A bright mid-infrared excess in MAXI J1820+070

Publication date
2018

Document Version
Final published version

Published in
The astronomer's telegram

License
Unspecified

Citation for published version (APA):
ATel #11533: A bright mid-infrared excess in MAXI J1820+070

ATel #11533; David M. Russell, M. Cristina Baglio (NYU Abu Dhabi), Joe Bright, Rob Fender (Univ. Oxford), Thabet Al Qaissieh, Alejandro Palado, Aldrin Gabuya (Al Sadeem Observatory, Abu Dhabi), Daniel Asmus (ESO, Santiago & Univ. Southampton), Tomaso Belloni (INAF-OAB), Marion Cadolle Bel (MPCDF), Piergiorgio Casella (INAF-OAR), Chiara Ceccobello (Chalmers Univ. of Technology, Sweden), Stephane Corbel (DAP-AIM, CEA, Paris Diderot Univ.), Maria Diaz Trigo (ESO, Garching), Elena Gallo (Univ. Michigan), Poshak Gandhi (University of Southampton), Jeroen Homan (Eureka Scientific), Karri Koljonen (FINCA, Univ. Turku), Fraser Lewis (Faulkes Telescope Project & Astrophysics Research Institute, LJMU), Sera Markoff (Univ. Amsterdam), James C. A. Miller-Jones (ICRAR-Curtin Univ.), Kieran O’Brien (Durham Univ.), Thomas D. Russell (Univ. Amsterdam), Payaswini Saikia (NYU Abu Dhabi), Gregory Sivakoff (Univ. Alberta), Tariq Shahbaz (IAC & ULL), Roberto Soria (NAOC, Chinese Academy of Sciences & ICRAR-Curtin Univ.), Alex Tetarenko (Univ. Alberta), Mario van den Ancker (ESO, Garching) on 12 Apr 2018; 20:57 UT

Credential Certification: David M. Russell (dave.russell5@gmail.com)

Referred to by ATel #: 11539, 11540, 11723, 12128, 12534

MAXI J1820+070 (ASASSN-18ey) is a black hole candidate X-ray binary (e.g. ATel #11399, #11418, #11420). It is currently in a bright, hard spectral state (ATel #11423, #11427, #11439). Here, we report photometric mid-IR (5-12 μm) observations of the source with the VLT Imager and Spectrometer for the mid-InfraRed (VISIR; Lagage et al. 2004, The Messenger, 117, 12) mounted on UT3 of ESO’s Very Large Telescope. The observations were made on 2018 April 8 (07:21-08:08 UTC) and April 9 (08:54-09:41 UTC) in clear conditions (MJD 58216-7). We also report on contemporaneous radio and optical data. MAXI J1820+070 is clearly detected (S/N > 200) in all four mid-IR filters. The following preliminary observed flux densities (F_ν) were calculated using observations of standard stars taken on the same nights:

<table>
<thead>
<tr>
<th>Filter</th>
<th>Wavelength(μm)</th>
<th>F_ν(mJy; Apr 8)</th>
<th>F_ν(mJy; Apr 9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B11.7</td>
<td>11.52 - 376 - 378</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B10.7</td>
<td>10.65 - 353 - 368</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J8.9</td>
<td>8.72 - 303 - 297</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M-band</td>
<td>4.85 - 292 - 271</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Photometric errors are small but systematic errors are up to ~5-15% due to the limited number of available standard stars. These mid-IR flux densities are amongst the brightest reported in a transient low-mass X-ray binary.
The Arcminute Microkelvin Imager Large Array (AMI-LA) observed MAXI J1820+070 (ATel #11420) on 2018 April 8 (06:43-10:46 UTC) at 15.5 GHz. We reduced the data using the reduce_dc pipeline. We then performed cleaning (with natural weighting) and additional flagging in CASA. Using IMFIT in CASA, we measured a flux density of the unresolved point source of 42 ± 2 mJy.

The Al Sadeem Observatory (Owner/Co-founder Thabet Al Qaissieh, Director/Co-founder Alejandro Palado, Resident Astronomer Aldrin B. Gabuya) is located in Al Wathba South, outside the city of Abu Dhabi in the United Arab Emirates. We observed MAXI J1820+070 on 2018 April 7 (22:21-22:34 UTC) with the Meade LX850 16-inch (41-cm) telescope with an SBIG STT-8300 camera. 20 images (each 30 sec.) were taken in the ‘green’ Baader LRGB CCD-Filter (similar bandpass to Johnson V-band). The images were bias/dark-subtracted and flat fielded. We measured a brightness of V = 12.05 ± 0.04 mag, calibrated using several APASS stars in the field. From our Las Cumbres Observatory (LCO) optical monitoring (ATel #11418) we measure magnitudes (using PanStarrs calibration) of g’ = 12.09 ± 0.02, r’ = 12.14 ± 0.03, i’ = 12.09 ± 0.04, y = 12.08 ± 0.16 on 2018 April 8 (~7 UTC).

We de-reddened the above flux densities using an extinction of E(B-V)=0.163 (ATel #11418), and constructed the broadband, radio to optical spectral energy distribution (SED; figure linked below). For comparison, we also include a radio, near-IR and optical SED from 2018 March 18 (data from ATel #11439, #11458 and LCO). The mid-IR fluxes clearly represent an excess over the optical emission, and appear to lie close to the extrapolation of the near-IR excess previously reported in ATel #11458. The SED is similar to those of GX 339-4 (Gandhi et al. 2011, ApJ, 740, L13) and MAXI J1836-194 (Russell et al. 2014, MNRAS, 439, 1390) in which the IR was shown to be produced by synchrotron emission from the jet. The SED shape suggests that the jet break between optically thin and partially self-absorbed synchrotron may reside within the mid-IR to far-IR range. Assuming a simple power law, the radio to mid-IR spectral index is $\alpha \sim +0.3$ (where $F_\nu \propto \nu^\alpha$). By fitting the April 8 VISIR data and y-band point, we obtain $\alpha \sim -0.7$.

We encourage coordinated observations during the outburst decay to track the evolution of this spectrum. The LCO observations are part of an on-going monitoring campaign of ~ 40 low-mass X-ray binaries (Lewis et al. 2008) with LCO and the Faulkes Telescopes.

MAXI J1820+070 light curves and SEDs

11855 | Polarisometric monitoring of the MAXI J1820+070 in optical and near-infrared wavelengths
11833 | Declining near-infrared flux from the black-hole candidate MAXI J1820+070 (ASASSN-18ey) in transition
11831 | (Sub)-millimetre Observations of MAXI J1820+070 (ASASSN-18ey) Suggest Jet Quenching on July 6
11827 | AMI-LA 15.5 GHz observations of radio flaring from the black hole candidate MAXI J1820+070 in transition
11824 | Other low-frequency optical QPO-like features in MAXI J1820+070 detected with IFI+IQUIEYE@Galileo
11823 | Continuing NICER observations of the state transition in ASASSN-18ey/MAXI J1820+070
11820 | A rapid state transition in MAXI J1820+070
11756 | 17-Hour Period in V light from MAXI J1820+070 = ASASSN-18ey
11726 | Low-frequency optical QPO in MAXI J1820+070 detected with IFI+IQUIEYE@Galileo
11661 | KEGS Discovery of 9 Supernova Candidates in the K2 Campaign 17 field with Pan-STARRS PS1
11609 | Simultaneous LOFAR and AMI-LA observations of MAXI J1820+070
11596 | MAXI J1820+070 has optical period of 3.4 hours
11594 | Further detection of the optical low frequency QPO in the black hole transient MAXI J1820+070
11578 | Exponential increase in X-ray QPO frequency with time in MAXI J1820+070
11576 | NICER observations of MAXI J1820+070: Continuing evolution of X-ray variability properties
11574 | Optical/X-ray Flux Decoupling in MAXI J1820+070
11540 | VLITE meter-wavelength detection of MAXI J1820+070 at 339 MHz
11539 | The 30-day monitoring of MAXI J1820+070 at 4.7 GHz
11533 | A bright mid-infrared excess in MAXI J1820+070
11510 | Detection of optical and X-ray QPOs at similar frequencies in MAXI J1820+070
11500 | INTEGRAL observations of MAXI J1820+070: public data products
11488 | Low-frequency QPOs in MAXI J1820+070 as seen by INTEGRAL/SPI
11482 | Palomar 60-inch SEDM classification of optical transients
11481 | MAXI J1820+070: VLT and GTC spectroscopic follow-up shows a significant spectral

http://www.astronomerstelegram.org/?read=11533[12-4-2019 09:25:49]
ATel #11533: A bright mid-infrared excess in MAXI J1820+070

11480 ePESSTO spectroscopic classification of optical transients
11478 INTEGRAL observations of MAXI J1820+070
11462 Near Infrared JHKs observations of the transient MAXI J1820+070 / ASASSN-18ey: Erratum on 2MASS counterpart designation
11458 Near Infrared JHKs observations of the transient MAXI J1820+070 / ASASSN-18ey
11451 Fast infrared photometry of the black-hole candidate MAXI J1820+070
11445 First measurements of linear polarization of MAXI J1820+070
11440 NOEMA Sub-millimetre Detection of MAXI J1820+070
11439 A flat radio spectrum of MAXI J1820+070
11437 Red sub-second optical flaring in MAXI J1820+070 observed by ULTRACAM/NTT
11432 Correlated Optical/X-ray Timing Variations in MAXI J1820+070 found by Swift UVOT and XRT
11427 The hard X-ray spectrum of MAXI J1820+070 observed by Swift/BAT
11426 Detection of 10-msec scale optical flares in the black-hole binary candidate MAXI J1820+070 (ASASSN-18ey)
11425 Optical Spectra of MAXI J1820+070 with Keck
11424 SOAR/Goodman optical spectroscopy of MAXI J1820+070
11423 NICER observations of MAXI J1820+070 suggest a rapidly-brightening black hole X-ray binary in the hard state
11421 Fast optical flaring in the suspected black-hole binary MAXI J1820+070 (ASASSN-18ey)
11420 AMI radio observations of the black hole candidate MAXI J1820+070
11418 Optical observations of MAXI J1820+070 suggest it is a black hole X-ray binary
11406 MAXI J1820+070: Errata and updated XRT Position
11404 MAXI J1820+070: Swift/UVOT counterpart correction
11403 Swift detection of MAXI J1820+070
11400 Optical follow-up of MAXI J1820+070 and possible identity with ASASSN-18ey
11399 MAXI/GSC detection of a probable new X-ray transient MAXI J1820+070
10459 Ongoing radio monitoring of Cyg X-1 with the RATAN-600 radio telescope
10446 Change in radio behaviour of Cygnus X-1
10322 Unusual soft X-ray activity of Cygnus X-1 detected with MAXI/GSC
9089 New RATAN-600 data for Cygnus X-1
ATel #11533: A bright mid-infrared excess in MAXI J1820+070

http://www.astronomerstelegram.org/?read=11533[12-4-2019 09:25:49]

7322 The current RATAN-600 observations of Cygnus X-1
3546 The RATAN observations of Cygnus X-1

[Telegram Index]

R. E. Rutledge, Editor-in-Chief
Derek Fox, Editor
Mansi M. Kasliwal, Co-Editor

rrutledge@astronomerstelegram.org
dfox@astronomerstelegram.org
mansi@astronomerstelegram.org