Intermittent ptosis due to large exophoria
Langerhorst, C.T.; Wenniger-Prick, L.J.J.M.

Published in:
British journal of ophthalmology

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Corneal wound healing following laser in situ keratomileusis (LASIK): a histopathological study in rabbits

Takuji Kato, Kiyoo Nakayasu, Yuji Hosoda, Yasuo Watanabe and Atsushi Kanai

Br. J. Ophthalmol. 1999;83;1302-1305

Updated information and services can be found at:
http://bjo.bmjjournals.com/cgi/content/full/83/11/1302

These include:

References
This article cites 12 articles, 2 of which can be accessed free at:
http://bjo.bmjjournals.com/cgi/content/full/83/11/1302#BIBL

3 online articles that cite this article can be accessed at:
http://bjo.bmjjournals.com/cgi/content/full/83/11/1302#otherarticles

Rapid responses
You can respond to this article at:
http://bjo.bmjjournals.com/cgi/eletter-submit/83/11/1302

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article

Topic collections
Articles on similar topics can be found in the following collections

Ophthalmology (1573 articles)

Notes

To order reprints of this article go to:
http://www.bmjjournals.com/cgi/reprintform

To subscribe to British Journal of Ophthalmology go to:
http://www.bmjjournals.com/subscriptions/
Corneal wound healing following laser in situ keratomileusis (LASIK): a histopathological study in rabbits

Takui Kato, Kiyoo Nakayasu, Yuji Hosoda, Yasuo Watanabe, Atsushi Kanai

Abstract

Aims—To investigate the histopathological changes of rabbit corneas after laser in situ keratomileusis (LASIK) and to evaluate the corneal wound healing process.

Methods—A LASIK was performed on white rabbit eyes. Postoperatively, rabbits were killed on days 1 and 7, and at 1, 3, and 9 months.

Results—Periodic acid Schiff (PAS) positive material and disorganised collagen fibre were seen along the interface of the corneal flap even 9 months after operation.

Conclusions—The wound healing process still continued at 9 months after LASIK indicating that a much longer time than expected was required for corneal wound healing following LASIK.

Results

1 DAY AFTER LASIK
Tissue obtained on day 1 after LASIK and stained with haematoxylin and eosin revealed a hyperplastic epithelial plug at the edge of the incision (Fig 1A). Only a few polymorphonuclear leucocytes were observed at the wound margin. Although normal staining for type IV collagen was seen at the centre of the cornea (Fig 1B), staining for type IV collagen was observed beneath the cut edge. Although no staining for type IV collagen was observed adjacent to the wound made by the microkeratome blade passing through the epithelium into the stroma (Fig 1C). Under the electron microscopy, the corneal flap was swollen and wavy, and collagen lamellae with shrunken keratocytes were present (Fig 1D).

7 DAYS AFTER LASIK
Seven days after the LASIK procedure, the epithelial plug was smaller (Fig 1E). At the wound margin, diffuse staining for type IV collagen was seen directly under the epithelial layer indicating that the wound healing of the epithelial basement membrane was not yet complete (Fig 1F). Activated keratocytes were present beneath the cut edge. Although no staining for type IV collagen was observed along the lamellar incision, positive staining for type IV collagen was seen around the portion of epithelial ingrowth (Fig 2A).
1 MONTH AFTER LASIK

Haematoxylin and eosin stained sections demonstrated that the wound margin recovered to the level of a normal cornea. The section stained with PAS, however, showed positively stained material deposited along the lamellar interface (Fig 2B).

3 MONTHS AFTER LASIK

Haematoxylin and eosin stained sections appeared almost normal at 3 months after surgery (Fig 2C). Surprisingly, although staining for type IV collagen at the wound margin became more linear, diffuse staining for type IV collagen was seen even at this post LASIK time (Fig 2D).

9 MONTHS AFTER LASIK

PAS staining demonstrated that PAS positive material was still deposited along the lamellar incision (Fig 2E). Electron microscopy revealed that the intact collagen bundles had disappeared at the interface and an approximately 5 µm thick disorganised collagen fibre layer was seen along the interface (Fig 2F).

Discussion

Several experimental studies have evaluated portions of the corneal wound healing after LASIK. Amm et al7 examined the clinical and histological differences between photorefractive keratectomy (PRK) and LASIK in rabbits. They reported that LASIK ensured quick wound healing with minimal tissue proliferation which is in contrast with the anterior stromal disorganisation after PRK. Perez-Santoja et al9 examined immunoreactivity for the extracellular A cellular fibronectin and tenasin. Their results showed activated keratocytes were no longer identified at the wound margin 2.5 and 5 months after LASIK. However, fibronectin and tenasin immunoreactivities could still be observed.

Based on the present data combined with these previous reports on the biological response of the cornea after LASIK, the inflam-
matory reaction is slight and the healing reaction is weak. Such characteristics of the biological response of the cornea after LASIK are considered to have merits and demerits—that is, the cornea after LASIK is stable in terms of the refractive changes because the inflammatory and wound healing reaction are weak, and there is no subepithelial haze because epithelial cells and keratocytes on the optical axis are not activated. On the other hand, as observed in this study, the wound healing was delayed with LASIK, particularly in the interface area. A disorganised extracellular matrix was deposited along the lamellar incision even 9 months after LASIK suggesting that wound healing process might be sustained for longer periods than expected. It should be emphasised that the integrity or structural strength of the wound may not be completely restored at that time. Such drawbacks of LASIK have not been pointed out in previous reports. Thus, additional questions on the drawbacks of LASIK must be answered.

With regard to epithelial ingrowth, Helena et al. present four eyes (three cases) of epithelial ingrowth within the lamellar interface after LASIK. All of them developed an interface opacity at the epithelial ingrowth portion. Unfortunately, the authors did not perform histological studies so the components of the scar tissue were not determined. In our present study, staining of type IV collagen was not seen in the ordinary interface area, but type IV collagen was positive around the epithelium in the area where the epithelial ingrowth occurred. This is an interesting phenomenon and has not been described before. This suggests that the deposition of the basement membrane components is accountable for the haze produced on the interface by the epithelial ingrowth.

In summary, these results indicated that the wound healing process after LASIK is not associated with inflammation and is slow and not completed even 9 months after the surgery. Interspecies differences may exist in the wound
healing response so we must use caution in extrapolating these data to human cases.