>T</td>
<td>S</td>
<td>C</td>
<td>G</td>
<td>non_syn</td>
<td>transposase, ISSmu1 (SMU_565c)</td>
</tr>
<tr>
<td>A</td>
<td>S</td>
<td>G</td>
<td>P</td>
<td>non_syn</td>
<td>transposase, IS150-like (SMU_1370c)</td>
</tr>
<tr>
<td>G</td>
<td>P</td>
<td>A</td>
<td>L</td>
<td>non_syn</td>
<td>transposase, IS150-like (SMU_1370c)</td>
</tr>
<tr>
<td>A</td>
<td>G</td>
<td>intergenic region</td>
<td>Downstream: SMU_t14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>T</td>
<td>intergenic region</td>
<td>Downstream: SMU_t14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>G</td>
<td>intergenic region</td>
<td>Downstream: hippurate hydrolase (SMU_318)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>A</td>
<td>intergenic region</td>
<td>Downstream: hippurate hydrolase (SMU_318)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>G</td>
<td>intergenic region</td>
<td>Downstream: hippurate hydrolase (SMU_318)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>G</td>
<td>intergenic region</td>
<td>Downstream: hippurate hydrolase (SMU_318)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>A</td>
<td>intergenic region</td>
<td>Downstream: glycerol uptake facilitator protein (glpF); x-prolyl-dipeptidyl aminopeptidase (pepX)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>A</td>
<td>intergenic region</td>
<td>Downstream: Mg(^{2+})/citrate transporter (SMU_1013c); hypothetical protein (SMU_1014)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>A</td>
<td>intergenic region</td>
<td>Upstream(^c): hypothetical proteins (SMU_1546 and SMU_1547c)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>T</td>
<td>intergenic region</td>
<td>Downstream: transcriptional regulator (SMU_1647c)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>T</td>
<td>intergenic region</td>
<td>Downstream: SMU_t42</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) nonsyn: non-synonymous coding SNP.
\(^b\) *: stop codon.
\(^c\) downstream: the gene / genes downstream the intergenic region with the SNP.
\(^d\) upstream: the gene / genes upstream the intergenic region with the SNP.
Supplementary Figure 1. Growth curve of *S. mutans* UA159 and UA159-FR in the absence of NaF in BHI broth. Mean optical density at 600 nm ± standard deviation is shown. This experiment was performed with triplicates.
Supplementary Figure 2. Growth of *S. mutans* (A) UA159 and (B) UA159-FR in BHI broth supplemented with 0, 5, 10, 20, 40, 60 mM NaF. Data are expressed as means ± standard deviation of triplicates.
Supplementary Figure 3. Fluorescence intensities of *mutp* reporter strains, *S. mutans* UA159 containing the wild-type *mutp*, *mutp* from C180-2FR, or *mutp* from UA159-FR. ***p < 0.0005.