Appendix C

Norms and Distances

C.1 Norms and Distances on Vectors and Matrices

absolute value $|x|$: For a complex value $x \in \mathbb{C}$, its absolute value, or norm, is defined by $|x| = \sqrt{x x^*}$.

Sum norm $\|x\|_1$: For a complex valued vector $x \in \mathbb{C}^n$, the sum norm is defined by $\|x\|_1 = \sum |x_i|$. This norm is also called the ℓ_1, or Manhattan norm. For bitvectors $x \in \{0, 1\}^n$ the sum norm corresponds with the Hamming weight of a bit string: $\|x\|_1 = \text{"number of ones in } x$".

Euclidean, or ℓ_2, vector norm $\|x\|_2$: For a complex valued vector $x \in \mathbb{C}^n$, its norm is defined by $\|x\|_2 = \sqrt{\sum x_i x_i^*}$.

Max, or ℓ_{∞}, norm $\|x\|_{\infty}$: For a complex valued vector $x \in \mathbb{C}^n$, the max norm is defined by $\|x\|_{\infty} = \max_i |x_i|$.

Fidelity: The *fidelity* between two mixed states ρ and σ is defined by

$$F(\rho, \sigma) = \text{tr} \left(\sqrt{\sqrt{\rho} \cdot \sigma \cdot \sqrt{\rho}} \right),$$

although the reader should be warned that some authors use the square of this value.

Euclidean matrix norm $\|A\|_2$: For a complex valued matrix $A \in M_n(\mathbb{C})$, the Euclidean norm is defined by

$$\|A\|_2 = \sqrt{\sum_{ij} A_{ij} A_{ij}^*} = \sqrt{\text{tr}(A \cdot A^*)}.$$

Alternative names are: ℓ_2, *Frobenius*, *Hilbert-Schmidt*, or *Schur norm*.

89
We call this norm unitarily invariant because \(\|U \cdot A \cdot V\|_2 = \|A\|_2\) for unitary \(U, V \in U(n)\). From this invariance it follows, using the SV decomposition, that we have

\[
\|A\|_2 = \sqrt{\sum_i \sigma_i^2},
\]

with \(\sigma_i\) the singular values of \(A\), and hence for normal matrices

\[
\|A\|_2 = \sqrt{\sum_i |\lambda_i|^2},
\]

where \(\lambda_i\) are the eigenvalues of \(A\).

Trace norm \(\|A\|_{\text{tr}}\): For a matrix \(A \in M_n(\mathbb{C})\), the trace norm is defined by

\[
\|A\|_{\text{tr}} = \text{tr} \left(\sqrt{A \cdot A^*} \right) = \sum_i \sigma_i,
\]

with \(\sigma_i\) the singular values of \(A\). From this definition it follows that for normal matrices the trace norm equals

\[
\|A\|_{\text{tr}} = \sum_i |\lambda_i|,
\]

where \(\lambda_1, \lambda_2, \ldots\) are the eigenvalues of \(A\).

In the case of positive, semidefinite matrices we thus have \(\|A\|_{\text{tr}} = \text{tr}(A)\), hence the name of this norm. (As a consequence, all proper density matrices obey \(\|\rho\|_{\text{tr}} = 1\).)

The usefulness of this norm lies in the distance \(\|\rho - \sigma\|_{\text{tr}}\) it defines between two density matrices \(\rho\) and \(\sigma\). For any measurement setting \(\mathcal{P} = \{P_i\}\) (with \(\sum_i P_i^* P_i = I\)), the total variation distance between \(\rho\) and \(\sigma\) is bounded from above by

\[
\|\rho - \sigma\|_{\text{tr}} \geq \sum_{P_i \in \mathcal{P}} |\text{Prob}(\rho = P_i) - \text{Prob}(\sigma = P_i)|,
\]

with \(\text{Prob}(\rho = P_i) = (F(P_i, \rho))^2\). If we choose the projectors \(P_i\) of \(\mathcal{P}\) to be the eigenvectors of \(\rho - \sigma\), then we obtain the above bound, hence

\[
\|\rho - \sigma\|_{\text{tr}} = \max_P \left(\sum_{P_i \in \mathcal{P}} |\text{Prob}(\rho = P_i) - \text{Prob}(\sigma = P_i)| \right).
\]
Both the Euclidean and the trace norm are *matrix norms* because they obey the following properties (see Chapter 5 in [54] for much more on this topic):

1. nonnegative: \(\|A\| \geq 0 \)
2. positive: \(\|A\| = 0 \) if and only if \(A = 0 \)
3. homogeneous: \(\|\alpha A\| = |\alpha| \cdot \|A\| \) for all \(\alpha \in \mathbb{C} \)
4. triangle inequality: \(\|A + B\| \leq \|A\| + \|B\| \)
5. submultiplicative: \(\|AB\| \leq \|A\| \cdot \|B\| \).

In addition, for the tensor product between two matrices, we also have the equality

- \(\|A \otimes B\| = \|A\| \cdot \|B\| \).

A very useful relation between the trace and the Euclidean norm is easily shown by the inequalities \(\frac{1}{\sqrt{n}} \sum \sigma_i \leq \sqrt{\sum \sigma_i^2} \leq \sum \sigma_i \) for any \(n \) nonnegative values \(\sigma_1, \ldots, \sigma_n \). If we take these \(\sigma_i \) to be the singular values of \(A \), we see that

\[
\|A\|_2 \leq \|A\|_{\text{tr}} \leq \sqrt{n} \cdot \|A\|_2,
\]

for all \(A \in M_n(\mathbb{C}) \).

C.2 Norms on Superoperators

Trace induced superoperator norm: For a superoperator \(E : M_n(\mathbb{C}) \rightarrow M_m(\mathbb{C}) \) we can use the trace norm to define

\[
\|E\|_{\text{tr}} = \max_{A \neq 0} \frac{\|E(A)\|_{\text{tr}}}{\|A\|_{\text{tr}}}.
\]

If \(E \) is a positive, trace preserving mapping, then \(\|E\|_{\text{tr}} = 1 \). A drawback of this norm is that it can increase if we tensor \(E \) with the identity operator. Take for example the one qubit transpose, with \(T(A) = A^T \), which has \(\|T\|_{\text{tr}} = 1 \), but also \(\|T \otimes I_2\|_{\text{tr}} = 2 \).

Diamond superoperator norm: Let \(E : M_n(\mathbb{C}) \rightarrow M_m(\mathbb{C}) \) be a linear superoperator, the *diamond norm* can then be defined by

\[
\|E\|_o = \|E \otimes I_n\|_{\text{tr}}.
\]

The reader is referred to the original articles [3, 62] by Alexei Kitaev *et al.* for more details. One of the appealing properties of this norm is its robustness: \(\|E \otimes I\|_o = \|E\|_o \).

If \(E \) is a completely positive, trace preserving transformation, then \(\|E\|_o = 1 \).
Euclidean induced superoperator norm: We define a norm for a superoperator \(E : M_n(\mathbb{C}) \to M_m(\mathbb{C}) \), by the maximization of the Euclidean norm for matrices:

\[
\|E\|_2 = \max_{A \neq 0} \frac{\|E(A)\|_2}{\|A\|_2}.
\]

It is straightforward to show that this norm is, like the diamond norm, robust:

\[
\|E \otimes I\|_2 = \|E\|_2,
\]

for the identity operator \(I \).

By the bounds of Equation C.1, we have for any superoperator \(E : M_n(\mathbb{C}) \to M_m(\mathbb{C}) \)

\[
\|E\|_2 \leq \sqrt{n} \|E\|_{\text{tr}}, \quad \text{and} \quad \|E\|_{\text{tr}} \leq \sqrt{m} \|E\|_2.
\]

Because \(\|E \otimes I\|_2 = \|E\|_2 \), we thus obtain an upper bound on the diamond norm in terms of the trace norm:

\[
\|E\|_0 = \|E \otimes I_n\|_{\text{tr}} \leq \sqrt{nm} \|E \otimes I_n\|_2 = \sqrt{nm} \|E\|_2 \leq n\sqrt{m} \|E\|_{\text{tr}},
\]

in combination with the trivial lower bound \(\|E\|_{\text{tr}} \leq \|E\|_0 \).