Colloid-polymer mixtures in the protein limit
Bolhuis, P.G.; Meijer, E.J.; Louis, A.A.

Published in:
Physical Review Letters

Citation for published version (APA):
Colloid-Polymer Mixtures in the Protein Limit

Peter G. Bolhuis, 1 Evert Jan Meijer, 1 and Ard A. Louis 2

1 Department of Chemical Engineering, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
2 Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom

(Received 23 October 2002; published 14 February 2003)

We computed the phase-separation behavior and effective interactions of colloid-polymer mixtures in the “protein limit,” where the polymer radius of gyration is much larger than the colloid radius. For ideal polymers, the critical colloidal packing fraction tends to zero, whereas for interacting polymers in a good solvent the behavior is governed by a universal binodal, implying a constant critical colloid packing fraction. In both systems the depletion interaction is not well described by effective pair potentials but requires the incorporation of many-body contributions.

DOI: 10.1103/PhysRevLett.90.068304 PACS numbers: 82.35.Np, 61.25.Hq, 82.70.Dd

Adding polymers to suspensions of micro- and nanoparticles induces depletion interactions that profoundly affect their physical properties. This phenomenon has important scientific and (bio)technological applications. Polymers such as polyethylene glycol are routinely added to protein solutions to enable protein crystallization [1,2], in contrast to the protein limit, where the depletion interaction is not well described by effective pair potentials but requires the incorporation of many-body contributions.

We have recently used a coarse-graining technique [20] to study the colloid limit, and found quantitative agreement with experimental fluid-fluid binodals [21], and significant qualitative differences between interacting (IP) and noninteracting (NIP) polymers. Here, we study the same athermal model of HS colloids and nonadsorbing polymers in the protein limit, and calculate, for the first time, the full fluid-fluid binodals by direct simulation. The results for the IP and NIP show even larger qualitative differences, and many-body depletion interactions must be invoked to understand the phase behavior.

The simulation model consists of polymers on a simple cubic lattice mixed with HS colloids. The interacting
polymers in a good solvent are modeled as self-avoiding walks (SAW) of length L, which have a radius of gyration $R_g \sim L^q$. The noninteracting polymers are modeled as random walks, for which $R_g \sim L^{0.5}$. In both models there is an excluded-volume interaction between the colloidal HS and the polymer segments. The simulations were performed on a D^3 lattice with periodic boundary conditions, where $D = 48$ and $D = 100$ for the NIP and IP system, respectively. Throughout this Letter, we use the lattice spacing as the unit of length. For the NIP the colloidal HS diameter was $\sigma_c = 5.5$ and the polymer length was $L = 50, 100, 200$, and 500, corresponding to $q = 1.03, 1.45, 2.05$, and 3.2, respectively. For the IP $L = 2000$, and $\sigma_c = 10, 14, 20$, yielding $q = 3.86, 5.58$, and 7.78, respectively. Colloidal positions have continuous values, but when we calculated the interaction between colloid and polymer the colloids were shifted such that they occupied a constant number of lattice sites to prevent spurious attractive positions for single colloids (other lattice effects, although unavoidable, are expected to be small). Thermodynamic state points were calculated in the grand-canonical ensemble, i.e., at fixed volume V, colloid chemical potential μ_c, and polymer chemical potential μ_p using Monte Carlo (MC) techniques. The NIP were sampled using an (exact) lattice propagation method [22,23], while the IP configurations were generated using translation, pivot moves, and configurational bias MC [24] in an expanded ensemble to facilitate insertion of long chains [25]. Typical simulation lengths were 10^6 Monte Carlo moves per state point. In order to determine the liquid-liquid binodals we first estimated the coexistence line by scanning a series of μ_c for several values of μ_p and locate the μ_c for which a sudden density change occurred. Subsequently $8-10$ (μ_p, μ_c) coexistence state points were simulated simultaneously using parallel tempering [25]. When the estimated coexistence points are sufficiently close to the true binodal and to each other, and near the critical point, this scheme results in proper ergodic sampling of both phases. If necessary, the chemical potentials were adjusted towards coexistence. We used the multiple histogram reweighting [25,26] technique to determine the precise location of the (μ_c, μ_p) coexistence line, and the phase boundaries in the (ϕ_c, ϕ_p) plane, where $\phi_c = \rho_c \frac{4}{3} \pi R_g^3$ is the colloid volume fraction, with ρ_c the colloid number density.

Figures 1 and 2 contrast the calculated phase diagrams for NIP and IP for several size-ratios q. First, we note that both models show extensive immiscibility, in agreement with experiment [14]. Second, the two systems exhibit striking differences: for the NIP, the critical colloid volume fraction ϕ_c^{crit} tends to zero with increasing size-ratio q, while the IP exhibit a nearly constant value of ϕ_c^{crit}. For both systems the critical polymer concentration ϕ_p^{crit} increases with increasing q. The phase separation occurs well into the semidilute regime for the IP, again in qualitative agreement with experiment [13]. Structural properties of semidilute polymer solutions are independent of polymer length, being instead determined by the correlation length ξ, which is a function of the monomer density $c = L \rho_p$. This suggests analyzing the phase...
behavior of the polymer-HS mixture in terms of the ratio \(R_c/\xi \) [16]. Indeed, when the phase lines in Fig. 2 are rescaled with an accurate prescription for \(\xi(p_c) \) [12], the binodals nearly collapse onto a “universal binodal,” as shown in the inset of Fig. 2. This explains why the critical colloid packing fraction is nearly constant in the simulations. Similarly, \(\phi_p^{\text{crit}} \) scales as \(\phi_p^{\text{crit}} \sim q^{(3q - 1)/p} = q^{1.3} \). For comparison, we have also included results for \(q = 1 \) from Ref. [21] in Fig. 2. These results do not exhibit the same scaling behavior, since they are not in the semidilute regime.

The differences between NIP and IP phase behavior can be rationalized with some simple theories. Consider a Helmholz free-energy \(F \) of the form \(\beta F/V = f = f^{\text{HS}} + f_p + f_{\text{cp}} \). Here, the HS free-energy \(f^{\text{HS}} \) is given by the accurate Carnahan-Starling expression [27], and the polymer free-energy \(f_p \) for either IP or NIP solutions is well understood [10]. The contribution due to the HS-polymer interactions \(f_{\text{cp}} \) is nontrivial. A first approximation truncates after the second cross-virial coefficient, yielding \(f_{\text{cp}} \sim \rho_c \phi_c^{(1)} \). For NIP the insertion free-energy \(f^{(1)} \) is exactly known [11], so that \(f_{\text{cp}} \) takes the form \(f_{\text{cp}}^{(1)} = \rho_c \phi_c^{(1)} \). This reduces the reduced cross-virial coefficient \(\hat{b}_{\text{cp}} \). Since \(f_{\text{cp}}^{(1)} \) grows with increasing \(q \) immiscibility sets in at lower colloid packing fraction \(\phi_c \). The theory can be improved by realizing that the polymers exist only in the free volume left by the colloids [28]. Simply taking this free volume to be \(1 - \phi_c \) is an adequate first approximation for the protein limit. The trends for the binodal lines calculated from this simple theory, shown in Fig. 1, agree qualitatively with the simulations. For example, the critical point shifts to smaller \(\phi_c \) and larger \(\phi_p \) for increasing \(q \) and the binodal lines cross at a low \(\phi_c \). For computational reasons the simulations only go up to \(q = 3.2 \) and we expect better quantitative agreement for larger \(q \) since \(\phi_c^{\text{crit}} \) decreases so that the second virial theory should become more accurate. In the \(q \rightarrow \infty \) limit, this theory yields \(\phi_c^{\text{crit}} \sim 1/\hat{b}_{\text{cp}}^{(1)} \sim 1/(3q^3) \), and \(\phi_p^{\text{crit}} = q^2/\hat{b}_{\text{cp}} \sim q/3 \). Note that in the same limit, the penetrable sphere or Asakura-Oosawa model [28] scales somewhat differently: \(\phi_c^{\text{crit}} \sim 1/q^3 \) and \(\phi_p^{\text{crit}} \sim 1 \). Sear [7] already pointed out the \(\phi_c^{\text{crit}} \rightarrow 0 \) behavior using a slightly different prescription for the free volume than we employ here.

In the IP case, \(f_{\text{cp}} \) is more difficult to estimate, even for a second cross-virial theory. The \(R_c \ll \xi \) limit is given by Eq. (1) with the prefactors from RG theory. For \(R_c \gg \xi \) we have previously shown that \(F^{(1)} \) is given by \(F^{(1)} = \frac{4}{3} \pi R_c^3 \Pi + 6 \pi R_c^2 \gamma_s \) [12], where the polymer osmotic pressure \(\Pi \sim \xi^{-3} \) is well known [10]. However, since Eq. (1) is essentially a surface (depletion layer) contribution, we use a simple approximate second cross-virial term \(f_{\text{cp}} = \rho_c \left[\beta \Pi (R_c)^2 + 4.39 \phi_p q^{1.3} \right] \), which reduces to the correct form in both the \(R_c \ll \xi \) and the \(R_c \gg \xi \) limit. (Obviously this approach, which resembles the more schematic theory of Sear [16], could be improved.) As with our treatment of NIP, we take the effect of the colloid excluded-volume into account by computing the polymer densities in the free volume fraction \(1 - \phi_c \) (see Ref. [29] for a complimentary approach). The theoretical binodals were calculated using accurate expressions for \(\xi \) and \(\Pi [12] \) and are compared with the simulation results in Fig. 2, in the \(R_c/\xi \) versus \(\phi_c \) plane. The qualitative agreement suggests that we can also use this theory to estimate the effect of a poorer solvent on the binodals. Following Ref. [15], we alter the scaling of \(\xi \) to \(\xi \sim \phi_p^{\beta/3} \) so that \(\Pi \sim \phi^{\delta - 1} \). Interestingly, Fig. 2 shows that using \(\delta = 1.5 \) instead of the appropriate exponent for polymers in a good solvent (\(\delta = 2.3 \)), does not result in important differences in the binodals. Of course, the differences will appear larger in the \((\phi_c, \phi_p) \) plane due to the different scaling of \(\xi \). One must keep in mind, however, that these predictions follow from a simple scaling theory and qualitatively different behavior may emerge when one approaches the \(\theta \) point (where \(\delta = 1 \)).

To illustrate the many-body nature of the depletion interaction we estimated the phase behavior by approximating the system by colloids interacting via pairwise effective potentials. We computed the effective pair interaction \(\nu(r) \) between two colloids in a bath of IP’s, by \(\beta \nu(r) = -\ln(r) \) for \(r \gg \phi_c \to 0 \). The colloid radial distribution function \(g(r) \) was estimated by measuring the insertion probability of a HS at a distance \(r \) from a second fixed HS in a SAW polymer solution using the above MC techniques. Results for a single size-ratio \(q = 7.78 \) as a function of \(\phi_p \) are shown in Fig. 3. Several features are similar to the colloid limit [30]: the range shortens and

FIG. 3. Effective colloid-colloid pair potentials induced by interacting polymers for \(q = 7.78 \). Theoretical lines from Ref. [30]. Inset: Reduced second osmotic virial coefficient \(B_2^1 = B_2/(16/3)\pi R_c^2 \) as a function polymer densities for several size ratios.
the well depth increases with increasing ϕ_p. Interestingly, our simple depletion potential [30], derived for the colloidal limit, also works semiquantitatively in this regime. A good measure for the attractive strength of effective pair potentials is given by the second osmotic virial coefficient [27], shown in Fig. 3. The saturation of B_2^q for larger q is an interesting qualitative feature: apparently the shortening of the range compensates the deepening of the attraction, so that the total cohesion does not increase with increasing ϕ_p, something also found in RG [11] and integral equation calculations [19]. For pairwise interacting systems, phase separation typically sets in when $B_2^q \leq -1.5$ [31]. Here, the saturation of B_2^q suggests that for large q the pair interactions do not provide enough cohesion to explain the phase separation. We arrive at the same conclusions with simple mean-field theories [27], which should be relatively trustworthy given the long range of the pair potentials. Obviously, for $q \gg 1$ a pair-level description is not sufficient, and many-body interactions must be invoked.

For the NIP, one might also expect many-body interactions to be important for large q. A good approximation to the pair potentials exists [23,30], from which the second-virial coefficients at the calculated critical points follow: $B_2^q(q = 1.03) = -13.1$; $B_2^q(q = 1.45) = -16.4$; $B_2^q(q = 2.05) = -22.7$. Even though the actual critical ϕ_c's are very low, so that a second-virial description might be thought to be sufficient, the analysis above shows that for NIP the pair interactions provide too much cohesion, opposite to the IP case. Clearly, many-body interactions must also be invoked to describe the phase behavior correctly, as suggested by other authors [7,8,19,23,32].

In conclusion, we have shown by computer simulations that a mixture of polymers and nonadsorbing HS colloids shows extensive immiscibility in the protein limit, where the polymer-colloid size-ratio $q \gg 1$. For IP the phase behavior is dictated by a universal binodal in the semidilute regime. For NIP, the colloid packing fraction tends to zero for increasing polymer length. In contrast to the better studied colloidal limit, pair interactions are not sufficient to rationalize the phase behavior. We hope that future experiments on HS colloids with nonadsorbing polymer will test these predictions. Future work might include extensions to nonspherical particles, poor solvents, and adsorbing systems.

A. A. L. acknowledges the Isaac Newton Trust for financial support. E. J. M. acknowledges the Royal Netherlands Academy of Art and Sciences for financial support. We acknowledge support from the Stichting Nationale Computerfaciliteiten (NCF) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) for the use of supercomputer facilities. We thank M. Fuchs, R. Sear, and R. Tuinier for helpful discussions.

References