Heterogeneity of Hazard Rates in Insurance.
Spreeuw, J.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1 Introduction 1
1.1 Motivation 1
1.2 Outline of the thesis 2
1.3 The common themes 5

2 Unobserved Heterogeneity, Solidarity and Experience Rating in Individual Life Insurance 7
2.1 Introduction 7
2.2 The non-life insurance case 9
2.3 A general individual life insurance treaty 10
 2.3.1 The stochastic process of visiting several states 11
 2.3.2 The benefit and premium payment functions 11
2.4 Solidarity measures 13
 2.4.1 Considering the entire period of insurance 13
 2.4.2 Considering part of the entire period 15
2.5 Relations between entire and partial periods 20
2.6 The hierarchical Markov chain 22
 2.6.1 General case 22
 2.6.2 Fully discrete insurances and annuities in a classical two-states framework 24
2.7 Example: frailty models 26
2.8 Conclusions and final comments 35

3 Proportional Mortality Result Sharing: Loss Variance and Solidarity Aspects 37
3.1 Introduction 37
3.2 The model and its basic assumptions 39
3.3 Loss variance 42
3.4 Solidarity aspects 44
 3.4.1 Division among the survivors 46
 3.4.2 Division among the heirs of the deaths 55
 3.4.3 Solidarity related to the volume of transfers 62
3.5 Conclusions, final comments and recommendations for further research 67
Appendix: Derivatives of RSS in Subsection 3.4.3 69
CONTENTS

4 Proportional Mortality Result Sharing: Applications of Majorization Order
4.1 The relevant quantity and common points .. 74
4.2 First model: average mortality rate known 75
4.3 Second model: group specific factors ... 82
4.4 Conclusions and final comments ... 88
Appendix: Second derivative in Section 4.3 .. 89

5 The Probationary Period as a Screening Device 93
5.1 Introduction .. 93
5.2 The basic assumptions and the nature of a probationary period 96
5.3 Monopolistic insurer ... 98
 5.3.1 Symmetry of information ... 98
 5.3.2 Asymmetry of information ... 101
 5.3.3 Application: the exponential utility function 107
5.4 Fully competitive market .. 111
 5.4.1 Symmetry of information ... 111
 5.4.2 Asymmetry of information .. 114
 5.4.3 Application: the exponential utility function 119
5.5 Comparison between equilibria for both insurance markets 127
 5.5.1 In general ... 127
 5.5.2 The special case of constant absolute risk aversion 127
5.6 Conclusions, final comments and recommendations for further research 129
Appendix A: First order conditions of optimization problem (5.31) 132
Appendix B: Proof of the theorems of Subsection 5.3.2 133
Appendix C: First order conditions of optimization problem (5.79) 136
Appendix D: Proofs of the theorems of Subsection 5.4.2 136

6 Prediction of Claim Numbers Based on Hazard Rates 141
6.1 Introduction .. 141
6.2 The run-off triangle of claim numbers ... 142
6.3 Overview of comparable literature on prediction of claim numbers 142
6.4 The hazard rate approach ... 144
 6.4.1 Translating the problem in terms of hazard functions 145
 6.4.2 A non-parametric method considering only development year ... 147
 6.4.3 The proportional hazards specification 148
6.5 The Cox model applied to prediction of claim numbers 148
 6.5.1 The chain ladder method .. 150
 6.5.2 The separation method ... 152
6.6 Numerical example .. 153
6.7 Conclusions and recommendations for further research 157

7 Conclusions ... 159

Bibliography ... 163
Chapter 1

Introduction

1.1 Motivation

As the title indicates, in this theme three themes are combined. Generally stated, a
biased rate is the probability of a given event at some point of time, conditionally
given what has happened prior to that time. As the description above, there is always
a one-dimensional time dealing with biased rates. An elementary example of a biased
rate is found in the human life contingencies: the probability of dying in a certain
year one literally given survival until the beginning of that year. A biased rate can be
applied to a group like an issue made up a figure such

We are also considering the theme of heterogeneity. This means that we take it to believe the fact that the heat rate and
automobile rates are not the same. For automobile rates
and 30 years the same probability of survive the next 30 years, and not all then grouped
with the same employment history have the same chance to find a job within the same
years.

The word "heterogeneity" simply improves the best of applications in the best and contemporary
times, improve their work to which human rate primarily refer and accurate for construction
an insurance profile and potentially insured individuals.

together for some time "heterogeneity" are appeared in the insurance in which all those
already mentioned are considered; human rate measures, instead of forced rate rate rate
and those should apply applications in several fields such as reliability and stability
studies, as well as in dermatology, not at all scientist insured in mathematics
and insurance examples.

The insurance model is largely based on the biased rate approach, since life
experience mainly concern several years and there are always probabilities applying for
the probability to die or an insurance disabled. On the other hand in the event of
the heterogeneity aspect plays a specific role. Indeed, the traditional assumption in
field of demography, i.e., that an individual person when they are identical with respect to
the event between applied (usually these are restricted to age, gender, state of
health and somewhat another hidden), no lend to life history, represent identical rates.
In other words, differences in risk profiles between anesthetized allocated, to the same risk
classes are expected. An exception is Northern Ireland, discounting experimentally in group