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abstract: Demographic processes and ecological interactions are
central to understanding evolution and vice versa. We present a novel
framework that combines basic Mendelian genetics with the powerful
demographic approach of matrix population models. The ecological
components of themodel may be stage classified or age classified, linear
or nonlinear, time invariant or time varying, and deterministic or sto-
chastic. Genotypes may affect, in fully pleiotropic fashion, any mixture
of demographic traits (viability, fertility, development) at any points in
the life cycle. The dynamics of the stage# genotype structure of the
population are given by a nonlinear population projection matrix.
We show how to construct this matrix and use it to derive sufficient
conditions for a protected genetic polymorphism for the case of linear,
time-independent demography. These conditions demonstrate that
genotype-specific population growth rates (l) do not determine the
outcome of selection. Except in restrictive special cases, heterozygote
superiority in l is neither necessary nor sufficient for a genetic poly-
morphism. As a consequence, the population growth rate does not
always increase, and populations can be driven to extinction due to
evolutionary suicide. We demonstrate the construction and analysis
of the model using data on a color polymorphism in the common buz-
zard (Buteo buteo). The model exhibits a stable genetic polymorphism
and declining growth rate, consistent with field data and previous
models.

Keywords: evolutionary demography, population genetics, eco-
evolutionary dynamics, genotype coexistence, heterozygote superior-
ity, protected polymorphisms.

Introduction

Both evolutionary change and population dynamics are
driven by birth and death processes, and these processes pro-
vide a fundamental link between the two fields. Evolutionary
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change in the distribution of genotypes and phenotypes
within a population is a consequence of births and deaths
within that population. That is, evolutionary change is a con-
sequence of demographic processes.1 It has been repeatedly
argued that demography is therefore central to understand-
ing evolution (Fussmann et al. 2007; Metcalf and Pavard
2007; Pelletier et al. 2009). Coulson et al. (2006) identified
the steps involved in such an eco-evolutionary analysis: a
map from genotype to phenotype, from phenotype to de-
mography, and from demography to fitness (for an earlier
version of these ideas, see Lewontin 1974). Our goal here is
to provide a model framework that includes ecological and
genetic processes operating simultaneously.
Examples of ecological and evolutionary processes operat-

ing on similar timescales include the rapid evolution of re-
sistance to antibiotics and pesticides as well as the rapid
life-history responses to environmental changes in urban en-
vironments (Schilthuizen 2018). The phenomena of evolu-
tionary rescue, in which genotype dynamics change popu-
lation growth from negative to positive, and evolutionary
suicide, in which the opposite happens, are invoked as gen-
eral examples of eco-evolutionary outcomes (Jones et al.
2009; Ferriere and Legendre 2013).
To put our results in context, it is useful to recall the var-

ious approaches to evolutionary dynamics: population ge-
netics, quantitative genetics, and adaptive dynamics. Each
treats the genetic and evolutionary components in its own
way, and each has been coupled to ecology and demography
in its own way.
Population genetics describes traits determined by a small

number of genes with potentially large phenotypic effects in
terms of the dynamics of gene and genotype frequencies. The
early analyses of Fisher (1930) and Wright (1931) treated
population size as fixed. Roughgarden (1971) combined
1. In our terminology, “ecological” processes are those involved in population
growth and interaction, and “demographic” models are those that analyze
ecological processes in terms of internal population structure, distinguishing
individuals on the basis of age, developmental stage, size, and so on. Demo-
graphic models, in our terminology, are a subset of ecological models.
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546 The American Naturalist
population genetics with nonlinear ecologicalmodels bywrit-
ing genotype fitnesses as functions of intra- and interspecific
densities but neglected population structure. Charlesworth
developed a theory for age-classified population genetics
(Charlesworth 1970, 1972; Charlesworth and Giesel 1972a,
1972b). Orive (1995) extended Charlesworth’s framework
to stage-structured population genetics models to study the
effect of clonal reproduction on the evolution of senescence.
Tuljapurkar (1982) extended Charlesworth’s results to the
case of variable environments by deriving invasion condi-
tions for a new allele into a homozygous, age-structured pop-
ulation with no demographic differences between the sexes.

Quantitative genetics focuses on the dynamics of pheno-
typic traits determined by large numbers of genes, each with
small effects (Falconer 1960). Thesemodels focus on the com-
ponents of phenotypic variance (genetic, environmental, ge-
netic# environmental, etc.; Kempthorne 1957). Selection is
described in terms of selection differentials or gradients and
the changing patterns of genetic variance and covariance.
Quantitative genetic models for changes in phenotype means
have been adapted to age-classified (Lande 1982b) and stage-
classified (Barfield et al. 2011) demographic models. A more
general structured approach based on an integral projection
model for trait distributions has been presented by Coulson
andTuljapurkar (2008). Childs et al. (2016) extend this frame-
work to include both sexes and develop an extension of the
age-structured Price equation for two-sex populations.

Adaptive dynamics (Metz et al. 1992; Diekmann 2004)
avoids genetics altogether, describing evolution as a series of
phenotype substitutions, with one phenotype replacing an-
other until a phenotype is found that can resist invasion by
all others. It is used to explore a wide range of complicated
ecological scenarios, including nonlinear dynamics, popula-
tion structure, resource-consumer interactions, and interspe-
cific interactions (Dieckmann and Law 1996; Geritz et al.
1998; Dercole and Rinaldi 2008). Adaptive dynamics gener-
ally assumes clonal reproduction and infrequent mutations,
such that a separation is possible between a slower evolution-
ary timescale and a faster ecological timescale. Adaptive dy-
namics has been combined with the framework of integral
projection models to study the evolution of function-valued
traits (Metcalf et al. 2008; Rees and Ellner 2016).

Our results here are squarely in the population genetics
tradition and thus complement recent advances in quantita-
tive genetics using integral projection models (Coulson and
Tuljapurkar 2008; Coulson et al. 2010; Childs et al. 2016).
We present a general connection between population genet-
ics and stage-structured demography. The ecological com-
ponents of themodel may be stage classified or age classified,
linear or nonlinear, time invariant or time varying, and de-
terministic or stochastic. The ecological components may
also include dependence on environmental resources or in-
teractions among species, although we do not include that
This content downloaded from 145.
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here. We allow genotypes to affect any of the vital rates (sur-
vival, fertility, growth, development, movement, etc.) and to
do so in a stage-specific way.
These considerations lead us to a multidimensional ma-

trix population model in which individuals are jointly classi-
fied by stage and genotype. Although we formulate themodel
for discrete stages, there is no reason to doubt that it could
be extended to the integral projection model (IPM) context
for the case of continuous i-states. Coulson et al. (2011) pre-
sent an IPMwith a genetic component to describe a coat color
polymorphism in a population of wolves, although the details
of the genetic components are not explicitly laid out. Our
results provide a general formulation that is applicable to
any population and amenable to analytical manipulations.
Our major results are the methodology for constructing

such a model from genotype-specific demographic measure-
ments and a set of analytical conditions that determinewhether
alleles will coexist in a genetic polymorphism or whether one
or another allele will go to fixation.
Model Construction

As in most ecological and demographic studies, we model
only females and suppose that the amount of offspring pro-
duction is determined by female genotype. The genetic com-
position of those offspring is determined by the mating pro-
cess and, thus, the genetic composition of potential male
mates. This means that we are focusing on traits that affect
both female and male survival and transitions but do not af-
fect male mating success. This would include such traits as,
inter alia, predator defense, disease or drug resistance, re-
source uptake, and migration, all of which could affect both
males and females. It excludes traits such as male courtship
displays, ornamental plumage, and so on. A two-sex version
of the model, which includes males explicitly and relaxes
these restrictions, will be presented elsewhere (C. de Vries
and H. Caswell, unpublished manuscript).
We will assume random mating with respect to stage and

genotype but subject to constraints on which stages take part
in reproduction. Assortativemating can be incorporated, but
we do not consider that here.
Individuals are jointly classified by stage (1, ::: ,q) and ge-

notype (1, ::: , g). Each genotype is characterized by a matrix
of transition probabilities (including survival) and a matrix
of reproductive output. These matrices can include time var-
iation or nonlinearities reflecting the environment or density
dependence, although we will address those complications
elsewhere. Each stage contributes offspring to genotypes at
the next time step according to matrices that are determined
by the mating system and the population structure.
The matrices, vectors, and mathematical operations used

in this article are listed in table 1.
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Stage-Structured Evolutionary Demography 547
The Component Matrices

The population state at time t can be described by a stage#
genotype distribution

N p
n11 � n1g

� �
nq1 � nqg

2

4

3

5, ð1Þ

where nij represents the number of individuals of stage i
and genotype j. This two-dimensional array is transformed
into a population state vector using the vec operator, which
stacks the columns on top of each other:

~n(t) p vecN (t): ð2Þ
For a single locus with two alleles, say A and a, we will iden-
tify genotypes 1, 2, and 3 asAA,Aa, and aa, respectively. The
population state vector consists of three genotype-specific
population vectors:

~n(t) p
nAA(t)
nAa(t)
naa(t)

2

4

3

5: ð3Þ

The population vector ~n is projected from t to t 1 1 by
a matrix ~A[~n], so that

~n(t 1 1) p ~A[~n]~n(t): ð4Þ
This content downloaded from 145.
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The matrix ~A depends on ~n because the genotypes of off-
spring depend on gene frequencies of parents.
The projectionmatrix is constructed from four sets of ma-

trices representing the demographic and genetic processes:

Ui demographic transitions for genotype i
i p 1, ::: , g q#q,

Fi fertility matrix for genotype i
i p 1, ::: , g q#q,

Di genotype transitions for stage i
i p 1, ::: ,q g#g ,

Hi(~n) parent‐offspring genotype map for stage i
i p 1, ::: ,q g#g:

The matrix Ui contains transition and survival probabilities
for genotype i. The matrix Fi contains stage-specific fertility
rates for genotype i. In the absence of genetic structure, these
would be the familiar transition and fertility matrices mak-
ing up a population projection matrix. Because the Ui and
the Fi can differ among genotypes in any way, the model
admits any kind of pleiotropy in demographic traits.
The matrix Di contains genotype transition probabilities

for individuals in stage i, but because genotypes are fixed
within an individual, we set Di p D p Ig for all i, where Ig
is the identity matrix of size g#g . The matrix Hi(~n) is a
Table 1: Mathematical notation used in this article
Symbol
 Definition
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Dimension
a
 Number of alleles (2)

g
 Number of genotypes (3)

q
 Number of stages

N
 Total population size

Nb
 Breeding population size

ci
 Indicator vector for breeding stages in genotype i
 q# 1

~n
 Joint stage-genotype vector
 qg# 1

~p
 Joint stage-genotype frequency vector
 qg# 1

pi
 Genotype frequency vector in genotype i
 g# 1

p0
i
 Genotype frequency vector of the offspring of genotype i
 g# 1
pb
 Genotype frequency vector in breeding population
 g# 1

q
 Gene frequency vector in population
 a# 1

qi
 Gene frequency vector in genotype i
 a# 1

qb
 Gene frequency vector in breeding population
 a# 1

ri
 Gene frequency in gametes from genotype i
 a# 1

rb
 Gene frequency in gametes from breeding population
 a# 1

Iq
 Identity matrix
 q#q
1g
 Vector of ones
 g# 1

ei
 The ith unit vector, with a 1 in the ith entry and zeros elsewhere
 Various

Eij
 A matrix with a 1 in the (i, j) position and zeros elsewhere
 Various

�
 Kronecker product

vecX
 The vec operator, which stacks the columns of an m#n

matrix X into an mn# 1 vector

Ui
 Demographic transitions for genotype i
 q#q
Fi
 Fertility matrix for genotype i
 q#q
Di
 Genotype transitions for stage i
 g# g

Hi(~n)
 Parent-offspring genotype map for stage i
 g# g
Note: Dimensions of vectors and matrices are given where relevant.
/t-and-c).



548 The American Naturalist
parent-offspringmap, from the genotype of a mother in stage
i to the genotypes of her offspring. The (k, l) entry of Hi is
the probability that an offspring of a genotype l mother, of
stage i, has genotype k. For the purpose of this article, we as-
sume that mating is random with respect to stage and hence
that the parent-offspringmap is the same for all stages, that is,
Hi(~n) p H(~n). The matrix H(~n) contains the genetic pro-
cesses and will be derived in the next section.
2. This matrix is specific to the two-allele case; with more than one allele,
the exact structure of W will depend on how the various diploid genotypes are
numbered. For example, if the genotypes formed by three alleles are listed in
the order (1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3), then the matrix W,
mapping from the nine genotypes to the three alleles, would be

W p

" 1 :5 :5
0 :5 0
0 0 :5

�����

:5 0 0
:5 1 :5
0 0 :5

�����

:5 0 0
0 :5 0
:5 :5 1

#

:

Mating: From Genotypes of Parents
to Genotypes of Offspring

To model the Mendelian genetics of offspring production, a
description of the genotype and allele structure of themating
population is required. Not every life-cycle stage will repro-
duce, and nonreproductive (e.g., immature) stages play no
role in determining the genotype frequencies among off-
spring.We define the breeding population by a set of indica-
tor vectors cj for j p 1, ::: , g that show which stages of geno-
type j take part in mating. That is, the ith entry of cj is 1 if
stage i of genotype j reproduces and 0 otherwise.

To describe genotype frequencies in the mating process,
we will distinguish four vectors of genotype frequencies:

p p genotype frequencies in the overall population,
pb p genotype frequencies in the breeding population,
pi p genotype frequencies in genotype i (pei),
p0
i p genotype frequencies in the offspring of genotype i:

The size of the breeding population is

Nb p
Xg

jp1

(e�
j �c�

j )~n, ð5Þ

where ej is a vector (g#1) with a 1 in position j and zeros
elsewhere and � indicates the Kronecker product. Breeding
stages are allowed to differ among genotypes in order to
study the fate of traits that change reproductive schedules.
In the special case where the genotypes do not differ in their
reproductive stages, cj p c for all genotypes j and

Nb p (1�
g �c�)~n, ð6Þ

where 1�
g is a vector of ones of dimensions 1#g.

The genotype frequency vector in the breeding popula-
tion is

pb p
X~n
Nb

, ð7Þ

where X is a matrix that combines abundances of breeding
stages. If the breeding vectors ci differ among genotypes,
then

X p
Xg

ip1

(Eii �c�
i ), ð8Þ
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where Eii is a matrix of dimension g#g with a 1 in the (i, i)
location and zeros elsewhere. If the breeding vectors are
the same for all genotypes, ci p c, then

X p (Ig �c�): ð9Þ
The genotype frequency vector for genotype i is (trivially)
pi p ei.
The gene frequencies are a function of the genotype fre-

quencies, so that

qi p Wpi, ð10Þ

qb p Wpb, ð11Þ

where2

W p 1 0:5 0
0 0:5 1

� �
: ð12Þ

At this point, mutation can be introduced in the produc-
tion of gametes from the gene frequency vector. Define amu-
tation matrix L for the two-allele case as

L p 1 2 u v
u 1 2 v

� �
, ð13Þ

where u is the probability of mutation from allele A to allele
a and v is the probability of mutation in the other direction.
The allele frequencies in the gametes produced by a female of
genotype i are the gene frequencies of the mother, modified
by mutation:

ri p Lqi: ð14Þ

We do not investigate mutations in this article.
We assume that genotypes affect the survival and tran-

sitions of males and females equally and that the ratio of males
to females in newborns is one. Thus males and females have
the same genotype # stage distribution (see Charlesworth
1994). Because the genotypes do not affect male mating suc-
cess, the gene frequencies in the male gamete pool are propor-
tional to the gene frequencies in the breeding part of the female
population, qb, modified by mutation:

rb p Lqb, ð15Þ

Mating and offspring. Now consider a random mother of
genotype i and let p0

i be the genotype distribution of her off-
spring. These offspring are formed by the random combina-
018.108.049 on April 17, 2019 01:27:53 AM
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Stage-Structured Evolutionary Demography 549
tion of the gametes produced by this female with those pro-
duced by a random member of the breeding population, so
that

p0
i p Z(ri �rb): ð16Þ

The matrix Z converts ordered genotypes (Aa separately
from aA) into unordered genotypes; for the case of one locus
and two alleles,

Z p
1 0 0 0
0 1 1 0
0 0 0 1

2

4

3

5: ð17Þ

Writing down the Z matrix for more than two alleles is
straightforward after an order of the genotypes in the pop-
ulation vector has been chosen.

Substituting equations (7)–(10) into equation (16) and us-
ing the fact that AC�BD p (A�B)(C�D), we find that
the distribution of offspring of a mother of genotype i is

p0
i p Z(ri �rb) ð18Þ

p
Q(ei �~n)Pg

jp1(e�
j �c�

j )~n
, ð19Þ

where

Q p Z(M�M)(W�W)(Ig �X): ð20Þ

For a specified number of genotypes and set of breeding
stages, the matrix Q is a constant.
The Matrix H

The matrix H(~n) maps the genotype of the parent to the
genotype of the offspring. The ith column of the matrix H
contains the distribution of offspring of a mother of genotype
i, p0

i, as given in equation (19); thus,

H p (p0
1 � p0

g), ð21Þ

which can be written as

H p
Xg

ip1

p0
i �e�

i : ð22Þ

Combining equation (19) and equation (22) yields the fol-
lowing equation for the parent-offspring matrix

H(~n) p
Q

Pg
ip1(ei �~n�e�

i )Pg
jp1(e�

j �c�
j )~n

: ð23Þ

The Population Projection Matrix

To project the stage#genotype dynamics, the component
matrices Ui, Fi, and H(~n) are incorporated into a popula-
tion projection matrix. We create a set of block diagonal
This content downloaded from 145.
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matrices U, D, F, and H by putting the corresponding ma-
trices on the diagonal. These block diagonal matrices can
be written as

U p
Xg

ip1

Eii�Ui, ð24Þ

F p
Xg

ip1

Eii�Fi, ð25Þ

D p Iq�Ig , ð26Þ

H p Iq�H(~n), ð27Þ

where Eii is of dimensions g#g .
As in other multistate matrix models, the projection

matrix ~A(~n) is constructed from the four block matrices,

~A(~n) p K�DKU|����{z����}
~U

1K�H(~n)KF|��������{z��������}
~F

,
ð28Þ

where K p Kq,g is the vec-permutation matrix (Henderson
and Searle 1981). The vec-permutation matrix rearranges
the population vector so that genotypes are ordered within
stages, that is,

vecN � p KvecN : ð29Þ

For more extensive discussion of the vec-permutation con-
struction, see Hunter and Caswell (2005), Caswell (2012),
and Caswell et al. (2018).
The first term in equation (28), labeled ~U, applies the block

diagonal matrix U to generate transitions and survival of ex-
tant individuals within genotypes, permutes the resulting vec-
tor withK, applies the block diagonal matrixD to account for
changes in genotype among extant individuals (since extant
individuals do not generally change their genotype, D will be
an identity matrix), and finally permutes the vector back to its
original form with K�.
The second term in equation (28), labeled ~F, describes re-

production and genotype assignment. First, the block diagonal
matrix F produces offspring, possibly of different birth stages
(e.g., seedlings of different sizes) as a function of the genotype
of the parent. When they appear, offspring are associated with
the genotype of the parent. The vec-permutation matrix K
rearranges the vector, and then the block diagonal matrix
H(~n) allocates the offspring to their genotypes, on the basis
of the genotype of their parent and the genotype distribution
of the rest of the population. Finally, K� returns the vector
to its original orientation.

Nonlinearity and Homogeneity

Even when the demographic components of the model are
linear, the system (28) is nonlinear, because of the genetic
component of the model. The parent-to-offspring geno-
018.108.049 on April 17, 2019 01:27:53 AM
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550 The American Naturalist
type transition matrix, and thus the projection matrix ~A(~n),
are nonlinear but homogeneous of degree zero. That is, for
any nonzero scalar c it is true that ~A(c~n) p ~A(~n). This im-
plies that dynamics depend on the relative, not the absolute,
abundances of the stages. This mathematical fact permits us
to switch at will between considering the model as a function
of the population vector ~n or the frequency vector ~p, since the
two differ only by a proportionality factor.

Homogeneous nonlinear models are familiar in two-sex
demographic models (e.g., Hadeler et al. 1988; Caswell 2001;
Iannelli et al. 2005). A nonlinear version of the Perron-
Frobenius theorem guarantees convergence to a constant
population structure and exponential population growth
under certain conditions in these homogeneous nonlinear
models (Nussbaum 1986, 1989). Thus, we expect the pop-
ulation to convergence to a stable stage#genotype struc-
ture, with exponential growth in population size.

In the literature on two-sexmodels, homogeneous models
are often referred to as “frequency dependent” to distinguish
them from density-dependent nonlinear models (Shyu and
Caswell 2016). We do not follow that practice here because
it causes confusion with the genetic concept of frequency-
dependent fitness. All of our models are homogeneous; none
of them are frequency dependent in the genetic sense.
3. Code that appears in The American Naturalist is provided as a conve-
nience to readers. It has not necessarily been tested as part of peer review.
The Block Form of the Projection Matrix

The population projection matrix for the two-allele case can
be written in terms of 3#3 block matrices that project the
three genotype-specific population vectors, nAA, nAa, and
naa, that were introduced in equation (3). Taking advantage
of the structure of the componentmatrices, we find that ~A, ~U,
and ~F can be simplified (app. A; apps. A, B are available
online). The survival and transition matrix ~U is block diag-
onal because individuals do not change genotype:

~U p
UAA 0 0
0 UAa 0
0 0 Uaa

2

4

3

5: ð30Þ

The fertility matrix ~F has the following form:

~F(~p) p

qbAFAA

1
2
qbAFAa 0

qbaFAA

1
2
FAa qbAFaa

0
1
2
qbaFAa qbaFaa

2

6666664

3

7777775
, ð31Þ

where qbA and qba are the frequencies of allele A and a, respec-
tively, in the breeding part of the population; that is, they are
the elements of the vector qb defined by equation (11), such
that q�

b p (qbA, qba)
�. If the Fimatrices are linear, the matrix ~F

is homogeneous and can be written as a function of ~p rather
than ~n.
This content downloaded from 145.
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The population projection matrix is the sum of ~U and ~F:

~A(~p) p

UAA 1 qbAFAA

1
2
qbAFAa 0

qbaFAA UAa 1
1
2
FAa qbAFaa

0
1
2
qbaFAa Uaa 1 qbaFaa

2

6666664

3

7777775
:

ð32Þ

The matrix ~A is used in equation (4) to project trajectories
in stage# genotype space.
Stage#Genotype Dynamics

We consider two examples of projection of the stage struc-
ture and genotype composition of the population. In addi-
tion to showing how the model can be used, these will pro-
vide material for the investigation of analytical conditions
for genetic polymorphism.
A two-stage model. As a simple example, consider a two-

stage (juvenile and adult) model, with

U p sJ(1 2 g) 0
sJg sA

� �
,

F p 0 f
0 0

� �
,

ð33Þ

where sJ and sA are juvenile and adult survival probabilities,
g is the maturation rate, and f is the adult fertility. Any or
all of these parameters may differ among genotypes, so that
selection can operate on stage-specific viability, develop-
ment, and/or fertility; this would lead to genotype-specific
versions of each of the matrices (UAA and so on).
Figure 1 shows two examples of stage#genotype dynam-

ics produced by this simple model (model parameters and
Matlab code are provided in a zip file, available online).3

TheA allele is introduced by adding a small fraction of hetero-
zygote juveniles into a homozygote population. In figure 1b,
genotype frequencies converge to a stable polymorphism,
even though the population is driven to evolutionary suicide
(fig. 1a). In figure 1d, the A allele sweeps to fixation; in so do-
ing, it changes population growth from negative to positive
(evolutionary rescue; fig. 1c). We will return to this example
below to examine the criteria for polymorphism in relation
tomeasures of genotypic growth ratesli, whichwill be defined
in the section “Coexistence and Genetic Polymorphism.”
A color polymorphism in the common buzzard. As an exam-

ple of how empirical demographic data might be incorporated
into the model, we consider a study of a color polymorphism
018.108.049 on April 17, 2019 01:27:53 AM
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Stage-Structured Evolutionary Demography 551
in the common buzzard (Buteo buteo), a bird of prey native to
most of Europe and parts of Asia. The buzzard has three
color morphs: dark (DD), light (LL), and intermediate
(DL). The polymorphism is believed to be a consequence of
a one-locus system with two alleles, dark and light, where in-
termediates are heterozygotes (Krüger and Lindström 2001),
although recent studies have suggested that the genetics
might be more complex (Kappers et al. 2018). There is evi-
dence of assortative mating in B. buteo (Krüger et al. 2001).
However, in the absence of data to quantify the level of assor-
tative mating, we assume random mating for this example.

Krüger and Lindström (2001) constructed a Leslie matrix
for each color morph using data collected from 1989 through
1999 in eastern Westphalia, Germany. As examples, the sur-
This content downloaded from 145.
All use subject to University of Chicago Press Term
vival and fertility matrices for females of the intermediate
morph are shown in box 1. The other genotype-specific sur-
vival and transition matrices are available in the zip file.
The projection matrix ~A is constructed from the

genotype-specific matrices Ui and Fi using equation (32).
Starting with a population of dark individuals and one het-
erozygote juvenile, the population dynamics are obtained
by projecting the population forward using equation (4).
The abundances in each age class of all three genotypes
are shown in figure 2b. The population growth rate con-
verges to l p 0:91. Field observations confirm that this
B. buteo population was in decline during the time period
used for fitting the model. The marginal distribution over
genotypes, integrating over ages in ~p, is shown in figure 2a.
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Figure 1: Two examples of population dynamics of a two-stage (juvenile-adult) Mendelian matrix population model. a, b, Introduction of the
A allele leads to evolutionary suicide and a genetic polymorphism. c, d, Introduction of the A allele leads to evolutionary rescue and fixation of
the AA genotype. A color version of this figure is available online.
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The light allele increases in frequency until a stable polymor-
phism is reached.
Coexistence and Genetic Polymorphism

The conditions that lead to either fixation of one allele or co-
existence of both alleles at a genetic polymorphism are critical
to population genetics. In the simplest classical models, the
genotypes AA, Aa, and aa are assigned fitnesses wAA, wAa,
and waa (e.g., Crow and Kimura 1970). The two alleles coexist
if and only if the heterozygote has the highest fitness, that is,
wAa 1 wAA and wAa 1 waa. The fitnesses wi capture, in a single
scalar, all of the information on genotype effects on survival
and reproduction, from one generation to the next, ignoring
population structure. To extend this result to a fully stage-
structuredmodel is a challenge because the differences among
genotypes are not captured by simple scalars but rather by the
matrices Ui and Fi and the parameters that determine them.

Since the wi represent a kind of growth rate, it has seemed
natural, at least since Fisher (1930), to search for ways to use
a measure of the rate of growth implied by the demography
of each genotype as a measure of “fitness.”The approach was
extended by Hamilton (1966) to include the sensitivity anal-
ysis of growth rate, considered as ameasure of selection pres-
This content downloaded from 145.
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sure, and has formed the basis of several decades of evolu-
tionary life-history research (e.g., Emlen 1970; Metz et al.
1992; Roff 1992; Stearns 1992; Caswell 2001) and eventually
became, in the form of invasion fitness, the basis for adaptive
dynamics (Geritz et al. 1998; Dercole and Rinaldi 2008).
Lande incorporated population growth rate into quantitative
genetic models in an age-structured version of the breeder’s
equation (Lande 1982a,1982b).
These attempts have in common the exclusion of ex-

plicit genotype dynamics. Charlesworth, however, devel-
oped an extensive theory for genetics in age-structured
models (Charlesworth 1970, 1972, 1994). We will return
to a comparison of our approach with that of Charlesworth
in “Discussion.”
Genotype-speci�c growth rates. To examine the relation

of the full stage#genotype dynamics to the concept of fit-
ness as measured by a growth rate, we define here the
genotype-specific growth rates:

lAA p r(UAA 1 FAA), ð34Þ

lAa p r(UAa 1 FAa), ð35Þ

laa p r(Uaa 1 Faa), ð36Þ
Box 1: The transition matrix and the fertility matrix for Buteo buteo females of the intermediate color morph

UDL p

0 0 0 0 0 0 0 0 0 0 0
0:8 0 0 0 0 0 0 0 0 0 0
0 0:75 0 0 0 0 0 0 0 0 0
0 0 0:636 0 0 0 0 0 0 0 0
0 0 0 0:714 0 0 0 0 0 0 0
0 0 0 0 0:667 0 0 0 0 0 0
0 0 0 0 0 0:8 0 0 0 0 0
0 0 0 0 0 0 0:625 0 0 0 0
0 0 0 0 0 0 0 0:4 0 0 0
0 0 0 0 0 0 0 0 0:5 0 0
0 0 0 0 0 0 0 0 0 1 0

2

66666666666666664

3

77777777777777775

:

FDL p

0:05 0:41 0:42 0:45 0:56 0:48 0:61 0:27 0:40 0 0:54
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

2

66666666666666664

3

77777777777777775
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where r(�) denotes the largest eigenvalue of a matrix, also re-
ferred to as the spectral radius. The problem, of course, is
that in a genetically mixed population each genotype con-
tributes offspring to, and receives offspring from, other geno-
types. The growth rates defined by equations (34)–(36) are
thus hypothetical, because in those rates each genotype is
credited with all of its offspring.

If the genotype-specific population growth rates func-
tioned as fitnesses, then the genotypes would coexist when
the heterozygote has the highest fitness, that is, when

lAa 1 lAA, ð37Þ

lAa 1 laa: ð38Þ

As we will see, this is true only in special cases.
Protected Genetic Polymorphism

The dynamics of ~n take place in a qg-dimensional space de-
fined by combinations of q stages and g genotypes (with
g p 3 in the present context). The q-dimensional subspaces
defined by the homozygous genotypesAA and aa are referred
to as boundaries. In the absence of mutation, dynamics on the
boundaries remain on the boundaries and are given by the
projection matrices for the homozygous genotypes.4

Coexistence of the two alleles is guaranteed if the boundary
subspaces are both unstable; that is, if allele A can invade a
population of aa individuals and allele a can invade a popula-
4. Technically, the boundaries are invariant under the dynamics specified
by ~A[~n].
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tion of AA individuals, then the population can never reach a
homozygote state again once both alleles are present in the
population (since both alleles grow when rare). Mutual inva-
sibility therefore leads to a protected genetic polymorphism.
This approach was introduced in the study of spatially struc-
tured populations (Levene 1953; Prout 1968); for a complete
summary, see Nagylaki (1992, chap. 6).
The model reduces to a linear matrix model on the

boundary and, hence, will either grow or shrink exponen-
tially while converging to a stable population structure.
To define the boundary equilibria, themodel is transformed
from the population vector ~n, which grows exponentially,
to the frequency vector ~p, which converges to an equilib-
rium. This transformation is possible because of the homo-
geneity of ~A. The dynamics of ~p are given by

~p(t 1 1) p
~A[~p(t)]~p(t)

kA[~p(t)]~p(t)k
, ð39Þ

where kak indicates the 1-norm of the vector a, defined as
the sum of the absolute values of the entries of the vector a.
Equilibria of equation (39), denoted by p̂, satisfy

p̂ p
~A[p̂]p̂

kA[p̂]p̂k
: ð40Þ

The stability of a boundary equilibrium to invasions by the
other allele is determined by the dominant eigenvalue of
the Jacobian matrix of the linearization of equation (39) at the
boundary equilibrium. We denote the dominant eigenvalues
by zAA and zaa for the AA and aa boundaries, respectively.
The strong ergodic theorem ensures that the boundary equi-
libria are stable to perturbations inside the boundary. There-
0 10 20 30 40 50

Time

0

0.2

0.4

0.6

0.8

1

Fr
eq

ue
nc

y

Dark
Intermediate
Light

a

Genotype frequencies

0 10 20 30 40 50

Time

10-6

10-4

10-2

100

102

A
bu

nd
an

ce

Dark
Intermediate
Light

b

Age × genotype distribution

Figure 2: a, Projected Buteo buteo genotype frequencies when the intermediate (DL) heterozygote is introduced at low frequency (0.001) in a
homozygous dark (DD) population at its stable age distribution. b, Projected genotype by age class distribution for the calculations in a.
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fore, if the dominant eigenvalue of the Jacobian is larger in
magnitude than 1, the associated eigenvector must be point-
ing into the interior, which implies that the invading allele in-
creases when rare.

The Jacobian matrix

M p
d~p(t 1 1)
d~p(t)

����
p̂
, ð41Þ

is obtained by differentiating equation (39) and evaluating
the resulting derivative at the boundary equilibrium. The
derivation is a lengthy exercise in matrix calculus (Verdy
and Caswell 2008; Caswell 2008, 2019), presented in detail
in appendix B. The result shows thatM is a block upper tri-
angular matrix given by equation (B57). The diagonal blocks,
corresponding to growth of theAA,Aa, and aa genotypes, de-
termine the stability of the boundary equilibrium.We use this
matrix to determine the coexistence for protected polymor-
phism in three cases: the general model, a model restricted
to a single reproducing stage, and a model that eliminates
population structure, corresponding to the classical popula-
tion genetics model. We compare each of these results to
the naive expectation based on the genotype-specific popula-
tion growth rate.
The General Case

The following set of theorems and corollaries are derived
in appendix B. For a model of the form given by equa-
tions (24)–(28), the eigenvalues of the Jacobian matrix as-
sociated with growth in the Aa direction are

zAA p
1
lAA

r UAa 1
1
2
FAa 1

1
2pb

(FAAp̂AA)�c�
Aa

� �
, ð42Þ

z aa p
1
laa

r UAa 1
1
2
FAa 1

1
2pb

(Faap̂aa)�c�
Aa

� �
, ð43Þ

where lAA and laa are given by equations (34) and (36), re-
spectively, and pb is the fraction of the stable stage distribu-
tion that is in a breeding stage for the boundary homozy-
gote.

THEOREM 1: A protected polymorphism occurs when
both boundary equilibria are unstable, that is,

zAA 1 1, ð44Þ

z aa 1 1, ð45Þ

or

r

�
UAa 1

1
2
FAa 1

1
2pb

(FAAp̂AA)�c�
Aa

�
1 lAA, ð46Þ
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r

�
UAa 1

1
2
FAa 1

1
2pb

(Faap̂aa)�c�
Aa

�
1 laa: ð47Þ

It is worth noting that the data required to evaluate con-
ditions (46) and (47) are all obtained from linear life-
history calculations: the matrices UAa and FAa describing
the heterozygote, the fertility matrices FAA and Faa describ-
ing the fertility of the homozygotes, the stable stage distri-
butions p̂AA and p̂aa of the homozygotes, and the vector cAa
that defines the breeding stages for the heterozygote.
The difference between conditions (46) and (47), on the

one hand, and the simple (but erroneous) comparison of
genotype-specific growth rates,

r(UAa 1 FAa) 1 lAA, ð48Þ

r(UAa 1 FAa) 1 laa, ð49Þ

on the other, is the result of both genetic and demographic
complexity. When the a allele invades the AA boundary
equilibrium, it produces almost exclusively heterozygotes
(hence, the appearance of UAa, FAa, and cAa in condition [46]).
But the gametes of these heterozygotes combine with the
gametes of the much more abundant AA homozygotes
(hence, the appearance of FAA). In addition, fertility and zy-
gote formation depend on the demographic stage structure
of the AA homozygotes (hence, the appearance of p̂AA in
condition [46]). None of these complexities are captured
by the oversimplified heterozygote growth rates in condi-
tion (49). The situation for the A allele invading the aa
boundary in condition (47) is the same.
Special Case 1: A Single Reproducing Stage

Theorem 1 provides conditions for polymorphism that apply
regardless of the stage structure or the ways in which genotype
affects the life cycle. It is instructive to consider some special,
simplified cases in which the relation between the full condi-
tionsandthegenotype-specificpopulationgrowthrates is clear.
First, we consider a restriction to a single reproducing stage.

When there is only one reproducing stage, the eigenvalues of
the Jacobianmatrix associatedwith perturbations in theAa di-
rection on theAA and aa boundaries, equations (42) and (43),
reduce to

zAA p
1
lAA

r UAa 1
1
2
(FAa 1 FAA)

� �
, ð50Þ

z aa p
1
laa

r UAa 1
1
2
(FAa 1 Faa)

� �
: ð51Þ

See “Special Case: A Single Reproducing Stage” in appen-
dix B for a derivation of both equations.
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COROLLARY 1: For a model of the form given by
equations (24)–(28) with only one reproducing stage,
a protected polymorphism occurs when both bound-
ary equilibria are unstable, that is,

r UAa 1
1
2
(FAa 1 FAA)

� �
1 r(UAA 1 FAA), ð52Þ

r UAa 1
1
2
(FAa 1 Faa)

� �
1 r(Uaa 1 Faa): ð53Þ

If the genotypes differ only in survival and transitions (the
stage-structured analogue of viability selection), so that
FAA p FAa p Faa, then the coexistence condition reduces
to heterozygote superiority in l. If fertility is also affected
by genotype, it does not.

Once again, the criteria for polymorphism reflect the two
processes by which newAa individuals are created: anAa fe-
male randomlymating with a resident allele from the gamete
pool and a resident homozygote female randomly mating
with the invading allele from the gamete pool (all other mat-
ings are second-order processes).
Special Case 2: An Unstructured Population

An even simpler special case results from completely elim-
inating demographic structure and reducing the model to
an unstructured one. In this case, the matrices U and F re-
duce to scalars: the survival probability si and the fertility fi.
In this case, theorem 1 reduces to the following corollary.
For an unstructured version of the model given by equa-
tions (24)–(28), the eigenvalues of the Jacobian matrix, as-
sociated with the Aa direction, at the AA and aa boundaries
are

zAA p
1
lAA

sAa 1
1
2
( f Aa 1 f AA)

� �
, ð54Þ

zaa p
1
laa

sAa 1
1
2
( f Aa 1 f AA)

� �
: ð55Þ

COROLLARY 2: A protected polymorphism occurs
when both boundary equilibria are unstable, that is,

sAa 1
1
2
( f Aa 1 f aa) 1 saa 1 f aa, ð56Þ

sAa 1
1
2
( f Aa 1 f AA) 1 sAA 1 f AA, ð57Þ

or

sAa 1
1
2
f Aa 1 saa 1

1
2
f aa, ð58Þ
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sAa 1
1
2
f Aa 1 sAA 1

1
2
f AA, ð59Þ

Under viability selection alone (i.e., f Aa p f aa p f AA) or fer-
tility selection alone (i.e., sAa p saa p sAA), the conditions
for protected polymorphism reduce to heterozygote advan-
tage in l. This is the result familiar from classical population
genetics. However, when genotypes differ in both fertility
and viability, heterozygote advantage is neither necessary
nor sufficient for polymorphism, a result that agrees with a
large literature on fertility selection in unstructured popula-
tions (Hadeler and Liberman 1975; Pollak 1978; Feldman
et al. 1983).

Examples Revisited

Armed with the results of theorem 1, we return to the two
examples considered in figure 1 (the two-stage model) and
figure 2 (the common buzzard color polymorphism).
Two-stage population. In the two-stage example of evo-

lutionary suicide (fig. 1a, 1b), the heterozygote is inferior
as measured by its growth rate lAa, but both boundary
equilibria are unstable, so that a protected polymorphism
results:

lAA p 0:989,
lAa p 0:966,
laa p 1:003,

zAA p 1:012,
z aa p 1:007: ð60Þ

In the case leading to evolutionary rescue (fig. 1c, 1d), the
heterozygote is superior in growth rate lAa, but the AA
boundary equilibrium is stable and the aa boundary equilib-
rium is unstable, so that the population converges to fixation
of the A allele:

lAA p 1:018,
lAa p 1:029,
laa p 0:990,

zAA p 0:983,
z aa p 1:004: ð61Þ

In these cases, the outcome of selection is not determined by
the relationships among genotype-specific growth rates.
Common buzzard. In the population of figure 2, the het-

erozygote genotype DL has the highest population growth
rate and both boundary equilibria are unstable, resulting in
a protected polymorphism:

lDD p 0:48,
lDL p 1:04,
lLL p 0:68,

zDD p 1:891,
zLL p 1:493: ð62Þ

In figure 2b, the DL genotype is introduced at low fre-
quency in a population ofDD individuals at its stable age dis-
tribution. Thus, at the beginning we see the smooth expo-
nential decay of the DD genotype (blue dotted lines) and
dramatic fluctuations in the age and genotype composition
of the DL and LL components (green/yellow solid lines and
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orange/red dashed lines). Eventually (at about 20 years), the
entire joint age-genotype population structure stabilizes, and
the population continues to decline. The rate of decline differs
from that of the initial DD population, reflecting the new
polymorphic population structure. The timescale for conver-
gence of population dynamics is the same as the timescale
overwhich the genotypedistribution converges (fig. 2a). Thus,
ecological and evolutionary processes are clearly operating on
comparable timescales in this case.

The genotype frequencies reach stable proportions of 18%
light, 68% intermediate, and 14% dark individuals. Observed
population frequencies for the period 1989–1999 reported
by Krüger and Lindström (2001) are 29% light, 65% interme-
diate, and 6.0% dark. Whether this agreement is close is less
interesting than the fact that the values indicate how much
difference the neglected details of the buzzard life cycle (par-
ticularly assortative mating) can make.
Discussion

Both gene frequency dynamics and population dynamics are
driven by the demographic processes of birth and death.
Combining Mendelian genetics and demographic models
makes it possible to analyze genotype# stage dynamics of
species with arbitrarily complex life cycles. Such a demo-
graphic genetic model lays bare the choices about how geno-
types map to phenotypes (see Coulson et al. 2006) by speci-
fying the Ui and Fi matrices for each genotype. The model
allows an arbitrary degree of pleiotropy in genotype effects
on the demographic phenotype. The result is the nonlinear
matrixmodel in equations (24)–(28) that projects stage#ge-
notype population structures (figs. 1, 2). The model leads to
analytical conditions for the maintenance of a genetic poly-
morphism (theorem 1).

The data required to parametrize this Mendelian matrix
model is the same as that required to parametrize any demo-
graphic model: survival, transition, and fertility rates of indi-
viduals in each i-state. These typically appear in entries of
matrices U and F. Now those rates must be measured for
each genotype, appearing in the entries of the matrices Ui

and Fi. From such genotype-specific demographic data, one
can obtain all of the usual demographic output in addition
to the stage# genotype structure dynamics. For a compre-
hensive review of demographic models containing multiple
classifications, see Caswell et al. (2018).

Our framework extends a well-developed body of work on
the genetics of age-structured populations (Charlesworth
1994) by allowing any kind of demographic structure and
by connecting the results to the mathematics of matrix pop-
ulation models. Other studies have explored this connection
but were limited to species-specific models (e.g., the study of
a wolf population by Coulson et al. [2011]) or to equilibrium
conditions (Diekmann et al. 2003).
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Despite empirical evidence for the importance of fertility
selection (Anderson andWatanabe 1974; Pincheira-Donoso
and Hunt 2017; Travis 1988), general coexistence conditions
for genotypes in the presence of fertility and viability selec-
tion have posed a challenge, as it remains unclear how the
fertility of a mating is determined. The consequences of dif-
ferent assumptions about the fertility of a mating were
worked out for unstructured models in a series of articles be-
tween the late 1940s and the 1980s (Penrose 1947; Owen
1953; Bodmer 1965; Hadeler and Liberman 1975; Pollak
1978; Feldman et al. 1983). Pollak (1978) and Clark and
Feldman (1986) found that including differences between
genotypes in fertility as well as survival results in the mean
fitness in the population not always increasing. Our results
extend this conclusion to a structured population genetics
model and to cases where selectionmay operate on other rates
besides viability and fertility (e.g., growth or development).
Our model is a one-sex model, so we implicitly restrict at-

tention to traits with the same effect in male and female sur-
vival and development. This corresponds to standard practice
in population ecology, where demographic analyses typically
focus on females. Relaxing this assumption by including both
sexes makes it possible to analyze, e.g., traits affecting male
mating success or female energy allocation. Sexual antago-
nism (i.e., intralocus sexual conflict, in which an allele has pos-
itive effects on one sex and negative effects on the other) are
analyzed in a two-sex version of our model (C. de Vries and
H. Caswell, unpublished manuscript). Sexual antagonism
has been shown to lead, in some cases, to evolutionary suicide,
both theoretically (Kokko and Brooks 2003) and experimen-
tally (Doherty et al. 2003; Martins et al. 2018).
In addition to a fully two-sex version of the model, the

framework presented here can be extended in other ways.
For example, more complicated ecological interactions can
be included, such as nonlinear demography, time-dependent
demographic rates, interactions among species, and depen-
dence on environmental resources. The model can also be
extended to include more genetic details, including nonran-
dom mating, more than two alleles, and mutations. A time-
dependent version of the model will make it applicable to
species with both sexual and clonal reproduction (Orive
2001; Orive et al. 2017), such as rotifers (Zweerus et al. 2017).
It is well known that genotype-specific population growth

rates (li) are not reliable proxies for fitness when modeling
sexual reproduction because genotypes do not only produce
copies of themselves. Nevertheless, there is a huge informal lit-
erature on life-history theory that assumes selection can be de-
scribed in terms of some version of l (or the related genera-
tional measure R0).
Our theorem 1 provides a general solution to the question

of genotype coexistence by protected polymorphism, and we
have shown that l can be a proxy for fitness, given certain
simplifying assumptions (no fertility differences between
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genotypes and only one reproducing stage). Charlesworth’s
extensive analysis of age-classified selection found several
conditions under which heterozygote superiority in the
genotype-specific intrinsic rate of increase r p log l leads
to unstable boundary equilibria and therefore to a protected
polymorphism. One condition assumes weak selection. An-
other relaxes the assumption of weak selection but assumes
no demographic differences betweenmales and females. Both
cases involve issues relating to the relative rates of conver-
gence of age structure and gene frequencies (e.g., Charles-
worth 1994, p. 150).

We need not invoke weak selection, and by considering a
gene that affects female fertility but does not affect male re-
productive success we also deviate from Charlesworth’s as-
sumption of no demographic differences between the sexes.
The search for restrictive conditions under which heterozy-
gote superiority in l or r determines polymorphism becomes
less compelling given the results from theorem 1 based on
zAA and zaa.

The framework presented in this article makes genotype
frequencies just one more type of demographic structure,
differing from age, size, or stage structure only in the details
of the reproduction process and the nonlinearity this creates.
This approach to incorporating population genetics intoma-
trix models has two advantages. First, our mathematical for-
mulation makes it possible to obtain analytical results, such
as the conditions for a protected polymorphism derived in
this article. Second, the detailed derivation of the model lays
bare the assumptions required and therefore simplifies the
task of extending the model to relax those assumptions, for
example, by including more than two alleles, incorporating
mutations, or adding males.
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