Wall permeability of isolated small arteries. Role of the endothelial surface layer
van Haaren, P.M.A.

Citation for published version (APA):
van Haaren, P. M. A. (2003). Wall permeability of isolated small arteries. Role of the endothelial surface layer
s.l.: s.n.

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s),
other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating
your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask
the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam,
The Netherlands. You will be contacted as soon as possible.
Figure B.1: Dependence of the time course of X_{tot} on the different model parameters of the lumped model. From left to right the columns of panels show the influence of ESL thickness d_{ESL}, of wall thickness d_w of the mobility coefficient M and of the solute velocity v_s on $X_{\text{tot}}(t)$. From top to bottom the panel rows show X_{tot} in case of diffusive solute transport, in case of convective transport, and in case of combined diffusive and convective transport. For diffusive transport X_{tot} is plotted against V_s to emphasize its square-root-like course. Chosen parameter values are indicated in the panels as well.
Figure B.2: We empirically formulated equations for $X_{o_0}(t)$ that approximate its kinetics:

- Diffusion:
 \[X_{o_0}^d = X_{o_0}^{d_0} - A^d \cdot t \quad \text{for } t < t_0 \]
 \[X_{o_0}^d = X_{o_0}^{d_0} \quad \text{for } t > t_0 \]
 where
 \[A^d = \frac{X_{o_0}^{d_0} - X_{o_0}^d}{t} \quad \text{at } t = 0 \]
 \[A^d = \text{slope [\mu m/min]} \]
 \[X_{o_0}^{d_0} = \text{Limit value for } X_{o_0}^d \text{ when } t \to \infty, \text{resulting from the fact that the arterial wall is restricted} \]

- Convection:
 \[X_{o_0}^c = X_{o_0}^{c_0} - B^c \cdot t \quad \text{for } t < t_0 \]
 \[X_{o_0}^c = X_{o_0}^{c_0} \quad \text{for } t > t_0 \]
 where
 \[B^c = \frac{X_{o_0}^{c_0} - X_{o_0}^c}{t} \quad \text{at } t = 0 \]
 \[B^c = \text{slope [\mu m/min]} \]
 \[X_{o_0}^{c_0} = \text{Limit value for } X_{o_0}^c \text{ when } t \to \infty \]

- Linear superposition of diffusion and convection results in:
 \[X_{o_0}^* = X_{o_0}^{d_0} + X_{o_0}^{c_0} \cdot t \quad \text{for } t < t_0 \]
 \[X_{o_0}^* = X_{o_0}^{d_0} \quad \text{for } t > t_0 \]
 where
 \[A^* = \frac{X_{o_0}^{d_0} - X_{o_0}^d}{t} \quad \text{for } t < t_0 \]
 \[A^* = \frac{X_{o_0}^{c_0} - X_{o_0}^c}{t} \quad \text{for } t > t_0 \]
 \[B^* = \text{slope [\mu m/min]} \]
 \[X_{o_0}^{d_0} = \text{Limit value for } X_{o_0}^d \text{ when } t \to \infty \]
 \[X_{o_0}^{c_0} = \text{Limit value for } X_{o_0}^c \text{ when } t \to \infty \]

The results are summarized in the present figure. In all cases X_{o_0} at $t = 0 \text{ min}$ is approximately equal to ESL thickness d_{o_0}.
Furthermore, the maximal decrease in X_{o_0} denoted as $X_{o_0}^{d_0} - X_{o_0}^d$, is correlated to total wall thickness, denoted as $d_{o_0} + d$, except for some deviations that occur at high values for total wall thickness. For diffusive transport the slope $A' [\mu m/min]$ is clearly correlated to the mobility coefficient M, whereas for convective transport the slope $B' [\mu m/min]$ is clearly correlated to the solute velocity v. In case of combined diffusive and convective transport these latter two relations are not present anymore.
Figure B.3: Sensitivity analysis to the 5 parameters (d_{ESL}^L, M_{ESL}^L, v_{ESL}^L, fact$_{Mi}^L = M_{i}^L/M_{ESL}^L$ and fact$_{Mi}^L = v_{i}^L/v_{ESL}^L$) of the second model. The left column of panels shows the influence of variations in d_{ESL}^L on R^2 of the fits, the second column shows the influence of M_{ESL}^L, the third column shows the influence of v_{ESL}^L, the fourth column shows the influence of the ration M_{i}^L/M_{ESL}^L, and the right column shows the influence of the ratio v_{i}^L/v_{ESL}^L. The top row panels show the results in case of diffusive transport, the middle row in case of convective transport, and the bottom row when both diffusion and convection is taken into account.
<table>
<thead>
<tr>
<th>parameter</th>
<th>FITC-ΔΔ</th>
<th>FITC-Δ50</th>
<th>FITC-Δ148</th>
</tr>
</thead>
<tbody>
<tr>
<td>diffusion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_{DES} [10$^{-6}$ m3]</td>
<td>8.9 ± 1.1</td>
<td>8.4 ± 1.4</td>
<td>7.8 ± 0.6</td>
</tr>
<tr>
<td>M_{DES} [10$^{-15}$ m3 s$^{-1}$]</td>
<td>10.0 (1.8-57.4)</td>
<td>13.9 (6.3-30.9)</td>
<td>0.19 (0.07-0.54)</td>
</tr>
<tr>
<td>M_{CC}/D_o [10$^{-17}$]</td>
<td>7.4 (1.3-42.5)</td>
<td>32.1 (14.4-71.1)</td>
<td>0.75 (0.27-2.1)</td>
</tr>
<tr>
<td>M_w/M_{DES}</td>
<td>1.0 ± 0.04</td>
<td>1.0 ± 0.04</td>
<td>1.0 ± 0.04</td>
</tr>
<tr>
<td>M_w [10$^{-14}$ m3 s$^{-1}$]</td>
<td>10.3 (1.7-62.8)</td>
<td>14.1 (6.2-31.8)</td>
<td>0.18 (0.06-0.51)</td>
</tr>
<tr>
<td>M_w/D_o [10$^{-17}$]</td>
<td>7.6 (1.2-46.5)</td>
<td>32.4 (14.3-73.0)</td>
<td>0.71 (0.25-2.0)</td>
</tr>
<tr>
<td>R^2/R^2_{RI}</td>
<td>0.95 ± 0.02</td>
<td>0.96 ± 0.02</td>
<td>0.92 ± 0.05</td>
</tr>
<tr>
<td>convection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_{ESL} [10$^{-6}$ m3]</td>
<td>6.0 ± 0.5</td>
<td>6.1 ± 0.9</td>
<td>7.9 ± 0.5</td>
</tr>
<tr>
<td>ν_{ESL} [10$^{-10}$ m3 s$^{-1}$]</td>
<td>13.0 (6.8-25.1)</td>
<td>18.1 (14.9-72.1)</td>
<td>3.4 (2.0-5.8)</td>
</tr>
<tr>
<td>ν_{ESL}</td>
<td>1.0 ± 0.04</td>
<td>1.0 ± 0.04</td>
<td>0.9 ± 0.03</td>
</tr>
<tr>
<td>ν_{w} [10$^{-10}$ m3 s$^{-1}$]</td>
<td>13.5 (6.6-27.8)</td>
<td>17.3 (13.7-21.7)</td>
<td>3.1 (1.8-5.4)</td>
</tr>
<tr>
<td>R^2/R^2_{RI}</td>
<td>0.81 ± 0.05</td>
<td>0.75 ± 0.07</td>
<td>0.86 ± 0.09</td>
</tr>
</tbody>
</table>

1 mean ± SEM; geometric mean (95% confidence interval); * P<0.05, vs. FITC-Δ48; † P<0.05, vs. convection; ‡ P=0.07, vs. FITC-Δ148;