Layering of a liquid metal in contact with a hard wall

Published in:
Nature

Link to publication

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
When a liquid makes contact with a solid wall, theoretical studies indicate that the atoms or molecules will become layered adjacent to the wall, giving rise to an oscillatory density profile. This expectation has not, however, been directly verified, although an oscillatory force curve is seen for liquids compressed between solid surfaces. Here we present the results of an X-ray scattering study of liquid gallium metal in contact with a (111) diamond surface. We see pronounced layering in the liquid density profile which decays exponentially with increasing distance from the wall. The layer spacing is about 3.8 Å, which is equal to the repeat distance of (001) planes of upright gallium dimers in solid α-gallium. Thus it appears that the liquid near the wall assumes a solid-like structure similar to the α-phase, which is nucleated on freezing at lower temperatures. This kind of ordering should significantly influence flow, capillary osmosis, lubrication and wetting properties, and is likely to trigger heterogeneous nucleation of the solid.

![Figure 1](https://example.com/figure1.png)

Figure 1 Reflectivity of the Ga/diamond (111) interface as a function of perpendicular momentum transfer Qz. Measured reflectivities obtained from transverse momentum scans and θ-2θ scans are represented by filled and open circles, respectively. The solid curve is the best-fit reflectivity curve, obtained by Fourier transform of the electron density profile of Fig. 2; see also equation (1). The dashed curve is a model calculation for a non-oscillatory density profile, see text. The inset shows a schematic of the scattering geometry. The incoming beam is represented by the wavevector k, the outgoing beam by k', the difference between k and k' is normal to the interface. The momentum transfer Q is represented by the letters to nature...
transparent to X-rays at the photon energy used (17 keV), enabling the incident beam to reach the interface from the diamond side (inset of Fig. 1). The diamond (111) substrate, having a high surface free energy, is a prototypical hard wall, which at 300 K is nonreactive towards Ga and is stable against bond breaking. However, the preparation of an atomically clean interface requires a special procedure involving the controlled deposition, in an ultrahigh vacuum (UHV) environment, of a drop of liquid metal free of surface oxide onto a horizontally positioned clean substrate. The X-ray scattering experiment is to be done in situ, so that contaminants from the ambient will not be absorbed by the liquid drop. We have constructed a dedicated UHV set-up which fulfils all of these requirements. The set-up is fitted with a cylindrical Be-window scintillation detector behind slits defining the momentum acceptances for reciprocal space.

The C(111) substrate was a synthetic, type-Ib diamond crystal, of which the surface (~41 mm²) was abrasively and manually polished. The polished surface had a small misorientation with respect to the (111) plane; its normal tilted by 0.3° towards the [110] azimuthal direction. Subsequent flash-heating in the UHV set-up to 1,000°C resulted in an atomically clean (2 × 1)-reconstructed surface. A millimetre-sized drop of liquid Ga (99.9999% purity) was deposited onto the diamond surface by gently pushing the plunger of a Ga-filled alumina ‘syringe’ positioned directly above the surface. The first drops from a fresh load usually have an oxide skin. We therefore deposited them in a tantalum drip tray which can be rotated in front of the surface. After three or four drops, the Ga drops were atomically clean, as was checked earlier by Auger electron spectroscopy in a separate apparatus. We then retracted the tray and deposited a clean drop onto the surface. The wetting angle was found to be 116(6)° and the contact area 9 mm², as measured in situ by X-ray transmission and reflection.

The X-ray scattering measurements were made at the undulator beamline ID10 of the European Synchrotron Radiation Facility in Grenoble, France. A wavelength of 0.727 Å (energy 17.058 keV) was selected. The scattered intensities were measured using a NaI scintillation detector behind slits defining the momentum acceptance to be 0.02 Å⁻¹ and 0.07 Å⁻¹ in the horizontal and vertical directions, respectively. Specular reflectivity measurements were made for perpendicular momentum (Qₚ) transfers in the range 0 < Qₚ < 2.1 Å⁻¹, Different values of Qₚ within this range were selected by tilting the chamber through an angle θ with respect to the horizontal plane and setting the detector at an angle 2θ. At each Qₚ value, the reflectivity was determined by integrating the scattered intensity in a transverse momentum scan either in the plane of specular reflection or perpendicular to this plane. Such scans enable us to subtract from the signal the intrinsic background arising from elastic diffuse scattering from the Ga bulk liquid. In addition, symmetric θ–2θ scans were made at the specular peak and in the background at either side of the peak. Over the entire Qₚ range the peaks in the transverse scans were found to have a constant width determined by the instrumental resolution, indicating that we have integrated over the true specular intensity only. It was checked that the three procedures, after usual corrections for illuminated area, Lorentz factor and slit settings, yielded the same specular reflectivity values to within 10%.

The measured specular reflectivity, shown in Fig. 1 as a function of Qₚ, shows a broad oscillation with a maximum at ~1.5 Å⁻¹. This is a signature of layerwise ordering in the liquid with a period of 2π/1.5 = 4 Å. In search for the best fit to the data we have considered a variety of density profiles across the interface. For each model, we calculate the specularly reflected fraction R(Qₚ) of the incoming flux within the Born approximation using the equation

\[R(Q_p) = \frac{4\pi r_e^2}{Q_p} \times \int \left[f^c(Q_p) \rho^c(z) + f^Ga(Q_p) \rho^{Ga}(z) \right] \exp(iz) dz \]

where \(f^c(Q_p) \) and \(f^{Ga}(Q_p) \) are the atomic form factors and \(\rho^c(z) \) and \(\rho^{Ga}(z) \) the in-plane averaged atomic density distributions for diamond and Ga; \(r_e \) is the classical electron radius. In the model, which has in total five adjustable parameters, Ga layers are represented by gaussian functions of increasing width on top of a solid substrate represented by an error function. This yields a damped oscillatory density profile close to the interface and a uniform density far away at either side.

The discrete layer structure of the diamond crystal is not incorporated in the model. Because of the miscut, the normal of the physical interface makes a small angle with the line in reciprocal space that connects the bulk Bragg peaks from the diamond crystal.

- **Figure 2**: The top panel shows the best-fit model of the oscillatory in-plane averaged electron density profile as a function of the distance z along the interface normal. Far away from the interface, the electron density distributions correspond to the bulk diamond atomic density of 1.77 × 10²³ atoms per cm³ and the bulk liquid Ga atomic density of 6.27 × 10²³ atoms per cm³. The panel below shows in projection a structural model consistent with the above density profile. Carbon atoms are illustrated by small circles and Ga atoms by larger ones; Ga₂ dimers are represented by two atoms connected by a line. Also drawn are the characteristic five- and seven-membered rings of the α-bonded chain reconstruction of the diamond (111) surface. The model features an accumulation of oriented Ga₂ dimers in increasingly disordered (001) planes of α-Ga. As indicated by the vertical lines, the planes of oriented dimers correspond to successive regions of high electron density (where the dimer ends meet) and of low electron density (at the centre of each dimer).
Therefore, in our Q_2 scans we do not encounter the first Bragg peak at $|Q| = 3\,\AA^{-1}$ and its tail at smaller Q values16.

The best fit for the data is obtained for the decaying oscillatory density profile shown in Fig. 2. The oscillation period in the Ga profile equals 3.83\,Å. This distance coincides with the distance between two consecutive (001) planes of almost upright oriented Ga\textsubscript{2} dimers in solid α-Ga, which is the stable solid phase of Ga at low temperature and ambient pressure17,18. The layering extends into the bulk liquid with a 1/e-decay depth of 4\,Å. The areal density of the first layer is larger than that of bulk liquid Ga by 7\%. The interface has an overall root mean square (r.m.s.) width W of 1.2\,Å (indicated in Fig. 2), which agrees well with the gaussian r.m.s. roughness of 1.4\,Å previously measured on the same substrate but without Ga on top19. Also the 2×1 reconstruction seems to be preserved underneath the Ga droplet, as is evident from a striking similarity between non- specular reflectivity curves from both surfaces. The Ga liquid seems to replicate the morphology of the diamond surface. A schematic representation of our model for the layered liquid on top of the (2 \times 1) reconstructed diamond (111) surface is given in Fig. 2.

We have considered other possible structural models for the diamond–Ga interface. For example, specific distributions of atomic step disorder at the interface may give rise to oscillations in the reflectivity15. However, we measured non-specular reflectivity curves on both Ga-covered and clean surfaces (not shown) but found no such oscillations. Instead, we find for both surfaces identical monotonically decaying Bragg tails for momentum transfers up to 1.5\,Å-1 (midway between two bulk Bragg points). Within this range of momentum transfers the step disorder can be accounted for by a Debye–Waller factor which includes a gaussian profile. This range of momentum transfers the step disorder can be accounted for by a Debye–Waller factor which includes a gaussian profile. This range of momentum transfers the step disorder can be accounted for by a Debye–Waller factor which includes a gaussian profile. This range of momentum transfers the step disorder can be accounted for by a Debye–Waller factor which includes a gaussian profile.

In distance between adjacent π-bonded chains of atoms in the (2 \times 1) reconstructed diamond (111) substrate and the zigzag arrangement of dimers in α-Ga(001) planes. We note, however, that the energy gain is probably small, because the bonding between Ga and diamond is relatively weak, as judged from the large wetting angle of 116°. Also favourable for the accumulation of dimers may be the fact that this makes the transition across the interface from metallic to covalent bonding less abrupt.

The observed layering of liquid Ga against diamond (111) may have implications for our general understanding of freezing transitions in atomic metals and highlights the possible role of the container wall in triggering the crystallization. Of all crystal faces on α-Ga, the (001) face has the highest atomic density and is one of the most stable against surface melting20,21. It is also known that in a supercooled liquid, the barrier for freezing is smallest against the most dense crystal face22. It is therefore tempting to interpret the observed layering as an atomic-scale manifestation of interfacial freezing. However, contrary to the case of surface melting23, which pre-empts superheating of the crystal, the interfacial freezing observed is not effective in pre-empting supercooling of the liquid. Apparently, an energetic barrier to bulk freezing remains present, making the interfacial freezing a case of incomplete ‘wetting’ of the melt by the crystal. An energetic barrier has been attributed earlier to an entropy loss associated with the layering24.

The possible effects of the enhanced ordering at the interface on the barrier to heterogeneous freezing and on the maximum supercooling interval warrant further investigation. Measurements of the temperature dependence of the layering effect may help us to resolve this issue.

Received 1 April; accepted 13 October 1997.

Acknowledgements. We thank C. Norris of the University of Leicester for introducing us to his technique of producing clean Ga droplets. We also acknowledge Dr Beers Diamond Research Laboratories of the Bellcore for the provision of the specimen and M. Reinh of the Schonland Research Center for polishing the crystal. This work is part of the research programme of the Foundation for Fundamental Research on Matter (FOM) and was made possible by financial support from the Netherlands Organisation for Scientific Research (NWO).

Correspondence should be addressed to L.E.V. (e-mail: lvdvem@phys.uva.nl).