Heterogeneity of Hazard Rates in Insurance.
Spreeuw, J.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
CONTENTS

4 Proportional Mortality Result Sharing: Applications of Majorization Order 73
4.1 The relevant quantity and common points 74
4.2 First model: average mortality rate known 75
4.3 Second model: group specific factors 82
4.4 Conclusions and final comments 88
Appendix: Second derivative in Section 4.3 89

5 The Probationary Period as a Screening Device 93
5.1 Introduction 93
5.2 The basic assumptions and the nature of a probationary period 96
5.3 Monopolistic insurer 98
 5.3.1 Symmetry of information 98
 5.3.2 Asymmetry of information 101
 5.3.3 Application: the exponential utility function 107
5.4 Fully competitive market 111
 5.4.1 Symmetry of information 111
 5.4.2 Asymmetry of information 114
 5.4.3 Application: the exponential utility function 119
5.5 Comparison between equilibria for both insurance markets 127
 5.5.1 In general 127
 5.5.2 The special case of constant absolute risk aversion 127
5.6 Conclusions, final comments and recommendations for further research 129
Appendix A: First order conditions of optimization problem (5.31) 132
Appendix B: Proof of the theorems of Subsection 5.3.2 133
Appendix C: First order conditions of optimization problem (5.79) 136
Appendix D: Proofs of the theorems of Subsection 5.4.2 136

6 Prediction of Claim Numbers Based on Hazard Rates 141
6.1 Introduction 141
6.2 The run-off triangle of claim numbers 142
6.3 Overview of comparable literature on prediction of claim numbers 142
6.4 The hazard rate approach 144
 6.4.1 Translating the problem in terms of hazard functions 145
 6.4.2 A non-parametric method considering only development year 147
 6.4.3 The proportional hazards specification 148
6.5 The Cox model applied to prediction of claim numbers 148
 6.5.1 The chain ladder method 150
 6.5.2 The separation method 152
6.6 Numerical example 153
6.7 Conclusions and recommendations for further research 157

7 Conclusions 159

Bibliography 163
Chapter 1

Introduction

1.1 Motivation

In the title index, three themes are combined. Generally stated, a
hazard rate is the probability of a certain event at some point of time, conditionally
given what has happened prior to that time. As the description shows, there is always
a one-dimensional score dealing with hazard rates. An elementary example of a hazard
rate is linked to uncertainty life-contingencies: the probability of dying in a certain
year can usually only survive until the beginning of that year. A hazard rate can be
applied to a number of as an hour end of a Figure 1.2.

We also consider the theme of heterogeneity. This means that we take into account the
fact that the hazard rates in similar groups are not the same. For example, men
and women have the same probability to survive the ages 50-60 years, but are
not necessarily endowed with the same employment history, have the same chance to
find a job within the same time.

The second theme, namely, embraces the first three areas of the last example: death,
which has to be provided for in future. For this reason, insurance policies and potentially
insured individuals should try to score their contributions are affected in the
insurance to which all three
so-called risk-variables are considered. Hazard rate models based on hazard rates were
and could find many applications in several fields even as reliability theory. We model
therefore. We may say in an aggregate, but not so many in particular in mathematics
and insurance examples.

The insurance model is largely based on the hazard rate approach. Since life
insurers mainly consider survival years and there are always probabilistically applying for
the probability to die is an hazard disabled. On the other hand in the very process,
the heterogeneity aspects play a very minor role. Instead, the traditional approach is
still of the actuary, i.e., for an individual person, when they are identical with respect to the
insurance factors applied (e.g., those are restricted to age, gender, state of
health and sometimes economic status), and let their life history, represent identical risks.
In other words, differences in risk profiles between individuals allocated to the same risk
classes are ignored. An exception is Nunnyn (1968), discussing experience-rating in group