Layering of a liquid metal in contact with a hard wall

Published in:
Nature

Citation for published version (APA):
When a liquid makes contact with a solid wall, theoretical studies indicate that the atoms or molecules will become layered adjacent to the wall, giving rise to an oscillatory density profile. This expectation has not, however, been directly verified, although an oscillatory force curve is seen for liquids compressed between solid surfaces. Here we present the results of an X-ray scattering study of liquid gallium in contact with a (111) diamond surface. We see pronounced layering in the liquid density profile which decays exponentially with increasing distance from the wall. The layer spacing is about 3.8 Å, which is equal to the repeat distance of (001) planes of upright gallium dimers in solid α-gallium. Thus it appears that the liquid near the wall assumes a solid-like structure similar to the α-phase, which is nucleated on freezing at lower temperatures. This kind of ordering should significantly influence flow, capillary osmosis, lubrication and wetting properties, and is likely to trigger heterogeneous nucleation of the solid.

Wall-induced oscillations in the atomic density are difficult to detect because they occur at a deeply buried interface over a depth interval of typically less than a nanometre. An earlier study of an electrolyte–silver (111) interface showed layering of the water molecules close to the electrode. This ordering phenomenon, however, relates to the presence of a strong electric field at the interface, causing the dipolar water molecules to be preferentially oriented and attracting them to the silver surface. For the free surfaces of liquid Hg and Ga, the in-plane pair distribution function and the density profile along the surface normal have been determined. In the latter case the strong gradient in the density dependent one-body potential across the liquid–vapour interface, which acts as an effective force on the surface ion cores, is responsible for a layering effect. The layering reported here is present in a nonpolar elemental liquid lying against a hard wall, in the absence of an external field. This reflects the commonly occurring situation of having a liquid metal contained in a crucible.

Our choice of materials is convenient for several reasons: Ga is liquid at 300 K (supercooled by 8 K) and diamond is essentially transparent from the wall. The layer spacing is about 3.8 Å, which is equal to the repeat distance of (001) planes of upright gallium dimers in solid α-gallium. Thus it appears that the liquid near the wall assumes a solid-like structure similar to the α-phase, which is nucleated on freezing at lower temperatures. This kind of ordering should significantly influence flow, capillary osmosis, lubrication and wetting properties, and is likely to trigger heterogeneous nucleation of the solid.

Wall-induced oscillations in the atomic density are difficult to detect because they occur at a deeply buried interface over a depth interval of typically less than a nanometre. An earlier study of an electrolyte–silver (111) interface showed layering of the water molecules close to the electrode. This ordering phenomenon, however, relates to the presence of a strong electric field at the interface, causing the dipolar water molecules to be preferentially oriented and attracting them to the silver surface. For the free surfaces of liquid Hg and Ga, the in-plane pair distribution function and the density profile along the surface normal have been determined. In the latter case the strong gradient in the density dependent one-body potential across the liquid–vapour interface, which acts as an effective force on the surface ion cores, is responsible for a layering effect. The layering reported here is present in a nonpolar elemental liquid lying against a hard wall, in the absence of an external field. This reflects the commonly occurring situation of having a liquid metal contained in a crucible.

Our choice of materials is convenient for several reasons: Ga is liquid at 300 K (supercooled by 8 K) and diamond is essentially transparent from the wall. The layer spacing is about 3.8 Å, which is equal to the repeat distance of (001) planes of upright gallium dimers in solid α-gallium. Thus it appears that the liquid near the wall assumes a solid-like structure similar to the α-phase, which is nucleated on freezing at lower temperatures. This kind of ordering should significantly influence flow, capillary osmosis, lubrication and wetting properties, and is likely to trigger heterogeneous nucleation of the solid.

Wall-induced oscillations in the atomic density are difficult to detect because they occur at a deeply buried interface over a depth interval of typically less than a nanometre. An earlier study of an electrolyte–silver (111) interface showed layering of the water molecules close to the electrode. This ordering phenomenon, however, relates to the presence of a strong electric field at the interface, causing the dipolar water molecules to be preferentially oriented and attracting them to the silver surface. For the free surfaces of liquid Hg and Ga, the in-plane pair distribution function and the density profile along the surface normal have been determined. In the latter case the strong gradient in the density dependent one-body potential across the liquid–vapour interface, which acts as an effective force on the surface ion cores, is responsible for a layering effect. The layering reported here is present in a nonpolar elemental liquid lying against a hard wall, in the absence of an external field. This reflects the commonly occurring situation of having a liquid metal contained in a crucible.

Our choice of materials is convenient for several reasons: Ga is liquid at 300 K (supercooled by 8 K) and diamond is essentially transparent from the wall. The layer spacing is about 3.8 Å, which is equal to the repeat distance of (001) planes of upright gallium dimers in solid α-gallium. Thus it appears that the liquid near the wall assumes a solid-like structure similar to the α-phase, which is nucleated on freezing at lower temperatures. This kind of ordering should significantly influence flow, capillary osmosis, lubrication and wetting properties, and is likely to trigger heterogeneous nucleation of the solid.
transparent to X-rays at the photon energy used (17 keV), enabling the incident beam to reach the interface from the diamond side (inset of Fig. 1). The diamond (111) substrate, having a high surface free energy, is a prototypical hard wall, which at 300 K is nonreactive towards Ga and is stable against bond breaking. However, the preparation of an atomically clean interface requires a special procedure involving the controlled deposition, in an ultrahigh vacuum (UHV) environment, of a drop of liquid metal free of surface oxide onto a horizontally positioned clean substrate. The X-ray scattering experiment is to be done in situ, so that contaminants from the ambient will not be absorbed by the liquid drop. We have constructed a dedicated UHV set-up which fulfils all of these requirements. The set-up is fitted with a cylindrical Be-window scintillation detector behind slits defining the momentum acceptance angle. Subsequent flash-heating in the UHV set-up to 1,000 °C resulted in an atomically clean (2 × 1)-reconstructed surface. A millimetre-sized drop of liquid Ga (99.9999% purity) was deposited onto the diamond surface by gently pushing the plunger of a Ga-filled alumina ‘syringe’ positioned directly above the incident beam to reach the interface from the diamond side.

The measured specular reflectivity, shown in Fig. 1 as a function of Q_{\perp}, shows a broad oscillation with a maximum at ~ 1.5 Å$^{-1}$. This is a signature of layerwise ordering in the liquid with a period of $2\pi/1.5 = 4$ Å. In search for the best fit to the data we have considered a variety of density profiles across the interface. For each model, we calculate the specularly reflected fraction $R(Q_{\perp})$ of the incoming flux within the Born approximation using the equation:

$$R(Q_{\perp}) = \frac{4\pi r_e^2}{Q_{\perp}} \left\{ \int \left[f^c(Q_{\perp}) \rho^c(z) + f^G(Q_{\perp}) \rho^G(z) \right] \exp(iQ_{\perp}z) \text{d}z \right\}^2$$

where $f^c(Q_{\perp})$ and $f^G(Q_{\perp})$ are the atomic form factors and $\rho^c(z)$ and $\rho^G(z)$ the in-plane averaged atomic density distributions for diamond and Ga; r_e is the classical electron radius. In the model, which has in total five adjustable parameters, Ga layers are represented by gaussian functions of increasing width on top of a solid substrate represented by an error function. This yields a damped oscillatory density profile close to the interface and a uniform density far away at either side.

The discrete layer profile of the diamond crystal is not incorporated in the model. Because of the miscut, the normal of the physical interface makes a small angle with the line in reciprocal space that connects the bulk Bragg peaks from the diamond crystal.

Figure 2 The top panel shows the best-fit model of the oscillatory in-plane averaged electron density profile as a function of the distance z along the interface normal. Far away from the interface, the electron density distributions correspond to the bulk diamond atomic density of 1.77×10^{22} atoms per cm3 and the bulk liquid Ga atomic density of 5.27×10^{22} atoms per cm3. The panel below shows in projection a structural model consistent with the above density profile. Carbon atoms are illustrated by small circles and Ga atoms by larger ones; Ga$_2$ dimers are represented by two atoms connected by a line. Also drawn are the characteristic five- and seven-membered rings of the α-bonded chain reconstruction of the diamond (111) surface. The model features an accumulation of oriented Ga$_2$ dimers in increasingly disordered (001) planes of α-Ga. As indicated by the vertical lines, the planes of oriented dimers correspond to successive regions of high electron density (where the dimer ends meet) and of low electron density (at the centre of each dimer).
Therefore, in our Q_s scans we do not encounter the first Bragg peak at |Q_s| = 3 Å⁻¹ and its tail at smaller Q values.

The best fit for the data is obtained for the decaying oscillatory density profile shown in Fig. 2. The oscillation period in the Ga profile equals 3.83 Å. This distance coincides with the distance between two consecutive (001) planes of almost upright Ga₂ dimers in solid α-Ga, which is the stable solid phase of Ga at low temperature and ambient pressure. The layering extends into the bulk liquid with a 1/e-decay depth of 4 Å. The areal density of the first layer is larger than that of bulk liquid Ga by 7%. The interface has an overall root mean square (r.m.s.) width W of 1.2 Å (indicated in Fig. 2), which agrees well with the gaussian r.m.s. roughness of 1.4 Å previously measured on the same substrate but without Ga on top. Also the (2 × 1) reconstruction seems to be preserved underneath the Ga droplet, as is evident from a striking similarity between non-specular reflectivity curves from both surfaces. The Ga liquid seems to replicate the morphology of the diamond surface. A schematic representation of our model for the layered liquid on top of the (2 × 1) reconstructed diamond (111) surface is given in Fig. 2.

We have considered other possible structural models for the diamond–Ga interface. For example, specific distributions of atomic step disorder at the interface may give rise to oscillations in the reflectivity. However, we measured non-specular reflectivity curves on both Ga-covered and clean surfaces (not shown) but found no such oscillations. Instead, we find for both surfaces identical monotonically decaying Bragg tails for momentum transfers up to 1.5 Å⁻¹ (midway between two bulk Bragg points). Within this range of momentum transfers the step disorder can be accounted for by a Debye–Waller factor which includes a gaussian roughness of 1.1 Å. To show the effect of step disorder we include in Fig. 1 a specular reflectivity curve calculated for an interface with no density oscillations at the liquid side. Such curves do not describe the measurements. Another model featuring a uniform liquid boundary layer of a different density only gives a reasonable fit to the measurements. Another model featuring a uniform liquid boundary layer of a different density only gives a reasonable fit to the measurements. Another model featuring a uniform liquid boundary layer of a different density only gives a reasonable fit to the measurements. Another model featuring a uniform liquid boundary layer of a different density only gives a reasonable fit to the measurements.

The decay length of the layering amplitude is roughly equal to that of the pair correlation function for bulk Ga (ref. 18). This indicates that short-range order in bulk liquid Ga and layering at the interface are closely related, even though the layering period is different. It supports the notion that the formation of layers is a geometrical consequence of the requirement to form a sharp interface imposed by the diamond wall. The value of 4 Å found by us is smaller than the value of 3.83 Å found for the decay depth of surface-induced monoatomic layers at the free Ga surface.

We believe that layering of the Ga liquid into a structure similar to the reconstructed diamond (111) may be the fact that this makes the transition across the interface from metallic to covalent bonding less abrupt.

The observed layering of liquid Ga against diamond (111) may have implications for our general understanding of freezing transitions in atomic metals and highlights the possible role of the container wall in triggering the crystallization. Of all crystal faces on α-Ga, the (001) face has the highest atomic density and is the one most stable against surface melting. It is also known that in a supercooled liquid, the barrier for freezing is smallest against the most dense crystal face. It is therefore tempting to interpret the observed layering as an atomic-scale manifestation of interfacial freezing. However, contrary to the case of surface melting which pre-empts superheating of the crystal, the interfacial freezing observed is not effective in pre-empting supercooling of the liquid. Apparently, an energetic barrier to bulk freezing remains present, making the interfacial freezing a case of incomplete ‘wetting’ of the melt by the crystal. An energetic barrier has been attributed earlier to an entropy loss associated with the layering.

The possible effects of the enhanced ordering at the interface on the barrier to heterogeneous freezing and on the maximum supercooling interval warrant further investigation. Measurements of the temperature dependence of the layering effect may help us to resolve this issue.