Quantum optics and multiple scattering in dielectrics
Wubs, M.

Citation for published version (APA):
Contents

1 Introduction: quantum optics of photonic media 11
 1.1 Light in free space and in dielectrics 11
 1.2 Classical and quantum optics 12
 1.3 Elements of quantum optics in dielectrics 13
 1.4 Spontaneous emission 15
 1.5 Photonic media and photonic band gaps 16
 1.6 Multiple light scattering 17
 1.7 True modes of a beam splitter 19
 1.8 Outlook into this thesis 23

2 Scalar waves in finite crystals of plane scatterers 25
 2.1 Introduction 25
 2.2 Multiple-scattering theory for scalar waves 27
 2.3 T-matrix formalism for plane scatterers 30
 2.3.1 General properties of the single plane scatterer 30
 2.3.2 N plane scatterers 31
 2.3.3 Model for the single plane scatterer 33
 2.4 Optical modes 36
 2.4.1 Propagating modes 36
 2.4.2 Guided modes 37
 2.5 Local optical density of states 40
 2.6 Summary and conclusions 45

3 Spontaneous emission of vector waves in crystals of plane scatterers 47
 3.1 Multiple-scattering theory for vector waves 47
 3.2 Plane scatterers for vector waves 49
 3.2.1 Dyadic Green function in plane representation 50
 3.2.2 Attempt to define a T-matrix 51
 3.2.3 Regularization of the Green function 52
 3.2.4 T-matrix of a plane for vector waves 54
 3.2.5 Transmission and energy conservation 56
 3.2.6 T-matrix for N planes 57
 3.2.7 A model for the optical potential 58
3.3 Optical modes and omnidirectional mirrors 59
3.3.1 Propagating modes .. 59
3.3.2 Guided modes .. 62
3.4 Spontaneous emission ... 64
3.4.1 General theory applied to planes 64
3.4.2 Spontaneous emission near one plane scatterer 65
3.4.3 Spontaneous emission near a ten-plane scatterer 68
3.5 Radiative line shifts .. 68
3.6 Conclusions and outlook .. 71

4 Multipole interaction between atoms and their photonic environment 73
4.1 Introduction ... 73
4.2 Inhomogeneous dielectric without guest atoms 74
4.2.1 Classical Lagrangian and Hamiltonian 74
4.2.2 Complete sets and quantum Hamiltonian 76
4.3 Inhomogeneous dielectric with guest atoms 80
4.3.1 Choice of suitable Lagrangian 81
4.3.2 Fixing the gauge ... 82
4.4 The quantum multipolar interaction Hamiltonian 84
4.4.1 Polarization, magnetization and displacement fields 84
4.4.2 Classical multipolar Lagrangian and Hamiltonian 85
4.4.3 In need of a local-field model 87
4.4.4 Quantum multipolar interaction Hamiltonian 89
4.4.5 Dipole approximation ... 90
4.5 Inhomogeneous magnetic media 91
4.6 Dipole-coupling controversy 92
4.7 Summary and discussion ... 93

5 Point scatterers and quantum optics in inhomogeneous dielectrics 95
5.1 Introduction ... 95
5.2 Atoms as point sources and as point scatterers 96
5.2.1 The Hamiltonian ... 97
5.2.2 Integrating out atomic dynamics 98
5.2.3 Volume-integrated dipole field 102
5.3 Single-atom properties altered by the medium 103
5.3.1 Light emitted by a point source 104
5.3.2 Light scattered by a point scatterer 106
5.3.3 Single atom as a point source in “homogeneous” dielectric 107
5.4 Several atoms as point sources and scatterers 110
5.5 Two-atom superradiance in inhomogeneous medium 112
5.5.1 Motivation .. 112
5.5.2 Calculation of the two-atom source Field 113
5.5.3 Effects of two-atom superradiance 115
5.6 Two-atom superradiance in “homogeneous” dielectrics 116
5.7 Discussion: superradiance in photonic crystals 118
CONTENTS

5.8 Conclusions and outlook ... 120

6 Transient QED effects in absorbing dielectrics 123
 6.1 Introduction .. 123
 6.2 The model and solutions of the equations of motion 125
 6.3 Short-time limit: sum rules 128
 6.4 Long-time limit ... 131
 6.4.1 Field and medium operators 131
 6.4.2 Relation with phenomenological theories 132
 6.5 Model dielectric functions 134
 6.5.1 The Lorentz oscillator model 135
 6.5.2 The point-scattering model 136
 6.6 Spontaneous emission ... 138
 6.7 Discussion and conclusions 142

A Analytical expression for T-matrix of N-plane crystal 145

B Functional differentiation after choosing a gauge 149
 B.1 Two definitions of functional derivatives 149
 B.2 Simple rules to compute constrained functional
derivatives ... 150
 B.3 Functional derivatives of the minimal-coupling
Lagrangian .. 152

C Dyadic Green and delta functions 153

D Laplace operators and time-dependent coefficients 155

References .. 157

Samenvatting voor iedereen (Dutch summary) 165

Dankwoord .. 171