Emission and Transport of Light in Photonic Crystals
Koenderink, A.F.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1 Photonic Crystals as a Cage for Light
   1.1 Complex photonic systems ........................................... 9
   1.2 Photonic crystals and Bragg diffraction .......................... 11
   1.3 Fabrication of three-dimensional photonic crystals ............ 14
   1.4 External optical probes of photonic crystals ................. 16
   1.5 Probing inside photonic crystals ................................. 17
   1.6 Disorder in photonic crystals ................................. 18
   1.7 This thesis ...................................................... 19
   References .................................................................. 21

2 Dispersion, Density of States and Refraction
   2.1 Introduction .................................................................. 27
   2.2 Bloch modes, dispersion and the plane-wave method .......... 29
   2.3 Photonic dispersion and photonic strength ................. 32
   2.4 Spontaneous emission ............................................... 37
   2.5 Calculation of the DOS ............................................. 39
   2.6 Transmission, reflection and refraction .................... 42
   2.7 Dispersion surfaces .................................................. 45
   2.8 Refraction problem in three dimensions ............... 46
   2.9 Conclusions ............................................................ 48
   References .................................................................. 49

3 Angular Redistribution of Spontaneous Emission
   3.1 Introduction ............................................................. 53
   3.2 Experiment .............................................................. 54
   3.3 Emission spectra and stop bands ............................... 57
   3.4 Diffuse transport and the stop band attenuation .......... 60
   3.5 Stop bands beyond simple Bragg diffraction ............. 62
   3.6 Geometry of the avoided crossing in the Brillouin zone .... 64
   3.7 Band structure ...................................................... 65
   3.8 Conclusion ............................................................. 66
   References .................................................................. 66

4 Broadband Fivefold Reduction of Vacuum Fluctuations Probed by Dyes
   4.1 Introduction ............................................................. 69
   4.2 Fermi's Golden Rule and quantum efficiency .......... 70
   4.3 Nonphotonic reference host ................................. 72
   4.4 Experiment ............................................................. 73