Wall permeability of isolated small arteries. Role of the endothelial surface layer
van Haaren, P.M.A.

Citation for published version (APA):
van Haaren, P. M. A. (2003). Wall permeability of isolated small arteries. Role of the endothelial surface layer. s.l.: s.n.

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
CONTENTS

CHAPTER 1: GENERAL INTRODUCTION

1.1 Vascular Permeability 10
1.1.1 Retrospection 10
1.1.2 Fluid transport: theoretical 11
1.1.3 Fluid transport: experimental 11
1.1.4 Solute transport: classical theory 14
1.1.5 Solute transport: classical experimental approach 16
1.1.6 Recent experimental studies of transvascular transport and vascular permeability 17
1.1.7 Recent theoretical models of transvascular transport and vascular permeability 18
1.1.8 Vascular permeability in relation to vascular pathophysiology 19

1.2 The Endothelial Surface Layer (ESL) 20
1.2.1 The layer 20
1.2.2 The endothelial surface layer in relation to vascular permeability 22
1.2.3 The endothelial surface layer in relation to vascular pathophysiology 23

1.3 Rationale of the present studies 24
1.3.1 Hypotheses 24
1.3.2 Outline of the thesis 25

1.4 References 26

CHAPTER 2: LOCALIZATION OF THE PERMEABILITY BARRIER TO SOLUTES IN ISOLATED ARTERIES BY CONFOCAL MICROSCOPY

2.1 Abstract 42

2.2 Introduction 42

2.3 Materials and methods 43
2.3.1 Artery preparation 43
2.3.2 Myograph 43
2.3.3 Solutions 44
2.3.4 Fluorescent probes 44
2.3.5 Confocal microscopy 44
2.3.6 Image analysis 45
2.3.7 Quantification of optical properties 45
2.3.8 Statistics 46

2.4 Results 49

2.5 Discussion 53
2.5.1 Comparison to literature 53
2.5.2 Criticism of the method 54
2.5.3 Implications of the study 56
2.5.4 Conclusion 57

2.6 References 57
CHAPTER 3: MODELING MACROMOLECULAR TRANSPORT ACROSS THE ARTERIAL WALL: ESTIMATION OF PARAMETERS INFLUENCING DIFFUSION AND CONVECTION

3.1 Abstract 60
3.2 Introduction 60

3.3 Materials and Methods
 3.3.1 Experiments 61
 3.3.2 Outline of parameter estimation procedure 63
 3.3.3 Theoretical model. 63
 3.3.4 Point- & line-spread functions. 65

3.4 Results: characterization of the model
 3.4.1 Lumped model (4 parameters: d_{IM}, d_{S}, M, v). 66
 3.4.2 Concentration and fluorescence profiles. 67
 3.4.3 Calculation of X_o(t) from fluorescence profiles. 67
 3.4.4 Effects of parameters on X_o(t). 69

3.5 Results: comparison to experimental data32
 3.5.1 Estimation of the physical parameters. 71
 3.5.2 Sensitivity analysis. 74
 3.5.3 Second model (5 parameters: d_{IM}, M_{IM}, v_{FSF}, fact_M, fact_v). 74

3.6 Discussion
 3.6.1 Comparison to literature 75
 3.6.2 Criticism of the methods 77
 3.6.3 Implications of the study 79
 3.6.4 Conclusion 79

3.7 References 80

CHAPTER 4: CHARGE MODIFICATION OF THE ENDOTHELIAL SURFACE LAYER MODULATES THE PERMEABILITY BARRIER OF SMALL MESENTERIC ARTERIES

4.1 Abstract 82
4.2 Introduction 82

4.3 Materials and Methods
 4.3.1 Artery preparation 83
 4.3.2 Myograph 84
 4.3.3 Solutions 84
 4.3.4 Confocal microscopy 85
 4.3.5 Optical light-spread functions 85
 4.3.6 Image analysis 86
 4.3.7 Fluorescent probes 86
 4.3.8 Statistics 86

4.4 Results 86
6.4 Results

6.5 Discussion
 6.5.1 Application of Dil
 6.5.2 Transport of Dil through the endothelial surface layer
 6.5.3 Spreading of Dil over the endothelial membranes
 6.5.4 Incorporation of Dil in the endothelial membranes
 6.5.5 Conclusion

6.6 References

CHAPTER 7: GENERAL DISCUSSION

7.1 Major conclusions of this thesis
7.2 Evaluation of the current approach
7.3 The endothelial surface layer (ESL)
7.4 Modification of ESL thickness and barrier properties
7.5 The ESL is sensitive to oxidative stress
7.6 Role of the ESL in atherogenesis

7.7 Directions for future research
 7.7.1 Role of the ESL charge
 7.7.2 Influence of plasma proteins on ESL barrier properties
 7.7.3 Influence of atherogenic stimuli

7.8 References

CHAPTER 8: SUMMARY
 Samenvatting

APENDIX A

APPENDIX B

CURRICULUM VITAE

DANKWOORD