Emission and Transport of Light In Photonic Crystals

Koenderink, A.F.

Citation for published version (APA):
Contents

1 Photonic Crystals as a Cage for Light
 1.1 Complex photonic systems 9
 1.2 Photonic crystals and Bragg diffraction 11
 1.3 Fabrication of three-dimensional photonic crystals 14
 1.4 External optical probes of photonic crystals 16
 1.5 Probing inside photonic crystals 17
 1.6 Disorder in photonic crystals 18
 1.7 This thesis 19
 References 21

2 Dispersion, Density of States and Refraction
 2.1 Introduction 27
 2.2 Bloch modes, dispersion and the plane-wave method 29
 2.3 Photonic dispersion and photonic strength 32
 2.4 Spontaneous emission 37
 2.5 Calculation of the DOS 39
 2.6 Transmission, reflection and refraction 42
 2.7 Dispersion surfaces 45
 2.8 Refraction problem in three dimensions 46
 2.9 Conclusions 48
 References 49

3 Angular Redistribution of Spontaneous Emission
 3.1 Introduction 53
 3.2 Experiment 54
 3.3 Emission spectra and stop bands 57
 3.4 Diffuse transport and the stop band attenuation 60
 3.5 Stop bands beyond simple Bragg diffraction 62
 3.6 Geometry of the avoided crossing in the Brillouin zone 64
 3.7 Band structure 65
 3.8 Conclusion 66
 References 66

4 Broadband Fivefold Reduction of Vacuum Fluctuations Probed by Dyes
 4.1 Introduction 69
 4.2 Fermi’s Golden Rule and quantum efficiency 70
 4.3 Nonphotonic reference host 72
 4.4 Experiment 73