A bright mid-infrared excess in MAXI J1820+070

Publication date
2018

Document Version
Final published version

Published in
The astronomer's telegram

License
Unspecified

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
A bright mid-infrared excess in MAXI J1820+070

ATel #11533; David M. Russell, M. Cristina Baglio (NYU Abu Dhabi), Joe Bright, Rob Fender (Univ. Oxford), Thabet Al Qaissieh, Alejandro Palado, Aldrin Gabuya (Al Sadeem Observatory, Abu Dhabi), Daniel Asmus (ESO, Santiago & Univ. Southampton), Tomaso Belloni (INAF-OAB), Marion Cadolle Bel (MPCDF), Piergiorgio Casella (INAF-OAR), Chiara Ceccobello (Chalmers Univ. of Technology, Sweden), Stephane Corbel (DAP-AIM, CEA, Paris Diderot Univ.), Maria Diaz Trigo (ESO, Garching), Elena Gallo (Univ. Michigan), Poshak Gandhi (University of Southampton), Jeroen Homan (Eureka Scientific), Karri Koljonen (FINCA, Univ. Turku), Fraser Lewis (Faulkes Telescope Project & Astrophysics Research Institute, LJMU), Sera Markoff (Univ. Amsterdam), Payaswini Saikia (NYU Abu Dhabi), Gregory Sivakoff (Univ. Alberta), Maria Diaz Trigo (ESO, Garching), Tariq Shahbaz (IAC & ULL), Roberto Soria (NAOC, Chinese Academy of Sciences & ICRAR-Curtin Univ.), Alex Tetarenko (Univ. Alberta), Mario van den Ancker (ESO, Garching)

on 12 Apr 2018; 20:57 UT

Credential Certification: David M. Russell (dave.russell5@gmail.com)

Referred to by ATel #: 11539, 11540, 11723, 12128, 12534

MAXI J1820+070 (ASASSN-18ey) is a black hole candidate X-ray binary (e.g. ATel #11399, #11418, #11420). It is currently in a bright, hard spectral state (ATel #11423, #11427, #11439). Here, we report photometric mid-IR (5-12 μm) observations of the source with the VLT Imager and Spectrometer for the mid-InfraRed (VISIR; Lagage et al. 2004, The Messenger, 117, 12) mounted on UT3 of ESO's Very Large Telescope. The observations were made on 2018 April 8 (07:21-08:08 UTC) and April 9 (08:54-09:41 UTC) in clear conditions (MJD 58216-7). We also report on contemporaneous radio and optical data. MAXI J1820+070 is clearly detected (S/N > 200) in all four mid-IR filters. The following preliminary observed flux densities (F_ν) were calculated using observations of standard stars taken on the same nights:

<table>
<thead>
<tr>
<th>Filter - Wavelength(μm)</th>
<th>F_ν(mJy; Apr 8)</th>
<th>F_ν(mJy; Apr 9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B11.7 - 11.52 - 376 - 378</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B10.7 - 10.65 - 353 - 368</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J8.9 - 8.72 - 303 - 297</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M-band - 4.85 - 292 - 271</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Photometric errors are small but systematic errors are up to ~5-15% due to the limited number of available standard stars. These mid-IR flux densities are amongst the brightest reported in a transient low-mass X-ray binary.
The Arcminute Microkelvin Imager Large Array (AMI-LA) observed MAXI J1820+070 (ATel #11420) on 2018 April 8 (06:43-10:46 UTC) at 15.5 GHz. We reduced the data using the reduce_dc pipeline. We then performed cleaning (with natural weighting) and additional flagging in CASA. Using IMFIT in CASA, we measured a flux density of the unresolved point source of 42 ± 2 mJy.

The Al Sadeem Observatory (Owner/Co-founder Thabet Al Qaissieh, Director/Co-founder Alejandro Palado, Resident Astronomer Aldrin B. Gabuya) is located in Al Wathba South, outside the city of Abu Dhabi in the United Arab Emirates. We observed MAXI J1820+070 on 2018 April 7 (22:21-22:34 UTC) with the Meade LX850 16-inch (41-cm) telescope with an SBIG STT-8300 camera. 20 images (each 30 sec.) were taken in the 'green' Baader LRGB CCD-Filter (similar bandpass to Johnson V-band). The images were bias/dark-subtracted and flat fielded. We measured a brightness of $V = 12.05 \pm 0.04$ mag, calibrated using several APASS stars in the field. From our Las Cumbres Observatory (LCO) optical monitoring (ATel #11418) we measure magnitudes (using PanStarrs calibration) of $g' = 12.09 \pm 0.02$, $r' = 12.14 \pm 0.03$, $i' = 12.09 \pm 0.04$, $y = 12.08 \pm 0.16$ on 2018 April 8 (~7 UTC).

We de-reddened the above flux densities using an extinction of $E(B-V)=0.163$ (ATel #11418), and constructed the broadband, radio to optical spectral energy distribution (SED; figure linked below). The mid-IR fluxes clearly represent an excess over the optical emission, and appear to lie close to the extrapolation of the near-IR excess previously reported in ATel #11458. The SED is similar to those of GX 339-4 (Gandhi et al. 2011, ApJ, 740, L13) and MAXI J1836-194 (Russell et al. 2014, MNRAS, 439, 1390) in which the IR was shown to be produced by synchrotron emission from the jet. The SED shape suggests that the jet break between optically thin and partially self-absorbed synchrotron may reside within the mid-IR to far-IR range. Assuming a simple power law, the radio to mid-IR spectral index is $\alpha \sim +0.3$ (where $F_\nu \propto \nu^\alpha$). By fitting the April 8 VISIR data and y-band point, we obtain $\alpha \sim -0.7$.

We encourage coordinated observations during the outburst decay to track the evolution of this spectrum. The LCO observations are part of an on-going monitoring campaign of ~ 40 low-mass X-ray binaries (Lewis et al. 2008) with LCO and the Faulkes Telescopes.

MAXI J1820+070 light curves and SEDs

The Al Sadeem Observatory (Owner/Co-founder Thabet Al Qaissieh, Director/Co-founder Alejandro Palado, Resident Astronomer Aldrin B. Gabuya) is located in Al Wathba South, outside the city of Abu Dhabi in the United Arab Emirates. We observed MAXI J1820+070 on 2018 April 7 (22:21-22:34 UTC) with the Meade LX850 16-inch (41-cm) telescope with an SBIG STT-8300 camera. 20 images (each 30 sec.) were taken in the 'green' Baader LRGB CCD-Filter (similar bandpass to Johnson V-band). The images were bias/dark-subtracted and flat fielded. We measured a brightness of $V = 12.05 \pm 0.04$ mag, calibrated using several APASS stars in the field. From our Las Cumbres Observatory (LCO) optical monitoring (ATel #11418) we measure magnitudes (using PanStarrs calibration) of $g' = 12.09 \pm 0.02$, $r' = 12.14 \pm 0.03$, $i' = 12.09 \pm 0.04$, $y = 12.08 \pm 0.16$ on 2018 April 8 (~7 UTC).

We de-reddened the above flux densities using an extinction of $E(B-V)=0.163$ (ATel #11418), and constructed the broadband, radio to optical spectral energy distribution (SED; figure linked below). The mid-IR fluxes clearly represent an excess over the optical emission, and appear to lie close to the extrapolation of the near-IR excess previously reported in ATel #11458. The SED is similar to those of GX 339-4 (Gandhi et al. 2011, ApJ, 740, L13) and MAXI J1836-194 (Russell et al. 2014, MNRAS, 439, 1390) in which the IR was shown to be produced by synchrotron emission from the jet. The SED shape suggests that the jet break between optically thin and partially self-absorbed synchrotron may reside within the mid-IR to far-IR range. Assuming a simple power law, the radio to mid-IR spectral index is $\alpha \sim +0.3$ (where $F_\nu \propto \nu^\alpha$). By fitting the April 8 VISIR data and y-band point, we obtain $\alpha \sim -0.7$.

We encourage coordinated observations during the outburst decay to track the evolution of this spectrum. The LCO observations are part of an on-going monitoring campaign of ~ 40 low-mass X-ray binaries (Lewis et al. 2008) with LCO and the Faulkes Telescopes.

MAXI J1820+070 light curves and SEDs
ATel #11533: A bright mid-infrared excess in MAXI J1820+070

ePESSTO spectroscopic classification of optical transients
INTEGRAL observations of MAXI J1820+070
Near Infrared JHKs observations of the transient MAXI J1820+070 / ASASSN-18ey: Erratum on 2MASS counterpart designation
Near Infrared JHKs observations of the transient MAXI J1820+070 / ASASSN-18ey
First infrared photometry of the black-hole candidate MAXI J1820+070
NOEMA Sub-millimetre Detection of MAXI J1820+070
A flat radio spectrum of MAXI J1820+070
Red sub-second optical flaring in MAXI J1820+070 observed by ULTRACAM/NTT
Correlated Optical/X-ray Timing Variations in MAXI J1820+070 found by Swift UVOT and XRT
The hard X-ray spectrum of MAXI J1820+070 observed by Swift/BAT
Detection of 10-msec scale optical flares in the black-hole binary candidate MAXI J1820+070 (ASASSN-18ey)
Optical Spectra of MAXI J1820+070 with Keck
SOAR/Goodman optical spectroscopy of MAXI J1820+070
NICER observations of MAXI J1820+070 suggest a rapidly-brightening black hole X-ray binary in the hard state
Fast optical flaring in the suspected black-hole binary MAXI J1820+070 (ASASSN-18ey)
AMI radio observations of the black hole candidate MAXI J1820+070
Optical observations of MAXI J1820+070 suggest it is a black hole X-ray binary
MAXI J1820+070: Errata and updated XRT Position
MAXI J1820+070: Swift/UVOT counterpart correction
Swift detection of MAXI J1820+070
Optical follow-up of MAXI J1820+070 and possible identity with ASASSN-18ey
MAXI/GSC detection of a probable new X-ray transient MAXI J1820+070
Ongoing radio monitoring of Cyg X-1 with the RATAN-600 radio telescope
Change in radio behaviour of Cygnus X-1
Unusual soft X-ray activity of Cygnus X-1 detected with MAXI/GSC
New RATAN-600 data for Cygnus X-1

http://www.astronomerstelegram.org/?read=11533[12-4-2019 09:25:49]