UvA-DARE (Digital Academic Repository)

Mass loss and evolution of asymptotic giant branch stars in the Magellanic Clouds

van Loon, J.T.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1 Introduction 1

1.1 The evolution of AGB stars 1

1.2 Mass loss from AGB stars 1

1.3 Unsolved problems related to the evolution and mass loss of AGB stars 2

1.4 The study of AGB stars in the Magellanic Clouds 3

1.5 Outline of the work described in this thesis 5

2 Obscured Asymptotic Giant Branch stars in the Magellanic Clouds: New IRAS counterparts 7

2.1 Introduction 7

2.2 Observations 8

2.2.1 Sample 8

2.2.2 J and K-band imaging photometry 9

2.2.3 BVRI-band imaging photometry 10

2.3 Results 11

2.3.1 Identification with IRAS sources 11

2.3.2 Serendipitous detections 11

2.3.3 Galaxies as a probe of the interstellar extinction inside the LMC 14

2.4 The nature of the IRAS counterparts 17

2.4.1 Chemical classification from colours and magnitudes 17

2.4.2 Post-AGB star candidates 21

2.4.3 The stellar counterpart of LI-LMC1821 21

2.5 Bolometric luminosities 23

2.6 Discussion 24

2.6.1 AGB stars 24

2.6.2 Future searches for mass-losing AGB stars 27

2.6.3 Post-AGB stars 27

2.6.4 Thermal Pulse stars 31

2.7 Summary 32

3 Obscured Asymptotic Giant Branch stars in the Magellanic Clouds: Carbon stars and OH/IR stars 35

3.1 Introduction 35

3.2 Mid-infrared imaging photometry 37

3.3 Near-infrared photometry 38

3.4 A search for OH maser emission from two LMC fields 38

3.4.1 OH Observations 39
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.2 Search strategy</td>
<td>39</td>
</tr>
<tr>
<td>3.4.3 OH detections</td>
<td>40</td>
</tr>
<tr>
<td>3.5 Optical/NIR spectroscopy of IR stars in the LMC</td>
<td>40</td>
</tr>
<tr>
<td>3.5.1 IRAS04509–6922 and IRAS04516–6902</td>
<td>41</td>
</tr>
<tr>
<td>3.5.2 A cluster carbon star near IRAS05298–6957</td>
<td>43</td>
</tr>
<tr>
<td>3.6 Carbon stars in a ((K - [12]) versus ((H - K)) diagram</td>
<td>44</td>
</tr>
<tr>
<td>3.6.1 The Milky Way</td>
<td>44</td>
</tr>
<tr>
<td>3.6.2 Magellanic Clouds</td>
<td>44</td>
</tr>
<tr>
<td>3.6.3 Classification by chemical type</td>
<td>45</td>
</tr>
<tr>
<td>3.6.4 Red supergiants</td>
<td>48</td>
</tr>
<tr>
<td>3.7 Luminosities</td>
<td>49</td>
</tr>
<tr>
<td>3.7.1 Variability</td>
<td>49</td>
</tr>
<tr>
<td>3.7.2 Bolometric luminosities</td>
<td>50</td>
</tr>
<tr>
<td>3.7.3 Luminosity functions</td>
<td>51</td>
</tr>
<tr>
<td>3.8 Discussion</td>
<td>51</td>
</tr>
<tr>
<td>3.8.1 Completeness and selection effects</td>
<td>51</td>
</tr>
<tr>
<td>3.8.2 Mid-IR variability</td>
<td>54</td>
</tr>
<tr>
<td>3.8.3 Frequency of carbon stars</td>
<td>54</td>
</tr>
<tr>
<td>3.8.4 The most luminous AGB stars</td>
<td>55</td>
</tr>
<tr>
<td>3.8.5 Hot Bottom Burning</td>
<td>56</td>
</tr>
<tr>
<td>3.9 Conclusions</td>
<td>56</td>
</tr>
<tr>
<td>4 Luminous carbon stars in the Magellanic Clouds</td>
<td>57</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>57</td>
</tr>
<tr>
<td>4.2 Observations</td>
<td>58</td>
</tr>
<tr>
<td>4.3 Results</td>
<td>60</td>
</tr>
<tr>
<td>4.3.1 Classification into carbon and M stars</td>
<td>60</td>
</tr>
<tr>
<td>4.3.2 Strength of 3 (\mu)m absorption</td>
<td>62</td>
</tr>
<tr>
<td>4.3.3 Luminous carbon stars</td>
<td>64</td>
</tr>
<tr>
<td>4.4 Discussion</td>
<td>65</td>
</tr>
<tr>
<td>4.4.1 Luminous carbon stars</td>
<td>65</td>
</tr>
<tr>
<td>4.4.2 Carbon and nitrogen enrichment</td>
<td>65</td>
</tr>
<tr>
<td>5 Discovery of the first extra-galactic SiO maser</td>
<td>69</td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>69</td>
</tr>
<tr>
<td>5.2 Observations</td>
<td>69</td>
</tr>
<tr>
<td>5.3 Detection criteria</td>
<td>70</td>
</tr>
<tr>
<td>5.4 Results</td>
<td>70</td>
</tr>
<tr>
<td>5.5 Discussion</td>
<td>72</td>
</tr>
<tr>
<td>5.6 Conclusions</td>
<td>74</td>
</tr>
<tr>
<td>6 Discovery of (\text{H}_2\text{O}) maser emission from the red supergiant IRAS04553–6825 in the Large Magellanic Cloud</td>
<td>75</td>
</tr>
<tr>
<td>6.1 Introduction</td>
<td>75</td>
</tr>
<tr>
<td>6.2 Observations and Results</td>
<td>76</td>
</tr>
<tr>
<td>6.2.1 (\text{H}_2\text{O}) radio observations</td>
<td>76</td>
</tr>
<tr>
<td>6.2.2 Call triplet echelle spectroscopy</td>
<td>76</td>
</tr>
</tbody>
</table>
6.3 Discussion ... 78
 6.3.1 Circumstellar H$_2$O masers in the LMC 78
 6.3.2 Introduction to IRAS04553−6825 78
 6.3.3 Similarities between IRAS04553−6825 and NML Cyg 79
 6.3.4 Location of the H$_2$O masers 80

7 ISO observations of obscured Asymptotic Giant Branch stars in the Large
 Magellanic Cloud ... 81
 7.1 Introduction .. 81
 7.2 Source selection .. 83
 7.3 IRAS data .. 84
 7.4 ISO observations .. 87
 7.4.1 Near-IR photometry .. 88
 7.5 ISO results and comparison with IRAS photometry 88
 7.6 Discussion .. 93
 7.6.1 Chemical types from ISO spectroscopy 93
 7.6.2 IR colour-colour diagrams 96
 7.6.3 Comments on particular objects 103
 7.7 Conclusions .. 106

8 IRAS04496−6958: A luminous carbon star with silicate dust in the Large
 Magellanic Cloud ... 107
 8.1 Introduction .. 107
 8.2 ISO observations .. 108
 8.3 Discussion .. 109
 8.3.1 Properties of the circumstellar dust of IRAS04496−6958 109
 8.3.2 The origin of the oxygen-rich dust around the carbon star IRAS04496−6958112

9 On the metallicity dependence of AGB mass loss 113
 9.1 Introduction .. 113
 9.2 New near-IR counterparts of IRAS sources in the LMC 114
 9.3 Measuring mass-loss rates and dust-to-gas ratios 115
 9.4 Samples of dust-enshrouded AGB stars 116
 9.5 Expansion velocities ... 119
 9.6 Dust-to-gas ratios in circumstellar envelopes 121
 9.7 Discussion .. 123

10 Mass-loss rates and luminosity functions of dust-enshrouded AGB stars and
 red supergiants in the LMC ... 127
 10.1 Introduction .. 127
 10.2 Input for the model fitting 128
 10.2.1 The radiative transfer code 128
 10.2.2 Observed spectral energy distributions 128
 10.2.3 Spectral energy distributions in the models 129
 10.2.4 Dust properties .. 129
 10.2.5 Geometry of the circumstellar envelope 130
 10.2.6 Fitting strategy ... 131
 10.3 Results of model fitting .. 131
10.3.1 M-type stars with ISO spectra .. 131
10.3.2 M-type stars without ISO spectra 136
10.3.3 Carbon stars with ISO spectra 136
10.3.4 Carbon stars without ISO spectra 138
10.3.5 IRAS04496–6958 .. 138
10.4 Discussion ... 139
10.4.1 Luminosities ... 139
10.4.2 Mass-loss rates .. 144
10.5 Summary ... 147

11 Summary and Future ... 149
11.1 Summary ... 149
11.2 Future ... 150

A TIMMI standard stars ... 151

B IR colour relations .. 153

C ISO photometry ... 157
C.1 CAM 12 μm imaging-photometry 157
C.2 PHOT-P 12 and 25 μm chopped measurements 158
C.3 PHOT-C 60 μm chopped measurements 159
C.4 PHOT-C 60 μm mapping observations 160

D ISO spectroscopy .. 161
D.1 CAM-CVF spectro-photometry ... 161
D.2 PHOT-S spectro-photometry ... 161

References ... 165

Samenvatting ... 173

Acknowledgements ... 175