Dihydropyrimidine dehydrogenase (DPD) deficiency: Identification and expression of missense mutations C29R, R886H and R235W

Vreken, P.; van Kuilenburg, A.B.P.; Meinsma, R.; van Gennip, A.H.

Published in:
Human Genetics

DOI:
10.1007/s004390050637

Citation for published version (APA):
Abstract Dihydropyrimidine dehydrogenase (DPD) deficiency (McKusick 274270) is an autosomal recessive disease characterized by thymine-uraciluria in homozygous-deficient patients and associated with a variable clinical phenotype. Cancer patients with this defect should not be treated with the usual dose of 5-fluorouracil because of the expected lethal toxicity. In addition, heterozygosity for mutations in the DPD gene increases the risk of toxicity in cancer patients treated with this drug. Sequence analysis in a patient with complete DPD deficiency, previously shown to be heterozygous for the ΔC1897 frameshift mutation, revealed the presence of a novel missense mutation, R235W. Expression of this novel mutation and previously identified missense mutations C29R and R886H in Escherichia coli showed that both C29R and R235W lead to a mutant DPD protein without significant residual enzymatic activity. The R886H mutation, however, resulted in about 25% residual enzymatic activity and is unlikely to be responsible for the DPD-deficient phenotype. We show that the E. coli expression system is a valuable tool for examining DPD enzymatic variants. In addition, two new patients who were both heterozygous for the C29R mutation and the common splice donor site mutation were identified. Only one of these patients showed convulsive disorders during childhood, whereas the other showed no clinical phenotype, further illustrating the lack of correlation between genotype and phenotype in DPD deficiency.

Introduction

Dihydropyrimidine dehydrogenase (DPD; EC 1.3.1.2) catalyzes the first and rate-limiting step in the catabolism of uracil, thymine and the analog 5-fluorouracil (Lu et al. 1993). Patients do not exhibit a characteristic clinical phenotype, although in about half of the cases with near-complete deficiency of the enzyme convulsive disorders are observed (Berger et al. 1984; Braakhekke et al. 1987; Van Gennip et al. 1987, 1989, 1994, 1997 a, b). In patients with a nearly complete enzymatic defect, the initial diagnosis can be made on the presence of large amounts of both thymine and uracil in the patients’ body fluids, whereas the diagnosis can be confirmed by measurement of the enzymatic activity in either peripheral mononuclear cells or fibroblasts (Van Gennip et al. 1995; Van Kuilenburg et al. 1997). In addition to this category of patients, there are cancer patients experiencing acute 5-fluorouracil toxicity due to lower than normal DPD activity. In these cases, however, deficiency of DPD is in most cases only partial with residual enzymatic activities ranging from 6% to 54% (Diasio et al. 1988; Harris et al. 1991; Van Kuilenburg et al. 1997). Recently, it was demonstrated that such patients are heterozygous for a genomic DPD mutation and it was advocated that patients receiving 5-fluorouracil should be screened for the presence of this mutation prior to therapy in order to avoid severe toxicity (Wei et al. 1996; Van Kuilenburg et al. 1997).

The human DPD enzyme consist of two identical subunits of 111 kDa and is encoded by a single gene mapped to chromosome 1p22 (Takai et al. 1994; Yokota et al. 1994). The recent cloning of the DPD cDNA and publication of parts of the sequence of the genomic DPD gene now allows detection of the defect at the molecular level (Yokota et al. 1994; Vreken et al. 1996 a; Johnson et al. 1997). So far, four mutations in the DPD gene have been described. The first mutation is a G→A point mutation in the invariant GT splice donor sequence in intron 14, leading to skipping of the 165-bp exon immediately upstream of the splice donor site mutation (Meinsma et al. 1995; Vreken et al. 1996 a). This mutation has been identified in 11 out of 18 patients with complete DPD-deficiency in either the homozygous or heterozygous state and has apparently a high frequency among DPD-deficient individuals from northern Europe (Vreken et al. 1996 a, b). In addi-
tion, heterozygosity for this mutation was identified in patients experiencing acute 5-fluorouracil toxicity (Wei et al. 1996; Van Kuilenburg et al. 1997). Two other mutations, a frameshift (AC1897) and a missense (C29R) mutation, were identified in two patients from Turkey (Vreken et al. 1996b, 1997a). Finally, a four-base deletion (deITCAT286–299) was identified in two independent families with DPD deficiency (Vreken et al. 1997b).

In this paper we describe a novel missense mutation (R235W). Using an Escherichia coli system to express the R235W and the previously identified C29R and R886H mutations, we clearly show that both the R235W and C29R mutations lead to an inactive DPD protein.

Materials and methods

Isolation of RNA and DNA

RNA and DNA were isolated from cultured fibroblasts by the guanidinium thiocyanate method (Chomczynski and Sacchi 1987) and standard procedures, respectively (Hoar 1987).

Polymerase chain reaction (PCR) analysis

cDNA synthesis and reverse-transcription-PCRs (RT-PCRs) for amplifying DPD cDNA were carried out essentially as described previously (Vreken et al. 1996a, 1997b; Van Kuilenburg et al. 1997). Four overlapping DPD cDNA fragments were amplified using sense primers AF, BF, CF and DF corresponding to nucleotides –21–1, 606–629, 1473–1496 and 2254–2276, respectively and antisense primers AR, BR, CR and DR complementary to nucleotides –21–1, 606–629, 1473–1496 and 2254–2276, respectively (ΔGT = 1). Forward primers contained a 5′-TGT-AAACGAGCGCCGAGT-3′ extension whereas reverse primers contained a 5′-CAGGAAAACAGCTATGACC-3′ extension at their 5′ ends. The latter sequences are complementary to fluorescent-labeled primers used in the dye terminator sequence reaction. Amplification was carried out in 50-μl reaction mixtures containing 10 mM TRIS-HCl, pH 8.3, 50 mM KCl, 3 mM MgCl₂, 1 μM of each primer, 0.2 mM dNTPs. After initial denaturation for 5 min at 95°C, 2 U of Taq polymerase (AmpliTaq, Perkin Elmer, San Jose, Calif.) was added and amplification carried out for 30 cycles (1 min 95°C, 1 min 65°C, 1 min 72°C).

Amplification of the genomic region containing a DPD exon and its flanking sequences was carried out as described previously (Vreken et al. 1996a). PCR products were purified using a QiAquickspin PCR purification kit (Qiagen, Hilden, Germany) and used for direct sequencing.

Sequence analysis

Sequence analysis was carried out on an Applied Biosystems model 377 automated DNA sequencer using the dye-primer method for the DPD cDNA and genomic fragments (dye-primer cycle-sequence-ready reaction kit, Applied Biosystems, San Jose, Calif.).

Assay of DPD activity

DPD activity in fibroblasts and crude E. coli lysates was measured as described previously (Van Kuilenburg et al. 1996).

Construction of expression plasmids

Expression plasmids were constructed in the vector pSE420 (Invitrogen, San Diego, Calif.) using the human DPD cDNA subcloned in a pUC19 vector (a kind gift of Dr. F.J. Gonzalez, NIH). First, part of the polylinker sequence in pSE420 between the Sall and HindIII sites was deleted by cleavage with these enzymes and religation. The resulting plasmid, pSE420ASH, was cut with NcoI and EcoRI and the DPD cDNA NcoI-EcoRI fragment, spanning the entire coding region and part of the 3′-untranslated region up to the BspHI site (the EcoRI site is derived from pUC19) was ligated, resulting in the plasmid pSE420ASH-DPD. In order to introduce the C29R or R235W mutation, the 886-bp NcoI-EcoRI fragment from the AF-8R cDNA amplification product derived from either patient A or patient B was ligated into the NcoI-EcoRI-digested pSE420ASH-DPD plasmid. The resulting clones were designated pSE420ASH-DPD-C29R and pSE420ASH-DPD-R235W, respectively.

The 727-bp BamHI-PstI fragment from the CF-DR cDNA amplification product derived from patient A was ligated into BamHI-PstI-digested pSE420ASH-DPD plasmid, resulting in pSE420ASH-DPD-R886H. The same fragment was ligated into pSE420ASH-DPD-C29R, resulting in the plasmid pSE420ASH-DPD-C29R/R886H. All clones were sequenced completely in order to verify the presence of the mutation and exclude the presence of random mutations introduced by PCR artifacts. One clone harbored the mutation G122A, leading to the nonsense alteration W41X. This construct was used as a negative control in the expression experiments and designated pSE420ASH-DPD-W41X.

Expression of missense mutations in E. coli

Expression plasmids were introduced into E. coli strain BL21(F−, ompT, hsdSb(r,mB), gal, dcm). A 20-ml LB broth culture, supplemented with 100 μg/ml ampicillin, 100 μM uracil, 100 μM each of FAD and FMN, and 10 μM each of Na₂S and Fe(NH₄)₂(SO₄)₂ was inoculated with 200 μl of an overnight preculture grown in LB broth. Cells were grown to OD₆₀₀ = 0.5–0.6 at 30°C and induction was performed by the addition of 1 mM isopropyl-1-thio-galactopyranoside. Cells were sedimented at time points between 1 and 3 h, washed with isolation buffer (35 mM potassium phosphate, pH 7.3, 10 mM EDTA, 1 mM diethiothreitol, 0.1 mM phenylmethylsulfonyl fluoride, 2 μM leupeptin and 2 μM pepstatin) and resuspended in isolation buffer. The cell suspension was frozen at −20°C for at least 16 h, thawed on ice and lysed by sonication. The crude lysate was centrifuged at 20,000 g for 15 min. The resulting supernatant was used for the DPD activity assay using the same method as previously applied to fibroblast homogenates (Van Kuilenburg et al. 1996). Laemmli gel electrophoresis or protein quantitation (bicinchoninic acid procedure, Pierce, Rockford, Ill.).

Analysis of expressed DPD protein

Analysis of DPD protein was carried out by Laemmli gel electrophoresis followed by Western immunoblotting essentially as described previously (Yokota et al. 1994). The Western blot was incubated with a polyclonal anti-pig DPD antibody (a kind gift of Dr. F.J. Gonzalez) followed by [125I]protein A incubation using standard procedures (Maniatis et al. 1982). Immunoreactive DPD was visualized on a Molecular Dynamics β-imaging system.

Results

Clinical and biochemical characterization

Detailed clinical descriptions of patients A and B and their family members have been published elsewhere (Vreken et al. 1997a). These patients were shown to be completely DPD deficient as judged from DPD enzymatic studies in cultivated fibroblasts, and the father of patient
A was also completely DPD deficient. The mother of patient A showed intermediate DPD activity in accordance with her obligate carrier status (Table 1). Patient C1 showed epileptic manifestations during childhood but is now, at the age of 30 years, clinically normal. Her sister (patient C2), aged 27 years, is also completely DPD deficient, but has never shown any clinical signs. The parents of patients B and C were not available for study.

Genomic sequence analysis

Since we had previously identified a splice donor site mutation in two unrelated Dutch patients, we tested the patients and the parents of patient A for this mutation. A 333-bp genomic DNA fragment encompassing a DPD exon and its flanking intron sequences was amplified and directly sequenced. The previously reported splice donor site mutation (Vreken et al. 1996 a) was detected in patient C1 and her sister (patient C2) in the heterozygous state (data not shown). Patient A was shown to be heterozygous for a single base pair deletion at position 1897, whereas his father was homozygous for the ΔC1897 mutation. (data not shown). This mutation leads to a frameshift and a premature stop codon shortly thereafter (Vreken et al. 1997 a). The mother of patient A showed no abnormalities in this genomic region (data not shown).

cDNA sequence analysis

Total RNA isolated from fibroblasts of the patients and the parents of patient A was subjected to RT-PCR. The mother of patient A was shown to be heterozygous for a novel single-base substitution, C703T, leading to a frameshift and a premature stop codon shortly thereafter (Vreken et al. 1997 a). The mother of patient A showed no abnormalities in this genomic region (data not shown).

Expression of missense mutations

In order to establish whether the missense mutations C29R, R886H and R235W are responsible for the DPD-deficient phenotype, these mutations were introduced in the pSE420ΔSH-DPD expression vector (see Materials and methods). The endogenous DPD enzymatic activity in the E. coli strain used for expression of the constructs was below the limit of detection of the assay (0.01 nmol/mg protein per hour; Van Kuilenburg et al. 1996). Introduction of the wild-type DPD construct increased DPD activity more than 1,000-fold above background (Table 2). Expression of

<table>
<thead>
<tr>
<th>Patient</th>
<th>DPD activity</th>
<th>Genotype</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.0015</td>
<td>ΔC1897/C703T</td>
<td>fr/R235W</td>
</tr>
<tr>
<td>Father A</td>
<td>nd</td>
<td>ΔC1897/ΔC1897</td>
<td>fr/fr</td>
</tr>
<tr>
<td>Mother A</td>
<td>0.47</td>
<td>C703T/wt</td>
<td>R235W/none</td>
</tr>
<tr>
<td>B</td>
<td>nd</td>
<td>T85C,G2658A/T85C, G2658A</td>
<td>C29R,R886H</td>
</tr>
<tr>
<td>C1</td>
<td>nd</td>
<td>T85C/IVS14 (G+1→A)</td>
<td>C29R/del(exon14)</td>
</tr>
<tr>
<td>C2</td>
<td>nd</td>
<td>T85C/IVS14 (G+1→A)</td>
<td>C29R/del(exon14)</td>
</tr>
</tbody>
</table>

a DPD enzymatic activity measured in fibroblasts is expressed as nanomoles product per hour per milligram protein. (control values 1.12 ± 0.7, mean ± 1 SD, n = 15)

b Effect of the mutation on DPD protein or mRNA

Fig. 1 Identification of the C703T (R235W) mutation. Direct sequence analysis was performed on amplified cDNA fragments in a control (A), patient A (B) and the mother of patient A (C). The C703T mutation is indicated with an arrow. Note that the C/T ratio at position 703 is 1:3 in B and 1:1 in C. For explanation see text.
polyclonal anti-DPD antibody and [125I]protein A. (mutant) DPD cDNAs were subjected to electrophoresis and transferred to a nitrocellulose membrane. DPD was stained using a pig polyclonal anti-DPD antibody and [125I]protein A. Lane 1 pSE420ASH-DPD-C29R, pSE420ASH-DPD-C29R/R886H, and the construct pSE420ASH-DPD-W41X showed no detectable DPD activity, whereas pSE420ASH-DPD-W41X and pSE420ASH-DPD-R235W showed about 25% and 1% residual activity, respectively (Table 2). Analysis of the missense mutations in an E. coli expression system revealed that both C29R and R886H mutations lead to an inactive mutant DPD protein. Moreover, the mutant DPD proteins are stable in the E. coli lysate as judged by immunoblot analysis. The R886H mutation does decrease the catalytic activity of the resulting mutant DPD protein but is unlikely to be responsible for the lack of residual activity in patient B, who is homozygous for both the C29R and R886H mutations. So far, screening of 18 unrelated DPD-deficient individuals did not reveal the latter mutation in any patient. Screening for this mutation in the general population and in a group of patients experiencing acute 5-fluorouracil toxicity is currently in progress.

Alignment of the DPD sequences from pig, bovine, and human revealed that the arginine residue at position 235 is conserved between the three species, but that the cysteine at position 29 and the arginine at position 886 are not (Fig. 3). The spacing of cysteine residues is, however, different in human, bovine, and pig DPD (Yokota et al. 1994). Therefore, an altered secondary or tertiary structure caused by different disulfide bridging that abolishes enzymatic activity is the most likely explanation for the fact that the C29R mutation causes a lack of residual enzymatic activity. Apparently the R886H mutation, located outside the catalytic domains of the DPD protein, also causes a conformational change that leads to reduced enzymatic activity. The E. coli expression system presented here is a valuable tool for examining enzymatic DPD variants obtained through screening of DPD-deficient individuals, clearly discriminating between mutations leading to a complete or partially deficient DPD protein.

Discussion

Mutation analysis in four DPD-deficient patients revealed the presence of one frameshift mutation (AC1897) and three amino acid substitutions (C29R, R235W and R886H). The frameshift mutation leads to premature termination of translation before the uracil-binding site, which is encoded by nucleotides 1960–1993 (Yokota et al. 1994). Therefore, an altered secondary or tertiary structure caused by different disulfide bridging that abolishes enzymatic activity is the most likely explanation for the fact that the C29R mutation causes a lack of residual enzymatic activity. Apparently the R886H mutation, located outside the catalytic domains of the DPD protein, also causes a conformational change that leads to reduced enzymatic activity. The E. coli expression system presented here is a valuable tool for examining enzymatic DPD variants obtained through screening of DPD-deficient individuals, clearly discriminating between mutations leading to a complete or partially deficient DPD protein.
Previous studies have revealed that the correlation between phenotype and genotype in DPD deficiency is not very strong (Fernandez-Salguero et al. 1997; Vreken et al. 1997a, b). Homozygosity for a four-base deletion (deIT-CAT296-299) in the DPD gene was observed in a patient suffering from microcephaly and convulsive disorders, whereas the same genotype did not lead to a clinical phenotype in the brother of this patient (Vreken et al. 1997b). In a family of Pakistani origin, a patient, homozygous for the common splice donor site mutation, showed developmental delay and motor impairment, whereas his brother showed the same genotype but no clinical symptoms (Fernandez-Salguero et al. 1997). In this study also, there seems to be no correlation between the clinical phenotype and genotype in DPD-deficient patients. Patient C2, who is completely DPD deficient, has never shown any clinical signs, whereas her sister (patient C1) showed epileptic manifestations during childhood. In addition, the father of patient A proved to be homozygous for the ΔC1897 frameshift mutation but had no known history of convulsive disorders. The lack of correlation between genotype and phenotype in these families cannot easily be explained. However, both population screening based on DPD catalytic activity and a limited study screening for the common splice donor site mutation revealed that as much as 3–5% of the normal population could be heterozygous for mutant DPD alleles (Lu et al. 1993, 1995; McMurrough and McLeod 1996; Wei et al. 1996). Because these studies suggest a 10- to 20-fold higher frequency (up to 1:1,000) for either homozygosity or compound heterozygosity for DPD mutations than is observed in regular metabolic screening of children with convulsive disorders, it is tempting to speculate that the vast majority of DPD-deficient individuals show no clinical phenotype. The study presented here provides more evidence that indeed some DPD-deficient patients at least show no characteristic clinical phenotype. Apparently, additional factors must play an important role in expression of the clinical phenotype. It is possible that a second gene, closely linked to the DPD gene on chromosome 1, is required for full clinical manifestation of the disorder, but so far such a gene has not been identified (Fernandez-Salguero et al. 1997). Another factor might include β-alanine homeostasis, since this neurotransmitter cannot be synthesized and can only be derived from dietary sources in DPD-deficient individuals (Van Gennip et al. 1997a; Van Kuilenburg et al. 1996). The relation between β-alanine homeostasis and clinical symptoms is currently under investigation in our laboratory.

References


