UvA-DARE (Digital Academic Repository)

Postpolio syndrome: Clinical and epidemiological studies

Ivanyi, B.

Publication date
1999

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

Download date: 11 Oct 2023
Chapter 5

General discussion

In this thesis we have examined the role of neural BNC and somatosensory activity...
68-postpolio syndrome
Postpolio syndrome

Pathogenesis
The pathogenesis of postpolio syndrome has as yet not been elucidated. Although this was not the objective of this thesis, we have found some support for two of the currently proposed theories. It is hypothesized that new muscle weakness in postpolio patients is due to the failure of an ongoing process of remodeling the size of the motor units. Reinnervation is needed to compensate for the loss of motor neurons caused by the acute polio infection. Motor neurons gradually become oversized due to reinnervation. These large motor neurons eventually cannot meet the metabolic demands of the reinnervated muscle fibers and result in the breakdown of terminal nerve branches. It has been suggested, that new muscle weakness may develop when reinnervation finally fails and denervation takes over, resulting in decreasing motor unit size. The results of our macro EMG study support this theory as they show greatly enlarged motor units in polio survivors and a decrease in the motor unit size over time in patients with increasing muscle weakness. Nevertheless, studies with larger numbers of patients are needed before final conclusions can be made. The question still remains what precisely causes this late decompensation. Another theory focuses on the chronic overuse in polio survivors that may cause the postpolio syndrome. This theory is supported by our epidemiological data. The presence of neuromuscular complaints during the stable period after recovery from polio is a risk indicator of the late complaints of increased muscle weakness. These early neuromuscular complaints may be indicative of early overuse, causing the later decompensation. However, the conclusions on pathogenesis, based on these epidemiological data are merely speculative. Further research on the effects of physical activity on the neuromuscular system compromised by a previous polio infection is warranted. Development of animal models affected by polio may open avenues to study the pathophysiology of compensatory mechanisms following acute polio and the subsequent decompensation.

Diagnostic measures
In the early studies on postpolio patients, EMG and muscle biopsy findings were thought to be specific for the postpolio syndrome. However, this opinion was abandoned when polio survivors with stable neuromuscular conditions were investigated. Thus, conventional electrophysiological examination and morphology of the skeletal muscles failed to differentiate between postpolio patients and polio survivors with stable neuromuscular conditions. Hence, these tests are not specific for the postpolio syndrome but are indicative of previous polio infection and of the compensatory mechanisms that occur during the recovery period from polio.

In this thesis we have examined the value of macro EMG and computed tomography of
the skeletal muscles as diagnostic means for the postpolio syndrome. One can conclude from the results, that macro EMG could be a diagnostic tool for postpolio patients, though further studies with larger patient numbers are still needed. When designing future studies, one has to consider that different muscles in each patient can show different macro EMG findings, depending on the extent of the damage during the acute polio, following compensatory mechanisms and the superimposed changes due to late deterioration. Macro EMG technique causes some discomfort to the patients, therefore only a limited number of muscles can be examined in each patient. Recently a non-invasive multi-electrode surface EMG technique was described to obtain information about the motor unit size allowing more extensive examination of each patient. From the results of the computed tomography study we conclude that computed tomography is not a satisfactory diagnostic tool for the postpolio syndrome. However, this investigative tool appeared to be valuable in the clinical setting for the assessment of the neuromuscular status in individual patients. Computed tomography may show fatty changes in currently symptomatic muscles, which show normal strength and had been considered as unaffected during the acute polio period.

New muscle weakness

The presence of progressive muscle weakness is considered essential for the diagnosis of the postpolio syndrome. Nevertheless, new muscle weakness is a difficult concept in this context. Complaints about progressive muscle weakness in postpolio patients can not always be confirmed by muscle strength assessment. We must realize, that the new muscle weakness is superimposed onto residual weakness that has been present since the acute polio. Therefore, unlike in healthy persons, the sole presence of paresis is not sufficient to support the diagnosis postpolio syndrome. Progression of the muscle weakness must be confirmed by serial muscle strength assessments. In case there is slow progression of the new muscle weakness, a long term follow-up is needed. The distribution of muscle weakness differs in every patient and therefore it is difficult to assess the rate of the overall progression of muscle weakness in a group of postpolio patients. In the published studies, the duration of the follow-up and the methods to calculate the overall muscle strength in a group of postpolio patients show great differences amounting to estimates of the rate of progression of the new muscle weakness of about 1% per year and to 20% reduction over a 4-5 year period. Some authors still question the progressive nature of the muscle weakness in the postpolio syndrome. To resolve the present controversy, we advocate future studies involving larger patient numbers and a longer follow-up period than in our present study which had an average follow-up of only 2.1 years. However, detection of new muscle weakness in single muscles will be hampered by stable muscle strength in the majority of the muscles. Therefore, we conclude that there is not enough ground to claim at present that the diagnosis postpolio syndrome must be confirmed by new muscle weakness on serial
muscle strength measurements. In the clinical setting, postpolio syndrome can only be referred to as a complex of new neuromuscular complaints and symptoms in survivors of acute polio. The use of the term postpoliomyelitis muscular atrophy suggesting a clinical picture distinctive of postpolio syndrome is unfounded.

Epidemiology
The epidemiological results given in this thesis are the first data on the late onset polio sequelae in the Netherlands. We show that postpolio syndrome is a frequent cause of increasing disabilities and handicaps in polio survivors. We therefore advocate more research into preventive and therapeutic measures for postpolio syndrome and more attention within the field of rehabilitation medicine for polio survivors.

References
Postpolio Syndrome

72-postpolio syndrome

Postpolio syndrome (PPS) is a chronic condition that occurs in a small percentage of survivors of polio who are now elderly. It is characterized by the progressive decline of muscle strength and endurance, often years or decades after the polio infection. The onset of symptoms typically occurs in the fifth or sixth decade of life and can include fatigue, muscle weakness, and pain.

The pathophysiology of PPS is not fully understood, but it is thought to involve microvascular changes in muscle tissue. The exact cause of these changes is unknown, but they may be related to aging and the gradual wear and tear on the body's muscle and nerve tissues. The progression of muscle weakness and fatigability is often gradual and can be accompanied by a decrease in physical function and quality of life.

The diagnosis of PPS is often based on a combination of clinical symptoms and a history of polio. Patients may undergo a variety of tests to assess muscle strength and function, including muscle biopsies, electromyography, and nerve conduction studies. These tests help to rule out other conditions that may cause similar symptoms.

The treatment of PPS is typically focused on managing symptoms and improving quality of life. This may include physical therapy, occupational therapy, and medications to manage fatigue and pain. In some cases, surgical procedures may be used to treat severe muscle weakness or other complications.

Despite the challenges associated with PPS, there is hope for improvement and better management of symptoms. Advances in medical research and technology are opening up new possibilities for treatment and therapy. If you or someone you know is affected by PPS, it is important to work closely with healthcare providers to develop an appropriate treatment plan.

References: