
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Instruction sequences expressing multiplication algorithms

Bergstra, J.A.; Middelburg, C.A.
DOI
10.7561/SACS.2018.1.39
Publication date
2018
Document Version
Final published version
Published in
Scientific Annals of Computer Science
License
CC BY-ND

Link to publication

Citation for published version (APA):
Bergstra, J. A., & Middelburg, C. A. (2018). Instruction sequences expressing multiplication
algorithms. Scientific Annals of Computer Science, 28(1), 39-66.
https://doi.org/10.7561/SACS.2018.1.39

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:13 Dec 2024

https://doi.org/10.7561/SACS.2018.1.39
https://dare.uva.nl/personal/pure/en/publications/instruction-sequences-expressing-multiplication-algorithms(55d92872-7d7c-433c-8f8f-0200b751f09c).html
https://doi.org/10.7561/SACS.2018.1.39

Scientific Annals of Computer Science vol. 28 (1), 2018, pp. 39–66

doi: 10.7561/SACS.2018.1.39

Instruction Sequences Expressing
Multiplication Algorithms

J.A. Bergstra1, C.A. Middelburg1

Abstract

For each function on bit strings, its restriction to bit strings of
any given length can be computed by a finite instruction sequence
that contains only instructions to set and get the content of Boolean
registers, forward jump instructions, and a termination instruction. We
describe instruction sequences of this kind that compute the function on
bit strings that models multiplication on natural numbers less than 2N

with respect to their binary representation by bit strings of length N ,
for a fixed but arbitrary N > 0, according to the long multiplication
algorithm and the Karatsuba multiplication algorithm. One of the
results obtained is that the instruction sequence expressing the former
algorithm is longer than the one expressing the latter algorithm only if
the length of the bit strings involved is greater than 28. We also go into
the use of an instruction sequence with backward jump instructions
for expressing the long multiplication algorithm. This leads to an
instruction sequence that it is shorter than the other two if the length
of the bit strings involved is greater than 2.

Keywords: bit string function, single-pass instruction sequence, back-
ward jump instruction, long multiplication algorithm, Karatsuba mul-
tiplication algorithm, halting problem.

1 Introduction

This paper belongs to a line of research in which issues relating to various sub-
jects from computer science, including programming language expressiveness,

1Informatics Institute, Faculty of Science, University of Amsterdam, Science Park 904,
1098 XH Amsterdam, the Netherlands, email: {J.A.Bergstra,C.A.Middelburg}@uva.nl.

40 J.A. Bergstra, C.A. Middelburg

computability, computational complexity, algorithm efficiency, algorithmic
equivalence of programs, program verification, program performance, pro-
gram compactness, and program parallelization, are rigorously investigated
thinking in terms of instruction sequences. An enumeration of most pa-
pers belonging to this line of research is available at [11]. The work on
computational complexity presented in [4] and the work on algorithmic
equivalence of programs presented in [5] were prompted by the fact that,
for each function on bit strings, its restriction to bit strings of any given
length can be computed by a finite instruction sequence that contains only
instructions to set and get the content of Boolean registers, forward jump
instructions, and a termination instruction.

This fact also incited us to look for finite instruction sequences containing
only the above-mentioned instructions that compute a well-known function
on bit strings of a given length. Earlier, we did so taking the hash function
SHA-256 from the Secure Hash Standard [16] as the well-known function on
bit strings. In the current paper, we do so taking the function that models
multiplication on natural numbers less than 2N with respect to their binary
representation by bit strings of length N , for a fixed but arbitrary N > 0,
as the well-known function on bit strings.

We describe finite instruction sequences containing only the above-
mentioned instructions that compute this function according to the standard
multiplication algorithm, which is known as the long multiplication algorithm,
and according to the Karatsuba multiplication algorithm [9, 10]. We calculate
the exact size of the instruction sequence expressing the long multiplication
algorithm and lower and upper estimates for the size of the instruction
sequence expressing the Karatsuba multiplication algorithm. One of the
results following from the calculated sizes is that the instruction sequence
expressing the former algorithm is longer than the instruction sequence
expressing the latter algorithm only if the length of the bit strings involved
is greater than 28.

We also go into the use of an instruction sequence with backward jump
instructions for expressing the long multiplication algorithm. We describe
a finite instruction sequence containing a backward jump instruction, in
addition to the above-mentioned instructions, that expresses a minor variant
of the long multiplication algorithm. We calculate the exact size of this
instruction sequence and find that it is shorter than the other two if the
length of the bit strings involved is greater than 2. In addition, we argue
that the instruction sequences expressing the long multiplication algorithm

Instruction Sequences Expressing
Multiplication Algorithms 41

form a hard witness of the inevitable existence of a halting problem in the
practice of imperative programming.

The Karatsuba multiplication algorithm was devised by Karatsuba
in 1962 to disprove the conjecture made by Kolmogorov that any algorithm
to compute the function that models multiplication on natural numbers
with respect to their representations in the binary number system has time
complexity Ω(n2). Shortly afterwards, this divide-and-conquer algorithm
was generalized by Toom and Cook [7, 13]. Later, asymptotically faster
multiplication algorithms, based on fast Fourier transforms, were devised
by Schönhage and Strassen [12] and Fürer [8]. To our knowledge, except
for the Schönhage-Strassen algorithm, only informal (natural language or
pseudo code) descriptions of these multiplication algorithms are available. In
this paper, we provide a mathematically precise alternative to the informal
descriptions of the Karatsuba multiplication algorithm, using terms from an
algebraic theory of single-pass instruction sequences defined in [1].

It is customary that computing practitioners phrase their explana-
tions of issues concerning programs from an empirical perspective such as
the perspective that a program is in essence an instruction sequence. An
attempt to approach the semantics of programming languages from this
perspective is made in [1]. The groundwork for the approach is an algebraic
theory of single-pass instruction sequences, called program algebra, and
an algebraic theory of mathematical objects that represent the behaviours
produced by instruction sequences under execution, called basic thread alge-
bra.2 The line of research referred to at the beginning of this introduction
originates from the above-mentioned work on an approach to programming
language semantics.

The general aim of this line of research is to bring instruction sequences
as a theme in computer science better into the picture. This is the general
aim of the work presented in the current paper as well. However, different
from usual in the work referred to above, the accent is this time mainly on a
practical problem, namely the problem to devise instruction sequences that
express the long multiplication algorithm and the Karatsuba multiplication
algorithm. As in the work referred to above, the work presented in the
current paper is carried out in the setting of program algebra.

This paper is organized as follows. First, we survey program algebra
and the particular fragment and instantiation of it that is used in this paper

2In [1], basic thread algebra is introduced under the name basic polarized process
algebra.

42 J.A. Bergstra, C.A. Middelburg

(Section 2) and sketch the Karatsuba multiplication algorithm (Section 3).
Next, we describe how we deal with n-bit words by means of Boolean registers
(Section 4) and how we compute the operations on n-bit words that are used
in the long multiplication algorithm and/or the Karatsuba multiplication
algorithm (Section 5). Then, we describe and analyze instruction sequences
that express these algorithms (Section 6). After this, we go into the use
of an instruction sequence with backward jump instructions for expressing
the long multiplication algorithm (Sections 7) and relate the findings to the
halting problem (Section 8). Finally, we make some concluding remarks
(Section 9).

We rely in this paper on an intuitive understanding of what is an
algorithm and when an instruction sequence expresses an algorithm. A
rigorous study of these issues and related ones, carried out in the same
setting as the work presented in this paper, is presented in [5].

The preliminaries to the work presented in this paper are a selection
from the preliminaries to the work presented in [4]. For this reason, there is
some text overlap with those papers. The preliminaries concern program
algebra. We only give a brief summary of program algebra. A comprehensive
introduction, including examples, can be found in [3].

2 Program Algebra

In this section, we present a brief outline of PGA (ProGram Algebra) and
the particular fragment and instantiation of it that is used in the remainder
of this paper. A mathematically precise treatment can be found in [4].

The starting-point of PGA is the simple and appealing perception of
a sequential program as a single-pass instruction sequence, i.e. a finite or
infinite sequence of instructions of which each instruction is executed at
most once and can be dropped after it has been executed or jumped over.

It is assumed that a fixed but arbitrary set A of basic instructions
has been given. The intuition is that the execution of a basic instruction
may modify a state and produces a reply at its completion. The possible
replies are 0 and 1. The actual reply is generally state-dependent. Therefore,
successive executions of the same basic instruction may produce different
replies. The set A is the basis for the set of instructions that may occur in the
instruction sequences considered in PGA. The elements of the latter set are
called primitive instructions. There are five kinds of primitive instructions,
which are listed below:

Instruction Sequences Expressing
Multiplication Algorithms 43

• for each a ∈ A, a plain basic instruction a;

• for each a ∈ A, a positive test instruction +a;

• for each a ∈ A, a negative test instruction −a;

• for each l ∈ N, a forward jump instruction #l;

• a termination instruction !.

We write I for the set of all primitive instructions.
On execution of an instruction sequence, these primitive instructions

have the following effects:

• the effect of a positive test instruction +a is that basic instruction a is
executed and execution proceeds with the next primitive instruction
if 1 is produced and otherwise the next primitive instruction is skipped
and execution proceeds with the primitive instruction following the
skipped one — if there is no primitive instruction to proceed with,
inaction occurs;

• the effect of a negative test instruction −a is the same as the effect
of +a, but with the role of the value produced reversed;

• the effect of a plain basic instruction a is the same as the effect of +a,
but execution always proceeds as if 1 is produced;

• the effect of a forward jump instruction #l is that execution proceeds
with the lth next primitive instruction of the instruction sequence
concerned — if l equals 0 or there is no primitive instruction to
proceed with, inaction occurs;

• the effect of the termination instruction ! is that execution terminates.

To build terms, PGA has a constant for each primitive instruction and
two operators. These operators are: the binary concatenation operator ;
and the unary repetition operator ω. We use the notation ;ni=0 Pi, where
P0, . . . , Pn are PGA terms, for the PGA term P0 ; . . . ; Pn. We also use the
notation Pn. For each PGA term P and n > 0, Pn is the PGA term defined
by induction on n as follows: P 1 = P and Pn+1 = P ; Pn.

The instruction sequences that concern us in the remainder of this
paper are the finite ones, i.e. the ones that can be denoted by closed PGA
terms in which the repetition operator does not occur. Moreover, the basic

44 J.A. Bergstra, C.A. Middelburg

instructions that concern us are instructions to set and get the content of
Boolean registers. More precisely, we take the set

{in:i.get | i ∈ N+} ∪ {out:i.set:b | i ∈ N+ ∧ b ∈ {0, 1}}
∪ {aux:i.get | i ∈ N+} ∪ {aux:i.set:b | i ∈ N+ ∧ b ∈ {0, 1}}

as the set A of basic instructions.

Each basic instruction consists of two parts separated by a dot. The
part on the left-hand side of the dot plays the role of the name of a Boolean
register and the part on the right-hand side of the dot plays the role of a
command to be carried out on the named Boolean register. For each i ∈ N+:

• in:i serves as the name of the Boolean register that is used as ith input
register in instruction sequences;

• out:i serves as the name of the Boolean register that is used as ith
output register in instruction sequences;

• aux:i serves as the name of the Boolean register that is used as ith
auxiliary register in instruction sequences.

On execution of a basic instruction, the commands have the following effects:

• the effect of get is that nothing changes and the reply is the content of
the named Boolean register;

• the effect of set:0 is that the content of the named Boolean register
becomes 0 and the reply is 0;

• the effect of set:1 is that the content of the named Boolean register
becomes 1 and the reply is 1.

Let n,m ∈ N, let f :{0, 1}n → {0, 1}m, and let X be a finite instruction
sequence that can be denoted by a closed PGA term in the case that A is
taken as specified above. Then X computes f if there exists a k ∈ N such
that for all b1, . . . , bn ∈ {0, 1}: if X is executed in an environment with n
input registers, m output registers, and k auxiliary registers, the content of
the input registers with names in:1, . . . , in:n are b1, . . . , bn when execution
starts, and the content of the output registers with names out:1, . . . , out:m
are b′1, . . . , b

′
m when execution terminates, then f(b1, . . . , bn) = b′1, . . . , b

′
m.

Instruction Sequences Expressing
Multiplication Algorithms 45

3 Sketch of Karatsuba Multiplication Algorithm

Suppose that x and y are two natural numbers with a binary representa-
tion of n bits. As a first step toward multiplying x and y, split each of
these representations into a left part of length bn/2c and a right part of
length dn/2e. Let us say that the left and right part of the representation
of x represent natural numbers xL and xR and the left and right part of
the representation of y represent natural numbers yL and yR. It is obvious
that x = 2dn/2e · xL + xR and y = 2dn/2e · yL + yR. From this it follows
immediately that

x · y = 22·dn/2e · (xL · yL) + 2dn/2e · (xL · yR + xR · yL) + xR · yR .

In addition to this, it is known that

xL · yR + xR · yL = (xL + xR) · (yL + yR)− xL · yL − xR · yR .

Moreover, it is easy to see that multiplications by powers of 2 are merely
bit shifts on the binary representation of the natural numbers involved.
All this means that, on the binary representations of x and y, the multi-
plication x · y can be replaced by three multiplications: xL · yL, xR · yR,
and (xL + xR) · (yL + yR). These three multiplications concern natural
numbers with binary representations of length bn/2c, dn/2e, and dn/2e+ 1,
respectively. For each of these multiplications it holds that, if the binary
representation length concerned is greater than 3, the multiplication can be
replaced by three multiplications of natural numbers with binary representa-
tions of even shorter length.

The Karatsuba multiplication algorithm is the algorithm that computes
the binary representation of the product of two natural numbers with binary
representations of the same length by dividing the computation into the
computation of the binary representations of three products as indicated
above and doing so recursively until it not any more leads to further length
reduction. The remaining products are usually computed according to the
standard multiplication algorithm, which is known as the long multiplication
algorithm.

Both the Karatsuba multiplication algorithm and the long multiplication
algorithm can actually be applied to natural numbers represented in the
binary number system as well as natural numbers represented in the decimal
number system. The long multiplication algorithm is the multiplication
algorithm that is taught in schools for computing the product of natural

46 J.A. Bergstra, C.A. Middelburg

numbers represented in the decimal number system. It is known that
the long multiplication algorithm has uniform time complexity Θ(n2) and
the the Karatsuba multiplication algorithm has uniform time complexity
Θ(nlog2(3)) = Θ(n1,5849...), so the Karatsuba multiplication algorithm is
asymptotically faster than the long multiplication algorithm.

4 Dealing with n-Bit Words

This section is concerned with dealing with bit strings of length n by means
of Boolean registers. It contains definitions which facilitate the description
of instruction sequences that express the long multiplication algorithm and
the Karatsuba multiplication algorithm.

Henceforth, it is assumed that a fixed but arbitrary positive natural
number N has been given. The above-mentioned algorithms compute the bi-
nary representation of the product of two natural numbers represented by bit
strings of the same length. In Section 6, the instruction sequences expressing
these algorithms will be described for the case where this length is N .

In the sequel, bit strings of length n will mostly be called n-bit words.
The prefix “n-bit” is left out if n is irrelevant or clear from the context.

Let κ:i (κ ∈ {in, out, aux}, i ∈ N+) be the name of a Boolean register.
Then κ and i are called the kind and number of the Boolean register.
Successive Boolean registers are Boolean registers of the same kind with
successive numbers. Words are stored by means of Boolean registers such
that the successive bits of a stored word are the contents of successive
Boolean registers.

Henceforth, the name of a Boolean register will mostly be used to refer
to the Boolean register in which the least significant bit of a word is stored.
Let κ:i and κ′:i′ be the names of Boolean registers and let n ∈ N+. Then we
say that κ:i and κ′:i′ lead to partially coinciding n-bit words if k = k′ and
0 < |i− i′| < n.

The N -bit words representing the two natural numbers for which the
binary representation of their product is to be computed are stored in advance
of the computation in input registers, starting with the input register with
number 1. It is convenient to have available the names I1 and I2 for the
input registers in which the least significant bit of these words are stored.
The 2N -bit word representing the product is stored just before the end
of the computation in output registers, starting with the output register
with number 1. It is convenient to have available the name O for the

Instruction Sequences Expressing
Multiplication Algorithms 47

output register in which the least significant bit of this word is stored. The
words representing intermediate values that arise during the computation are
temporarily stored in auxiliary registers, starting with the auxiliary register
with number 1.

In the case of the Karatsuba algorithm, the binary representation of
the product of two natural numbers with binary representations of the same
length is computed by dividing the computation into the computation of the
binary representations of three products and doing so recursively until it not
any more leads to further length reduction. Therefore, it is convenient to have
available, for sufficiently many natural numbers i, the names Ii1, I

i
2 and Oi

for the auxiliary registers in which the least significant bit of the binary
representations of smaller natural numbers and their product are stored.
Because at each level of recursion, except the last level, the computation
of the binary representation of a product involves the computation of the
binary representations of three products at the next level, it is convenient to
have available, for sufficiently many natural numbers i, the names P i

1, P i
2

and P i
3 for the auxiliary registers in which the least significant bit of these

binary representations of products are stored.

It is also convenient to have available the names S1, S2, T1, T2 for the
auxiliary registers in which the least significant bit of the words that represent
the intermediate values that arise, other than the ones mentioned in the
previous paragraph, are stored. Moreover, it is convenient to have available
the name c for the auxiliary register that contains the carry/borrow bit that
is repeatedly stored when computing the operations that model addition and
subtraction on natural numbers with respect to their binary representation.

Therefore, we define:

I1 , in:1,

I2 , in:k where k = N + 1,

O , out:1,

c , aux:1,

S1 , aux:2,

S2 , aux:k where k = 2 ·N + 2,

T1 , aux:k where k = 4 ·N + 2,

T2 , aux:k where k = 6 ·N + 2,

48 J.A. Bergstra, C.A. Middelburg

Ii1 , aux:k where k = 10 ·N · i+ 8 ·N + 2 (0 ≤ i ≤ dlog2(N − 2)e),
Ii2 , aux:k where k = 10 ·N · i+ 9 ·N + 2 (0 ≤ i ≤ dlog2(N − 2)e),
Oi , aux:k where k = 10 ·N · i+ 10 ·N + 2 (0 ≤ i ≤ dlog2(N − 2)e),
P i
1 , aux:k where k = 10 ·N · i+ 12 ·N + 2 (0 ≤ i ≤ dlog2(N − 2)e),
P i
2 , aux:k where k = 10 ·N · i+ 14 ·N + 2 (0 ≤ i ≤ dlog2(N − 2)e),
P i
3 , aux:k where k = 10 ·N · i+ 16 ·N + 2 (0 ≤ i ≤ dlog2(N − 2)e).

Here i ranges over natural numbers in the interval with lower endpoint 0
and upper endpoint dlog2(N − 2)e. This needs some explanation.

Proposition 1 The recursion depth of the Karatsuba multiplication algo-
rithm applied to bit strings of length N is dlog2(N − 2)e.

Proof: Let n ≤ N . In the Karatsuba multiplication algorithm, the
binary representation of the product of two natural numbers with binary
representations of length n is computed by dividing the computation into the
computation of the binary representation of a product of two natural numbers
with binary representations of length bn/2c, the binary representation of
a product of two natural numbers with binary representations of length
dn/2e, and the binary representation of a product of two natural numbers
with binary representations of length dn/2e+ 1. The function f defined by
f(n) , dn/2e+ 1 has the following properties: (a) f(n) < n iff n > 3; and
(b) for n > 3, the least m such that fm(n) = 3 is dlog2(n− 2)e. This implies
that the recursion depth is dlog2(N − 2)e. 2

Proposition 1 tells us that the maximum level of recursion that can be
reached is dlog2(N − 2)e. So there are dlog2(N − 2)e+ 1 possible levels of
recursion, viz. 0, . . . , dlog2(N − 2)e. This means that there are sufficiently
many natural numbers i for which the names Ii1, Ii2, Oi, P i

1, P i
2, and P i

3 have
been introduced above. In Section 6, we will use the names Ii1, Ii2, Oi, P i

1, P i
2,

and P i
3 at the level of recursion dlog2(N − 2)e − i.

5 Computing Operations on n-Bit Words

This section is concerned with computing operations on bit strings of length n.
It contains definitions which facilitate the description of instruction sequences
that express the long multiplication algorithm and the Karatsuba multipli-
cation algorithm.

Instruction Sequences Expressing
Multiplication Algorithms 49

In this section, we will write ββ′, where β and β′ are bit strings, for
the concatenation of β and β′. In other words, we will use juxtaposition for
concatenation. Moreover, we will use the bit string notation bn. For n > 0,
the bit string bn, where b ∈ {0, 1}, is defined by induction on n as follows:
b1 = b and bn+1 = b bn.

The basic operations on words that are relevant to the long multipli-
cation algorithm and/or the Karatsuba multiplication algorithm are the
operations that model addition, subtraction, and multiplication by 2m,
modulo 2n, on natural numbers less than 2n, with respect to their binary
representation by n-bit words (0 < n ≤ N , 0 < m < n). The operation
modeling multiplication by 2m is commonly known as “shift left by m posi-
tions”. For these operations, we define parameterized instruction sequences
computing them in case the parameters are properly instantiated (see below):

ADDn(s1:k1, s2:k2, d:l) ,

c.set:0 ;

;n−1i=0 (+s1:k1+i.get ; #8 ; +s2:k2+i.get ; #8 ;−c.get ; #14 ;

d:l+i.set:1 ; c.set:0 ; #13 ; +s2:k2+i.get ; #4 ; +c.get ; #7 ; #7 ;

+c.get ; #5 ; d:l+i.set:0 ; c.set:1 ; #3 ; +d:l+i.set:0 ; d:l+i.set:1) ,

SUBn(s1:k1, s2:k2, d:l) ,

c.set:0 ;

;n−1i=0 (−s1:k1+i.get ; #8 ; +s2:k2+i.get ; #8 ;−c.get ; #14 ;

d:l+i.set:0 ; c.set:0 ; #13 ; +s2:k2+i.get ; #4 ; +c.get ; #7 ; #7 ;

+c.get ; #5 ; d:l+i.set:1 ; c.set:1 ; #3 ;−d:l+i.set:1 ; d:l+i.set:0) ,

SHLm
n (s:k, d:l) ,

;n−1−mi=0 (+s:k+n−1−m−i.get ;−d:l+n−1−i.set:1 ; d:l+n−1−i.set:0) ;

;m−1i=0 (d:l+m−1−i.set:0) ,

where s, s1, s2 range over {in, aux}, d ranges over {aux, out}, and k, k1, k2, l
range over N+. For each of these parameterized instruction sequences, all but
the last parameter correspond to the operands of the operation concerned
and the last parameter corresponds to the result of the operation concerned.
The intended operations are computed provided that the instantiation of
the last parameter and the instantiation of none of the other parameters
lead to partially coinciding n-bit words. In this paper, this condition will
always be satisfied.

50 J.A. Bergstra, C.A. Middelburg

In the case of addition and subtraction, the intended operation is
computed according to the long addition algorithm and the long subtraction
algorithm, respectively. There are many instruction sequences expressing
these algorithms. The ones defined above are at present the shortest ones
that we could devise.

From now on, if we state that a function on bit strings of length n
models a function on natural numbers less than 2n, it is implicit that it
does so with respect to the binary representation of these numbers by n-bit
words.

Proposition 2 Let n,m ∈ N be such that 0 < n ≤ N and 0 < m < n.
Then the function on bit strings of length n computed by

1. ADDn(I1, I2, O) ; ! models addition modulo 2n on natural numbers less
than 2n;

2. SUBn(I1, I2, O) ; ! models subtraction modulo 2n on natural numbers
less than 2n;

3. SHLm
n (I1, O) ; ! models multiplication by 2m modulo 2n on natural

numbers less than 2n.

Proof: In the case of the first and second property, we prove a stronger
property that also covers the final content of the auxiliary register containing
the carry/borrow bit. Each of the stronger properties is easy to prove by
induction on n with case distinction on the contents of the input registers
containing the most significant bits of the operands of the operation concerned
and the content of the auxiliary register containing the carry/borrow bit in
both the basis step and the inductive step. The third property is easy to
prove by induction on n with case distinction on the content of the input
register containing the most significant bit of the operand of the operation
concerned in both the basis step and the inductive step. 2

Transferring n-bit words (0 < n ≤ N) is also relevant to the multiplica-
tion algorithms. For this, we define parameterized instruction sequences as
well. By one the successive bits in a constant n-bit word become the content
of n successive Boolean registers and by the other the successive bits in a
n-bit word that are the content of n successive Boolean registers become the

Instruction Sequences Expressing
Multiplication Algorithms 51

content of n other successive Boolean registers:

SETn(b0 . . . bn−1, d:l) , ;n−1i=0 (d:l+i.set:bi) ,

MOV n(s:k, d:l) , ;n−1i=0 (+s:k+i.get ;−d:l+i.set:1 ; d:l+i.set:0) ,

where b0, . . . , bn−1 range over {0, 1}, s ranges over {in, aux}, d ranges over
{aux, out}, and k, l range over N+. In the case of MOV n, the intended
transfer is performed provided that the instantiation of the last parameter and
the instantiation of the first parameter do not lead to partially coinciding n-
bit words. In this paper, this condition will always be satisfied.

Proposition 3 Let n ∈ N be such that 0 < n ≤ N . Then the function on
bit strings of length n computed by

1. SETn(b0 . . . bn−1, O) ; ! models the natural number constant with binary
representation b0 . . . bn−1;

2. MOV n(I1, O) ; ! models the identity function on natural numbers less
than 2n.

Proof: Each of these properties is trivial to prove by induction on n with
case distinction on bn−1 and the content of the input register containing the
most significant bits of the operand of the operation, respectively, in both
the basis step and the inductive step. 2

For convenience’s sake, we define some special cases of the parameterized
instruction sequences for transferring n-bit words (0 < m < n):

ZPADm
n (d:l) , SETn−m(0n−m, d:l+m) ,

MVH m
n (s:k, d:l) , MOV m(s:k+(n−m), d:l) ,

MVLm
n (s:k, d:l) , MOV m(s:k, d:l) ,

where s ranges over {in, aux}, d ranges over {aux, out}, and k, l range over N+.
ZPADm

n is meant for turning a stored m-bit word into a stored n-bit word by
zero padding. MVH m

n and MVLm
n are meant for transferring only the m most

significant bits and the m least significant bits, respectively, of a stored n-bit
word.

Because dn/2e+1 < n iff n > 3, the Karatsuba multiplication algorithm
cannot be used for modeling multiplication on natural numbers less than

52 J.A. Bergstra, C.A. Middelburg

2n with respect to their binary representation by n-bit words if n ≤ 3.
Therefore, we also define a parameterized instruction sequence, in terms of
the above-mentioned basic operations, that computes the operation modeling
multiplication according to the long multiplication algorithm:

MULn(s1:k1, s2:k2, d:l) ,

MOV n(s1:k1, S1) ; ZPADn
2n(S1) ; SET 2n(02n, S2) ;

;n−1i=0 (−s2:k2+i.get ; #li ; ADDn+i+1(S1, S2, S2) ; SHL1
n+i+1(S1, S1)) ;

MOV 2n(S2, d:l) ,

where li = len(ADDn+i+1(S1, S2, S2)) + 1 ,

where s1, s2 range over {in, aux}, d ranges over {aux, out}, and k1, k2, l range
over N+. The additions are done on the fly and the shifts are restricted to
shifts by one position by shifting the result of all preceding shifts.

Proposition 4 Let n ∈ N be such that 0 < n ≤ N . Then the function on
bit strings of length n computed by MULn(I1, I2, O) ; ! models multiplication
on natural numbers less than 2n.

Proof: We prove a stronger property that also covers the final contents
of the 2n successive auxiliary registers starting with the one named S1 and
the 2n successive auxiliary registers starting with the one named S2. This
stronger property is easy to prove, using Propositions 2 and 3, by induction
on n with case distinction on the content of the input register containing
the most significant bit of the second operand of the operation concerned in
both the basis step and the inductive step. 2

The calculation of the lengths of the parameterized instruction sequences
defined above is a matter of simple additions and multiplications. The lengths
of these instruction sequences are as follows:

len(SHLm
n (s:k, d:l)) = 3 · n− 2 ·m ,

len(ADDn(s1:k1, s2:k2, d:l)) = 21 · n+ 1 ,

len(SUBn(s1:k1, s2:k2, d:l)) = 21 · n+ 1 ,

len(SETn(b0 . . . bn−1, d:l)) = n ,

len(MOV n(s:k, d:l)) = 3 · n ,

Instruction Sequences Expressing
Multiplication Algorithms 53

len(ZPADm
n (d:l)) = n−m ,

len(MVH m
n (s:k, d:l)) = 3 ·m ,

len(MVLm
n (s:k, d:l)) = 3 ·m ,

len(MULn(s1:k1, s2:k2, d:l)) = 36 · n2 + 24 · n+ 1 .

The instruction sequences defined in this section do compute the in-
tended operations in case of fully coinciding n-bit words.

6 Long Multiplication and
Karatsuba Multiplication

In this section, we describe and analyze instruction sequences that express the
long multiplication algorithm and the Karatsuba multiplication algorithm,
using the definitions given in Sections 4 and 5. The latter algorithm is
applicable only if N ≥ 3.

LMULN is the instruction sequence described by

MULN (I1, I2, O) ; ! .

We know by Proposition 4 that LMULN computes the function on bit strings
that models multiplication on natural numbers less than 2N . It does so
according to the long multiplication algorithm.

Proposition 5 len(LMULN) = 36 ·N2 + 24 ·N + 2.

Proof: This is trivial because len(LMULN)=len(MULN (I1, I2, O))+1. 2

KMULN , where N ≥ 3, is the instruction sequence described by

MOV N (I1, I
dlog2(N−2)e
1) ; MOV N (I2, I

dlog2(N−2)e
2) ;

KMAN ; MOV 2N (Odlog2(N−2)e, O) ; ! ,

where KMAn is inductively defined in Table 1. KMULN computes the
function on bit strings of length N that models multiplication on natural
numbers less than 2N according to the Karatsuba multiplication algorithm.

In order to compute the binary representation of the product of two
natural numbers with binary representations of length n by dividing the
computation into the computations of the binary representations of three

54 J.A. Bergstra, C.A. Middelburg

Table 1: Definition of KMAn (1 ≤ n ≤ N)

if n ≤ 3 then:

KMAn = MULn(I
`(n)
1 , I

`(n)
2 , O

`(n)
) ,

if n > 3 then:

KMAn =

MVH
bn/2c
n (I

`(n)
1 , I

`(bn/2c)
1) ; MVH

bn/2c
n (I

`(n)
2 , I

`(bn/2c)
2) ;

KMAbn/2c ; MOV 2bn/2c(O
`(bn/2c)

, P
`(n)
1) ;

MVL
dn/2e
n (I

`(n)
1 , I

`(dn/2e)
1) ; MVL

dn/2e
n (I

`(n)
2 , I

`(dn/2e)
2) ;

KMAdn/2e ; MOV 2dn/2e(O
`(dn/2e)

, P
`(n)
2) ;

MVH
bn/2c
n (I

`(n)
1 ,T1) ; ZPAD

bn/2c
dn/2e+1(T1) ;

MVL
dn/2e
n (I

`(n)
1 ,T2) ; ZPAD

dn/2e
dn/2e+1(T2) ; ADDdn/2e+1(T1,T2, I

`(dn/2e+1)
1) ;

MVH
bn/2c
n (I

`(n)
2 ,T1) ; ZPAD

bn/2c
dn/2e+1(T1) ;

MVL
dn/2e
n (I

`(n)
2 ,T2) ; ZPAD

dn/2e
dn/2e+1(T2) ; ADDdn/2e+1(T1,T2, I

`(dn/2e+1)
2) ;

KMAdn/2e+1 ; MOV 2(dn/2e+1)(O
`(dn/2e+1)

, P
`(n)
3) ;

ZPAD
2bn/2c
2(dn/2e+1)(P

`(n)
1) ; ZPAD

2dn/2e
2(dn/2e+1)(P

`(n)
2) ;

SUB2(dn/2e+1)(P
`(n)
3 , P

`(n)
1 ,T1) ; SUB2(dn/2e+1)(T1, P

`(n)
2 ,T1) ;

ZPAD
2(dn/2e+1)
2n (P

`(n)
1) ; ZPAD

2(dn/2e+1)
2n (P

`(n)
2) ; ZPAD

2(dn/2e+1)
2n (T1) ;

SHL
2dn/2e
2n (P

`(n)
1 ,T2) ; SHL

dn/2e
2n (T1,T1) ;

ADD2n(T2,T1,T1) ; ADD2n(T1, P
`(n)
2 , O

`(n)
) ,

where `(m) = dlog2(m− 2)e.

products as required by the Karatsuba multiplication algorithm, the in-
struction sequence KMAn contains the instruction sequences KMAbn/2c,
KMAdn/2e, and KMAdn/2e+1. Each of these three instruction sequences is
immediately preceded by an instruction sequence that transfers the binary
representations of the two natural numbers of which it has to compute

Instruction Sequences Expressing
Multiplication Algorithms 55

the binary representation of their product into the appropriate Boolean
registers for the instruction sequence concerned. Moreover, each of these
three instruction sequences is immediately followed by an instruction se-
quence that transfers the binary representation of the product that it has
computed into the appropriate Boolean registers for KMAn. The tail end of
KMAn completes the computation by performing some operations on the
three binary representations of products computed before as required by the
Karatsuba multiplication algorithm. For the rest, instruction sequences for
zero padding are scattered over KMAn where necessary to obtain the locally
right length of binary representations of natural numbers.

Proposition 6 If N ≥ 3, then the function on bit strings of length N
computed by KMULN models multiplication on natural numbers less than 2N .

Proof: It is straightforward to prove this by induction on N , using the
equations from Section 3 that form the basis of the Karatsuba multiplication
algorithm and Propositions 2, 3, and 4. 2

The following proposition gives a lower estimate and an upper estimate
for the length of KMULN .

Proposition 7 If N ≥ 3, then:

len(KMULN) ≥ 1184 · 3blog2(N)c−1 − 716 · 2blog2(N)c−1 + 12 ·N − 70 ,

len(KMULN) ≤ 1005 · 3dlog2(N−2)e − 358 · 2dlog2(N−2)e + 12 ·N − 249 .

Proof: Because len(KMULN) = len(KMAN) + 12 · N + 1, we have to
prove that

len(KMAN) ≥ 1184 · 3blog2(N)c−1 − 716 · 2blog2(N)c−1 − 71 ,

len(KMAN) ≤ 1005 · 3dlog2(N−2)e − 358 · 2dlog2(N−2)e − 250 .

Let c1 = len(MUL1), c2 = len(MUL2), c3 = len(MUL3), and for each n > 3,
cn = len(KMAn)− len(KMAbn/2c)− len(KMAdn/2e)− len(KMAdn/2e+1). Us-
ing the already calculated lengths of the parameterized instruction sequences
defined in Section 5, we obtain by simple calculations that c1 = 61, c2 = 193,
c3 = 397, and for each n > 3, cn = 126 · dn/2e+ 116 · n+ 142. Let c′0 = c3,
c′′0 = c3, and for each m > 0, c′m = c2m+2 and c′′m = c2m+1 . In other
words, c′0 = 397, c′′0 = 397, and for each m > 0, c′m = 358 · 2m−1 + 500
and c′′m = 358 · 2m + 142. Because bxc = k iff k ≤ x < k + 1, dxe = k

56 J.A. Bergstra, C.A. Middelburg

iff k − 1 < x ≤ k, and log2(x) = y iff x = 2y, it is clear that cn ≤ c′m if
m = dlog2(n− 2)e and cn ≥ c′′m if m = blog2(n)c − 1.

Let M = dlog2(N − 2)e, and let m ≤ M . It follows directly from the
proof of the proposition at the end of Section 4 that, for all n such that m =
dlog2(n− 2)e, the deepest level of recursion at which KMAn occurs is M−m.
Moreover, it follows directly from the definition of KMAn that, for all n > 0,
KMAn occurs at this level only if n is less than or equal to the greatest n′ such
that m = dlog2(n

′ − 2)e. We also have that cn ≤ cn′ if n ≤ n′, and cn′ ≤ c′m
if m = dlog2(n

′ − 2)e. All this means that len(KMAN) ≤
∑M

i=0(c
′
i · 3M−i).

In other words, len(KMAN) ≤ 397 · 3M +
∑M

i=1((358 · 2i−1 + 500) · 3M−i).
Using elementary properties of sums and the property that

∑k
i=0 x

i =

(1− xk+1)/(1− x), we obtain 397 · 3M +
∑M

i=1((358 · 2i−1 + 500) · 3M−i) =
397 · 3M + 358 · (3M − 2M) + 500 · ((3M − 1)/2) = 1005 · 3M − 358 · 2M −
250. Hence, because M = dlog2(N − 2)e, len(KMAN) ≤ 1005 ·3dlog2(N−2)e−
358 · 2dlog2(N−2)e − 250.

Let M ′ = blog2(N)c − 1, and let m ≤ M ′. We can show similarly to
above that, for all n such that m = blog2(n)c − 1, the least deep level of
recursion at which KMAn occurs is M ′ −m. Moreover, it follows directly
from the definition of KMAn that, for all n > 0, KMAn occurs at this level
only if n is greater than or equal to the least n′ such that m = blog2(n

′)c− 1.
We also have that cn≥cn′ if n≥n′, and cn′≥c′′m if m = blog2(n

′)c−1. All this

means that len(KMAN) ≥
∑M ′

i=0(c′′i · 3M
′−i). In other words, len(KMAN) ≥

397 · 3M ′
+
∑M ′

i=1((358 · 2i + 142) · 3M ′−i). Using the same properties of sums

as before, we obtain 397 · 3M ′
+
∑M ′

i=1((358 · 2i + 142) · 3M ′−i) = 397 · 3M ′
+

358 · (2 · (3M ′ − 2M
′
)) + 142 · ((3M ′ − 1)/2) = 1184 · 3M ′ − 716 · 2M ′ − 71.

Hence, because M ′ = blog2(N)c−1, len(KMAN) ≥ 1184 ·3blog2(N)c−1−716 ·
2blog2(N)c−1 − 71. 2

It is unclear to us whether it is practically possible to improve the lower
estimate and upper estimate for the length of KMULN considerably.

The following is a corollary of Propositions 5 and 7.

Corollary 1 len(LMULN) = Θ(N2) and len(KMULN) = Θ(N log2(3)) =
Θ(N1,5849...).

This corollary can be paraphrased as follows: the length of the instruction
sequences LMULN and KMULN , which express the long multiplication
algorithm and the Karatsuba multiplication algorithm, are asymptotically
bounded, up to a constant factor, both above and below by N2 and N log2(3),

Instruction Sequences Expressing
Multiplication Algorithms 57

respectively. It is striking because these algorithms are known to compute
the function that models multiplication on natural numbers less than 2N

with respect to their binary representation by N -bit words also in time
asymptotically bounded, up to a constant factor, both above and below
by N2 and N log2(3), respectively. This suggests, like some results from [4],
that instruction sequence size and computation time are polynomially related
measures.

Using Propositions 5 and 7, it is easy to check that (a) LMULN is
longer than KMULN only if N > 264 and (b) LMULN is longer than
KMULN if N > 6666. On that account, the following is another corollary of
Propositions 5 and 7.

Corollary 2 N > 28 if len(LMULN) > len(KMULN) and len(LMULN) >
len(KMULN) if N > 213.

In the area of algorithm efficiency, like in the area of computational com-
plexity, the focus is mainly on asymptotic properties of algorithms, like
Corollary 1. To our knowledge, there is virtually no attention in this area to
properties related to crossover points between algorithms, like Corollary 2.
We think that properties of the latter kind are frequently more relevant to
practice than properties of the former kind. However, existing knowledge
about crossover points between algorithms is mainly based on experimental
data which are highly dependent on the computer, operating system, pro-
gramming language and compiler used in the experiment. Moreover, if this
kind of knowledge is referred to at all, it is often turned into the form of
a rule of thumb. For example, the following statement and minor variants
of it can be found at many places (webpages, articles, and books) without
further justification: “As a rule of thumb, Karatsuba is usually faster when
the multiplicands are longer than 320-640 bits” (see e.g. [15]).

It is obvious that LMULN and KMULN need the same number of input
registers and the same number of output registers. However, the number of
auxiliary registers used by KMULN is always greater than the number of
auxiliary registers used by LMULN . The number of auxiliary registers used
by KMULN is 10 ·N · dlog2(N − 2)e+ 18 ·N + 1 and the number of auxiliary
registers used by LMULN is only 4 · N + 1. In the instance that N = 28,
these numbers correspond to ±3K bytes and ±128 bytes, respectively; and
in the instance that N = 213, these numbers correspond to ±148K bytes
and ±4K bytes, respectively.

In this paper, we do not answer the question whether there exist in-
struction sequences shorter than LMULN and KMULN that express the long

58 J.A. Bergstra, C.A. Middelburg

multiplication algorithm and Karatsuba multiplication algorithm, respec-
tively. The practical problem with proving or disproving the existence of
shorter instruction sequences is that it needs basically an extremely extensive
case distinction. We expect that, if the length of LMULN and/or KMULN

can be reduced, it cannot be reduced much. The reason for this is that
we have striven in Section 5 for instruction sequences without unreachable
subsequences, different suffixes with the same behaviour on execution, and
jump instruction that can be eliminated without introducing different suffixes
with the same behaviour on execution.

7 Long Multiplication and
Backward Jump Instructions

In this section, a minor variant of the long multiplication algorithm is ex-
pressed by an instruction sequence that contains a backward jump instruction
in addition to instructions to set and get the content of Boolean registers,
forward jump instructions, and a termination instruction.

We use the fragment without repetition operator of an extension of
PGA with, for each l ∈ N, a backward jump instruction \#l as additional
primitive instruction. On execution of an instruction sequence, the effect
of a backward jump instruction \#l is that execution proceeds with the
lth previous primitive instruction of the instruction sequence concerned —
if l equals 0 or there is no primitive instruction to proceed with, inaction
occurs. We write PGAbj for the above-mentioned extension of PGA. For a
mathematically precise treatment of PGAbj without repetition operator, we
refer to the treatment of C, which is a variant of PGA, in [6]. The fragment
of PGAbj without the repetition operator coincides with the fragment of C
without backward instructions other than backward jump instructions.

The additional basic operations on words that are relevant in this section
are the operations that model Euclidean division by 2m, decrement by 1,
and nonzero test on natural numbers less than 2n, with respect to their
representation by n-bit words (0 < n ≤ N , 0 < m < n). The operation
modeling Euclidean division by 2m is commonly known as “shift right by
m positions”. For these operations, we define parameterized instruction
sequences computing them in case the parameters are properly instantiated
(see below):

Instruction Sequences Expressing
Multiplication Algorithms 59

SHRm
n (s:k, d:l) ,

;n−1−mi=0 (+s:k+m+i.get ;−d:l+i.set:1 ; d:l+i.set:0) ;

;m−1i=0 (d:l+n−m+i.set:0) ,

DEC n(s:k, d:l) ,

;n−1i=0 (−s:k+i.get ; #3 ; d:l+i.set:0 ; #5 ; d:l+i.set:1) ; #1 ; #1 ; #1 ,

ISNZ n(s:k) ,

;n−1i=0 (+s:k+i.get ; #2) ; #2 ,

where s ranges over {in, aux}, d ranges over {aux, out}, and k, l range over N+.
For each of the first two parameterized instruction sequences, the first
parameter correspond to the operand of the operation concerned and the
second parameter corresponds to the result of the operation concerned. The
intended operations are computed provided that the instantiation of the first
parameter and the instantiation of the second parameters do not lead to
partially coinciding n-bit words. In this section, this condition will always
be satisfied. No result is stored on execution of ISNZ n. Instead, the first
primitive instruction following ISNZ n is skipped if the nonzero test fails.

Proposition 8 Let n,m ∈ N be such that 0 < n ≤ N and 0 < m < n.
Then the function on bit strings of length n computed by

1. SHRm
n (I1, O) ; ! models Euclidean division by 2m modulo 2n on natural

numbers less than 2n;

2. DEC n(I1, O) ; ! models subtraction by 1 modulo 2n on natural numbers
less than 2n;

3. ISNZ n(I1) ; +O.set:1 ; O.set:0 ; ! models the function isnz from natu-
ral numbers less than 2n to natural numbers less than 21 defined by
isnz (0) = 0 and isnz (k + 1) = 1 with respect to their binary represen-
tation by n-bit words and 1-bit words, respectively.

Proof: Each of these properties is easy to prove by induction on n with
case distinction on the content of the input register containing the most
significant bit of the operand of the operation concerned in both the basis
step and the inductive step. 2

The lengths of the parameterized instruction sequences defined above
are as follows:

60 J.A. Bergstra, C.A. Middelburg

len(SHRm
n (s:k, d:l)) = 3 · n− 2 ·m ,

len(DEC n(s:k, d:l)) = 5 · n+ 3 ,

len(ISNZ n(s:k)) = 2 · n+ 1 .

For each bit of the representation of the multiplier, LMULN contains a
different instruction sequence. This seems to exclude the use of backward
jump instructions to obtain an instruction sequence of significantly shorter
length, unless provision is made for some form of indirect addressing for
Boolean registers. However, there exists a minor variant of the long mul-
tiplication algorithm that makes it possible to have the same instruction
sequence for each bit of the representation of the multiplier. From the least
significant bit of the representation of the multiplier onwards, the algorithm
concerned shifts the representation of the multiplier by one position to the
right after it has dealt with a bit. In this way, the next bit remains the least
significant one throughout.

We proceed with describing an instruction sequence without backward
jump instructions that expresses this minor variant of the long multiplication
algorithm.

LMUL′N is the instruction sequence described by

MOV N (I1, S1) ; ZPADN
2N (S1) ; SET 2N (02N , S2) ; MOV N (I2, T1) ;

(−T1.get ; #l ; ADD2N (S1, S2, S2) ; SHL1
2N (S1, S1) ; SHR1

N (T1, T1))
N ;

MOV 2N (S2, O) ; ! ,

where

l = len(ADD2N (S1, S2, S2)) + 1 = 42 ·N + 2 .

Proposition 9 The function on bit strings of length N computed by LMUL′N
models multiplication on natural numbers less than 2N .

Proof: We prove a stronger property that also covers the final contents
of the 2N successive auxiliary registers starting with the one named S1,
the 2N successive auxiliary registers starting with the one named S2, and
the N successive auxiliary registers starting with the one named T1. This
stronger property is straightforward to prove, using Propositions 2, 3, and 8,
by induction on N with case distinction on the content of the input register
containing the most significant bit of the second operand of the operation
concerned in both the basis step and the inductive step. 2

Instruction Sequences Expressing
Multiplication Algorithms 61

Proposition 10 len(LMUL′N) = 51 ·N2 + 14 ·N + 1.

Proof: This is a matter of simple additions, subtractions, and multiplica-
tions. 2

The following is a corollary of Propositions 5 and 10.

Corollary 3 len(LMUL′N) > len(LMULN).

For each bit of the representation of the multiplier, LMUL′N contains
the same instruction sequence. That is, it contains N duplicates of the same
instruction sequence. This duplication can be eliminated by implementing a
loop by means of a backward jump instruction.

We proceed with describing an instruction sequence with a backward
jump instruction that expresses the minor variant of the long multiplica-
tion algorithm. We write N for the shortest representation of the natural
number N in the binary number system.

LMUL′′N is the instruction sequence described by

MOV N (I1, S1) ; ZPADN
2N (S1) ; SET 2N (02N , S2) ; MOV N (I2, T1) ;

SET blog2(N)c+1(N,T2) ;

−T1.get ; #l1 ; ADD2N (S1, S2, S2) ; SHL1
2N (S1, S1) ; SHR1

N (T1, T1) ;

DEC blog2(N)c+1(T2, T2) ; ISNZ blog2(N)c+1(T2) ; \#l2 ;

MOV 2N (S2, O) ; ! ,

where

l1 = len(ADD2N (S1, S2, S2)) + 1 = 42 ·N + 2 ,

l2 = len(−T1.get ; . . . ; ISNZ blog2(N)c+1(T2)) = 51 ·N + 7 · blog2(N)c+ 10 .

Proposition 11 The function on bit strings of length N computed by
LMUL′′N models multiplication on natural numbers less than 2N .

Proof: We prove a stronger property that also covers the final contents of
the 2N successive auxiliary registers starting with the one named S1, the 2N
successive auxiliary registers starting with the one named S2, theN successive
auxiliary registers starting with the one named T1, and the blog2(N)c+ 1
successive auxiliary registers starting with the one named T2. This stronger
property is straightforward to prove, using Propositions 2, 3, and 8, by

62 J.A. Bergstra, C.A. Middelburg

induction on N with case distinction on the content of the input register
containing the most significant bit of the second operand of the operation
concerned in both the basis step and the inductive step. 2

Proposition 12 len(LMUL′′N) = 66 ·N + 8 · blog2(N)c+ 13.

Proof: This is a matter of simple additions, subtractions, and multiplica-
tions. 2

The following is a corollary of Propositions 5, 10, and 12.

Corollary 4 len(LMUL′′N) = Θ(N) while both len(LMULN) = Θ(N2), and
len(LMUL′N) = Θ(N2).

Hence, LMUL′′N is asymptotically shorter than both LMULN and LMUL′N .
By Corollary 1, we know that LMUL′′N is asymptotically shorter than
KMULN too.

The following is a corollary of Propositions 5, 7, 10, and 12.

Corollary 5 Both len(LMUL′′N) < len(LMULN) and len(LMUL′′N) <
len(LMUL′N) if N > 1, and what is more, len(LMUL′′N) < len(KMULN)
if N > 2.

Hence, LMUL′′N is already shorter than LMULN , LMUL′N , and KMULN

if N is still very small. In fact, long multiplication is non-trivial only if N > 1
and Karatsuba multiplication is applicable only if N > 2.

8 Long Multiplication and the Halting Problem

In this section, we argue that the instruction sequences LMUL′N and LMUL′′N
from Section 7 form a hard witness of the inevitable existence of a halting
problem in the practice of imperative programming.

Turing’s result regarding the undecidability of the halting problem (see
e.g. [14]) is a result about Turing machines. In [2], we consider it as a
result about programs rather than machines, taking instruction sequences
as programs. The instruction sequences concerned are essentially the finite
instruction sequences that can be denoted by closed PGAbj terms. Unlike
in the current paper, the basic instructions are not fixed, but their effects
are restricted to the manipulation of something that can be understood as
the content of the tape of a Turing machine with a specific tape alphabet,

Instruction Sequences Expressing
Multiplication Algorithms 63

together with the position of the tape head. Different choices of basic
instructions give rise to different halting problem instances and one of these
instances is essentially the same as the halting problem for Turing machines.
Because of their orientation to Turing machines, we consider all instances
treated in [2] theoretical halting problem instances.

All halting problem instances would evaporate if the instruction se-
quences concerned would be restricted to the ones without backward jump
instructions. This is irrespective of whether the effects of the basic instruc-
tions have anything to do with the manipulation of a Turing machine tape.
In the case that we have basic instructions to set and get the content of
Boolean registers, instruction sequences without backward jump instructions
are sufficient to compute all functions f :{0, 1}n → {0, 1}m (n,m ∈ N). This
raises the question whether there exists a good reason for not abandoning
backward jump instructions altogether in such cases. The function that
models multiplication on natural numbers less than 2N with respect to their
binary representation by N -bit words offers a good reason: the length of
the instruction sequence that computes it according to the long multiplica-
tion algorithm can be reduced significantly by the use of backward jump
instructions. The length of the instruction sequence that computes this
function can be reduced even more by the use of backward jump instructions
than by going over to one of the multiplication algorithms that are known
to yield shorter instruction sequences without backward jump instructions
than the long multiplication algorithm such as for example the Karatsuba
multiplication algorithm.

Thus, the instruction sequences LMUL′N and LMUL′′N form a hard
witness of the inevitable existence of a halting problem in the practice
of imperative programming, where programs must have manageable size.
Because of its orientation to actual programming, we consider the halting
problem for the instruction sequences with forward and backward jump
instructions, and with only basic instructions to set and get the content of
Boolean registers, a practical halting problem. It is unknown to us whether
there is a connection between the solvability or unsolvability of the halting
problem for these instruction sequences and some form of diagonal argument.
It is easy to prove that this halting problem is both NP-hard and coNP-hard.
We do not know whether stronger lower bounds for its complexity can be
found in the literature. An extensive search for such lower bounds and other
results concerning this halting problem or a similar halting problem has been
unsuccessful.

64 J.A. Bergstra, C.A. Middelburg

9 Concluding Remarks

We have described finite instruction sequences, containing only instructions
to set and get the content of Boolean registers, forward jump instructions,
and a termination instruction, that compute the function that models mul-
tiplication on natural numbers less than 2N with respect to their binary
representation by N -bit words according to the long multiplication algo-
rithm and the Karatsuba multiplication algorithm. We have described those
instruction sequences by means of terms of PGA, an algebraic theory of
single-pass instruction sequences.

Thus, we have provided mathematically precise alternatives to the
natural language and pseudo code descriptions of these multiplication al-
gorithms found in mathematics and computer science literature on multi-
plication algorithms. Moreover, we have calculated the exact size of the
instruction sequence LMULN expressing the long multiplication algorithm
and lower and upper estimates for the size of the instruction sequence
KMULN expressing the Karatsuba multiplication algorithm. The results
following from the calculated sizes include: (a) len(LMULN) = Θ(N2) and
len(KMULN) = Θ(N log2(3)); (b) N > 28 if len(LMULN) > len(KMULN),
and len(LMULN) > len(KMULN) if N > 213. It is suggested by (a) that
instruction sequence size and computation time are polynomially related
measures. It is still an open question whether this is the case.

As a bonus, we have found that the number of auxiliary registers used
by LMULN is 4·N+1 and the number of auxiliary registers used by KMULN

is 10 ·N · dlog2(N − 2)e+ 18 ·N + 1. It is also an open question whether
the number of auxiliary registers that are used by an instruction sequence
and computation space are related measures.

We have also gone into the use of an instruction sequence with backward
jump instructions for expressing the long multiplication algorithm. We have
described a finite instruction sequence LMUL′′N containing a backward jump
instruction, in addition to the instructions to set and get the content of
Boolean registers, forward jump instructions, and a termination instruction,
that expresses a minor variant of the long multiplication algorithm. We have
calculated the exact size of this instruction sequence and have found that:
(a) len(LMUL′′N) = Θ(N); (b) len(LMUL′′N) < len(LMULN) if N > 1, and
(c) len(LMUL′′N) < len(KMULN) if N > 2. Furthermore, we have related
these findings to the halting problem.

Instruction Sequences Expressing
Multiplication Algorithms 65

Acknowledgements

We thank Dimitri Hendriks from the VU University Amsterdam for carefully
reading a draft of this paper and for pointing out an error in it.

References

[1] J. A. Bergstra and M. E. Loots. Program Algebra for Sequential
Code. Journal of Logic and Algebraic Programming, 51(2):125–156,
2002. doi:10.1016/S1567-8326(02)00018-8.

[2] J. A. Bergstra and C. A. Middelburg. Instruction Sequence Processing
Operators. Acta Informatica, 49(3):139–172, 2012. doi:10.1007/

s00236-012-0154-2.

[3] J. A. Bergstra and C. A. Middelburg. Instruction Sequences for Com-
puter Science, volume 2 of Atlantis Studies in Computing. Atlantis
Press, Amsterdam, 2012. doi:10.2991/978-94-91216-65-7_2.

[4] J. A. Bergstra and C. A. Middelburg. Instruction Sequence Based Non-
uniform Complexity Classes. Scientific Annals of Computer Science,
24(1):47–89, 2014. doi:10.7561/SACS.2014.1.47.

[5] J. A. Bergstra and C. A. Middelburg. On Algorithmic Equivalence of
Instruction Sequences for Computing Bit String Functions. Fundamenta
Informaticae, 138(4):411–434, 2015. doi:10.3233/FI-2015-1219.

[6] J. A. Bergstra and A. Ponse. An Instruction Sequence Semigroup with
Involutive Anti-Automorphisms. Scientific Annals of Computer Science,
19:57–92, 2009.

[7] S. A. Cook. On the Minimum Computation Time of Functions. PhD
thesis, Harvard University, Cambridge, MA, 1966.

[8] M. Fürer. Faster Integer Multiplication. SIAM Journal of Computing,
39(3):979–1005, 2009. doi:10.1137/070711761.

[9] A. A. Karatsuba. The Complexity of Computations. Proceedings of the
Steklov Institute of Mathematics, 211:169–183, 1995.

[10] A. A. Karatsuba and Y. P. Ofman. Multiplication of Multidigit Numbers
on Automata. Doklady Akademii Nauk SSSR, 145(2):293–294, 1962. in
Russian.

http://dx.doi.org/10.1016/S1567-8326(02)00018-8
http://dx.doi.org/10.1007/s00236-012-0154-2
http://dx.doi.org/10.1007/s00236-012-0154-2
http://dx.doi.org/10.2991/978-94-91216-65-7_2
http://dx.doi.org/10.7561/SACS.2014.1.47
http://dx.doi.org/10.3233/FI-2015-1219
http://dx.doi.org/10.1137/070711761

66 J.A. Bergstra, C.A. Middelburg

[11] C. A. Middelburg. Instruction Sequences as a Theme in Computer
Science. https://instructionsequence.wordpress.com

[12] A. Schönhage and V. Strassen. Schnelle Multiplikation großer Zahlen.
Computing, 7(3–4):281–292, 1971. doi:10.1007/BF02242355.

[13] A. A. Toom. The Complexity of a Scheme of Functional Elements
Simulating the Multiplication of Integers. Doklady Akademii Nauk
SSSR, 150(2):496–498, 1963. in Russian.

[14] A. M. Turing. On Computable Numbers, With an Application to
the Entscheidungs Problem. Proceedings of the London Mathematical
Society, Series 2, 42:230–265, 1937. doi:10.1112/plms/s2-42.1.230.
Correction: ibid, 43:544–546, 1937. doi:10.1112/plms/s2-43.6.544.

[15] Karatsuba Algorithm. In Wikipedia, 2018. Retrieved on July 1, 2018,
from http://en.wikipedia.org/wiki/Karatsuba_algorithm.

[16] Secure Hash Standard. National Institute of Standards and Technology,
FIPS PUB 180-4, March 2012.

c© Scientific Annals of Computer Science 2018

https://instructionsequence.wordpress.com
http://dx.doi.org/10.1007/BF02242355
http://dx.doi.org/10.1112/plms/s2-42.1.230
http://dx.doi.org/10.1112/plms/s2-43.6.544
http://en.wikipedia.org/wiki/Karatsuba_algorithm

	Introduction
	Program Algebra
	Sketch of Karatsuba Multiplication Algorithm
	Dealing with n-Bit Words
	Computing Operations on n-Bit Words
	Long Multiplication and Karatsuba Multiplication
	Long Multiplication and Backward Jump Instructions
	Long Multiplication and the Halting Problem
	Concluding Remarks

