Delayed gastric emptying after standard pancreaticoduodenectomy versus pylorus-preserving pancreaticoduodenectomy: an analysis of 200 consecutive patients

van Berge Henegouwen, M.I.; van Gulik, T.M.; de Wit, L.T.; Allema, J.H.; Rauws, E.A.J.; Obertop, H.; Gouma, D.J.

Published in:
Journal of the American College of Surgeons

DOI:
10.1016/S1072-7515(01)00944-9

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Delayed Gastric Emptying After Standard Pancreaticoduodenectomy Versus Pylorus-Preserving Pancreaticoduodenectomy: An Analysis of 200 Consecutive Patients

Mark I van Berge Henegouwen,* Thomas M van Gulik, MD,* Laurens Th DeWit, MD,* Jan H Allema, MD,* Erik A J Rauws, MD,† Huug Obertop, MD,* Dirk J Gouma, MD*

BACKGROUND: It has been suggested that pylorus-preserving pancreaticoduodenectomy (PPPD) is associated with a high incidence of delayed gastric emptying and consequently with a prolonged hospital stay compared with standard Whipple's resection. The aim of this prospective study was to evaluate whether the incidence of delayed postoperative gastric emptying was different after both procedures.

STUDY DESIGN: From 1989 to 1996, 200 consecutive patients underwent pancreatic head resection (100 standard pancreaticoduodenectomy [PD]; 100 PPPD). The groups were compared with regard to patient characteristics, operative indices, postoperative morbidity, hospital stay, and mortality. Delayed gastric emptying was defined as nasogastric suction for 10 days or delay of regular diet until 14 days postoperatively.

RESULTS: Operative time and blood loss were higher for PD: 6 versus 4.8 hours ($p < 0.0001$) and $1,580$ versus $1,247$ mL ($p < 0.001$), respectively. Postoperative morbidity was 48% after PD and 44% after PPPD (not significant [NS]). Hospital mortality was 6% and 1% after PD and PPPD, respectively (NS). Delayed gastric emptying occurred in 34 patients after PD and in 37 after PPPD (NS). Median days of gastric suction was 3 versus 6 days for PD and PPPD ($p < 0.0001$). A regular diet was tolerated after a median of 10 and 11 days for PD and PPPD, respectively (NS). Postoperative hospital stay was shorter for patients who underwent PPPD: 20 versus 18 days ($p < 0.03$). Patients with intraabdominal complications ($n = 52$) showed a higher incidence of delayed gastric emptying ($p < 0.0001$).

CONCLUSIONS: Our results show that PPPD is a safe procedure associated with less operative time and blood loss than PD. After PPPD, patients require longer postoperative nasogastric intubation than after PD, suggesting some form of early postoperative gastric stasis. There is, however, no difference in the incidence of delayed gastric emptying or the first postoperative day on which a regular diet is tolerated between these surgical procedures. Intraabdominal complications are major risk factors for delayed gastric emptying. (J Am Coll Surg 1997;185:388–395. © 1997 by the American College of Surgeons)
uniform definition exists. Some authors have defined delayed gastric emptying as the inability to tolerate a regular or normal diet by the fourteenth \(^4\) or the tenth postoperative day\(^{14-16}\) or the start of a liquid diet after \(\geq 7\) days.\(^{13}\) Others have described delayed gastric emptying as gastric stasis requiring gastric suction for 7 days\(^{18,19}\) or \(\geq 10\) days.\(^{12,17}\)

Pylorus-preserving pancreaticoduodenectomy (PPPD) is considered a good alternative to standard pancreaticoduodenectomy, or Whipple’s procedure (PD). Most reports have shown similar survival for the two techniques, and PPPD is now generally accepted as an equally effective procedure for pancreatic or peripancreatic tumors.\(^6,17,19-21\) A few studies have reported that PPPD leads to a shorter operative time, less blood loss, and a lower intraoperative need for transfusion.\(^6,22\) According to some authors, however, PPPD is associated with an increased incidence of delayed gastric emptying.\(^{13,16}\) This higher incidence of delayed gastric emptying after PPPD has not been confirmed in more recent reports.\(^5,17,18,23\)

After 1993, PPPD became the technique of choice for pancreatic head resection in our department, and PD was performed only when PPPD was not feasible. In this study, we evaluated prospectively the incidence of and risk factors for postoperative delayed gastric emptying after PD and PPPD, in combination with the overall postoperative morbidity, hospital stay, and mortality.

METHODS

Patients and data collection. Between September 1, 1989 and August 1, 1996, 200 consecutive patients underwent a subtotal pancreaticoduodenectomy. One hundred patients underwent PD and 100 underwent PPPD. All data concerning preoperative evaluation, intraoperative indices, postoperative complications, and mortality were collected prospectively. The collected data included days of nasogastric intubation, days of jejunal catheter feeding, days until regular diet was tolerated orally, and hospital stay.

Preoperative factors. The patients were divided into two groups, PD and PPPD. Patient characteristics (e.g., age and gender) and preoperative laboratory values (e.g., bilirubin, hemoglobin, and albumin) were assessed. Other preoperative factors that were assessed included biliary drainage, previous abdominal operation (excluding diagnostic laparoscopy), diabetes (requiring medical treatment and present for \(>12\) months), and weight loss.

Procedure, intraoperative indices, and histopathologic diagnosis. From 1993, PD was performed only in patients who either had a previous gastric resection in their medical history or had tumor ingrowth extending into the proximal duodenum or into the pyloric area, or when vascularization of the antipyloric area seemed insufficient during operation. From 1993, PPPD was the surgical procedure of choice. Figure 1 shows the two surgical procedures. For PPPD, reconstruction was performed with one jejunal loop for the pancreatic, biliary, and gastric anastomosis instead of a separate Roux-en-Y loop for the pancreatic and biliary anastomosis. In addition, the pancreaticojejunostomy was performed in one layer instead of two. From 1993, pancreatic duct stenting was not performed, in contrast to the earlier
period. Truncal vagotomy was not performed in any of these operations.

All patients received a needle catheter jejunostomy at the end of the operation for early postoperative nutritional support. Enteral nutrition was started on the first postoperative day using Nutrison (Nutricia; Zoetermeer, The Netherlands; 4g fat, 4g protein, 12g carbohydrate, 100kCal [420kJ]/100mL), with a gradual increase during the following days to a maximum of 2,000mL/day.

Operative time (hours), estimated intraoperative blood loss (mL), and transfusions (units of packed red blood cells) were assessed, as were histopathologic diagnosis and tumor ingrowth into the resection margins in cases of malignancy. A radical resection was defined as microscopically free resection and dissection margins of the resection specimen on histopathologic diagnosis.

Postoperative course. Overall morbidity and mortality were evaluated, in addition to procedure-related complications such as pancreatic leakage, biliary leakage, hemorrhage, and intraabdominal abscess. General complications evaluated were pulmonary, cardiac, and renal complications. Overall postoperative morbidity was defined as procedure- or nonprocedure-related complications requiring medical or surgical intervention or readmission to the intensive care unit, and causing prolonged hospital stay or postoperative death. Mortality was defined as death during the hospital stay.

Delayed gastric emptying. Indices used to identify postoperative delayed gastric emptying included the number of days of nasogastric intubation, days of jejunal catheter feeding, days until a regular diet was tolerated, incidence of delayed gastric emptying, and hospital stay. The nasogastric tube was removed when production had decreased to $< 200–300$mL/24 hours. Delayed gastric emptying was defined as gastric stasis requiring nasogastric intubation for ≥ 10 days or the inability to tolerate a regular (solid) diet on or before the fourteenth postoperative day.

Risk factors for delayed gastric emptying. The following preoperative and postoperative risk factors for delayed gastric emptying were evaluated: previous abdominal operation, diabetes, malnutrition, resection for malignancy, and postoperative intraabdominal complications. Malnutrition was defined as a preoperative albumin level < 30g/L or a preoperative weight loss of $> 10\%$ of pre-illness weight.

Table 1. Period of Resection, Patient Characteristics, Preoperative Laboratory Values, and Preoperative Factors

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>PD (n = 100)</th>
<th>PPPD (n = 100)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period of resection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sep. 1989-Feb. 1993 (3.5 y)</td>
<td>82</td>
<td>1</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Patient characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age* (y)</td>
<td>59.8 \pm 0.6</td>
<td>62.0 \pm 1.0</td>
<td>NS</td>
</tr>
<tr>
<td>Gender (male/female)</td>
<td>55/45</td>
<td>45/55</td>
<td>NS</td>
</tr>
<tr>
<td>Preoperative laboratory values</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bilirubin (μmol/L)*</td>
<td>48.9 \pm 6.2</td>
<td>30.3 \pm 4.1</td>
<td>0.02</td>
</tr>
<tr>
<td>Hemoglobin (mmol/L)*</td>
<td>8.2 \pm 0.1</td>
<td>8.2 \pm 0.1</td>
<td>NS</td>
</tr>
<tr>
<td>Albumin (g/L)*</td>
<td>41.8 \pm 0.6</td>
<td>41.9 \pm 0.9</td>
<td>NS</td>
</tr>
<tr>
<td>Preoperative factors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biliary drainage</td>
<td>76</td>
<td>80</td>
<td>NS</td>
</tr>
<tr>
<td>Previous abdominal operation</td>
<td>28</td>
<td>21</td>
<td>NS</td>
</tr>
<tr>
<td>Diabetes</td>
<td>12</td>
<td>17</td>
<td>NS</td>
</tr>
<tr>
<td>Weight loss (kg)*</td>
<td>5.5 \pm 0.5</td>
<td>6.7 \pm 0.5</td>
<td>0.02</td>
</tr>
</tbody>
</table>

*Mean \pm SEM.
NS, not significant; PD, standard pancreaticoduodenectomy; PPPD, pylorus-preserving pancreaticoduodenectomy.

Statistical analysis. All values were expressed as mean and standard error of the mean (SEM), except for days of nasogastric intubation, jejunal catheter feeding, days until regular diet, and hospital stay, which were expressed as median, mean, and range. Statistical analysis was performed using Mann-Whitney U test, chi-squared test, and two-sided Fisher’s exact test, where applicable. A p value < 0.05 was considered statistically significant.

RESULTS

Patients. Most PDs were performed in the first half of the study period; almost all PPPDs (99%) were performed in the second half of the study period. One patient underwent PPPD before March 1993 (Table 1).

Preoperative factors. Patient characteristics were comparable in both groups (Table 1). Preoperative bilirubin was lower for patients undergoing PPPD versus PD ($p = 0.02$). Hemoglobin and albumin levels were similar for both groups, as were the numbers of patients with preoperative biliary drainage, previous abdominal operations, and diabetes. The mean preoperative weight loss was higher for patients undergoing PPPD: 5.5 versus 6.7kg ($p = 0.02$) (Table 1).
Procedure, intraoperative indices, and histopathologic diagnosis. In most cases, PD was performed in combination with reconstruction using a separate Roux-en-Y loop (85%), a two-layer pancreaticojejunal anastomosis (73%), and a pancreatic duct stent (67%). Most of the PPPDs were performed using one jejunal loop (97%) and a single-layer anastomosis (100%). In none of these patients was pancreatic duct drainage performed (p < 0.0001 for all three items) (Table 2).

The duration of the surgical procedure was significantly longer for PD than for PPPD: 6 hours versus 4.8 hours (p < 0.0001). Estimated blood loss and need for transfusion were also greater for PD: 1,580 mL versus 1,247 mL (p < 0.001) and mean of 2.5 versus 1.6 units (p < 0.001), respectively. Histopathologic diagnosis and tumor status of the resection margins were similar for both groups (Table 2).

Postoperative course. Overall morbidity was 46%: 48 patients after PD and 44 patients after PPPD (not significant [NS]). There were no differences in specific procedure-related or general complications (Table 3). Similar numbers of patients in both groups underwent relaparotomy or were admitted to the intensive care unit. Overall mortality was 3.5%: 6 patients after PD and 1 patient after PPPD (NS) (Table 3).

Delayed gastric emptying. Nasogastric intubation was prolonged after PPPD: 3 days versus 6 days after PD and PPPD, respectively (p < 0.0001). Days of jejunal catheter feeding and days until a regular diet was resumed were not different between the groups (Table 4). In total, eight patients (four in each group) were not fed through the jejunal catheter jejunostomy, because of either tech-

Table 2. Intraoperative Parameters, Aspects of Reconstruction, Histopathology, and Tumor Status of the Resection Margins

<table>
<thead>
<tr>
<th>Index</th>
<th>PD (n = 100)</th>
<th>PPPD (n = 100)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intraoperative indices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operative time (h)*</td>
<td>6.0 ± 0.1</td>
<td>4.8 ± 0.1</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Estimated blood loss (mL)*</td>
<td>1,580 ± 93</td>
<td>1,247 ± 115</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Transfusions (units PRBC)*</td>
<td>2.5 ± 0.2</td>
<td>1.6 ± 0.2</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Aspects of reconstruction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of jejunal loops: 1/2†</td>
<td>15/85</td>
<td>97/3</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Pancreatic anastomosis: 1 layer/2 layers</td>
<td>27/73</td>
<td>100/0</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Stent pancreatic duct: no/yes</td>
<td>33/67</td>
<td>100/0</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Histopathologic diagnosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pancreatic head carcinoma</td>
<td>40</td>
<td>42</td>
<td>NS</td>
</tr>
<tr>
<td>Ampullary carcinoma</td>
<td>30</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Distal common bile duct carcinoma</td>
<td>10</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Other malignancy</td>
<td>7</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Benign</td>
<td>13</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Resection margins in cases of malignancy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radical</td>
<td>52/87 (60%)</td>
<td>56/89 (63%)</td>
<td>NS</td>
</tr>
<tr>
<td>Nonradical</td>
<td>35/87 (40%)</td>
<td>33/89 (37%)</td>
<td></td>
</tr>
</tbody>
</table>

*Mean ± SEM.
†Two loops indicates Roux-en-Y reconstruction.
NS, not significant; PD, pancreaticoduodenectomy; PPPD, pylorus-preserving pancreaticoduodenectomy; PRBC, packed red blood cells.

Table 3. Postoperative Complications, Relaparotomy, Readmission to Intensive Care Unit, and Mortality

<table>
<thead>
<tr>
<th>Complication</th>
<th>PD* (n = 100)</th>
<th>PPPD* (n = 100)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall morbidity†</td>
<td>48</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Pancreatic leakage</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Biliary leakage</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Hemorrhage</td>
<td>11</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Intraabdominal abscess</td>
<td>26</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Medical complications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulmonary</td>
<td>12</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Cardiac</td>
<td>11</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Nephrologic</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Relaparotomy</td>
<td>22</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Readmission to ICU</td>
<td>23</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Mortality‡</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

*There were no significant differences between the groups.
†Overall morbidity in the entire study group (n = 200) was 46%.
‡Overall mortality in the entire study group (n = 200) was 3.5%.
PD, pancreaticoduodenectomy; PPPD, pylorus-preserving pancreaticoduodenectomy; ICU, intensive care unit.
technical problems with the feeding catheter or direct postoperative complications prohibiting the start of feeding. Delayed gastric emptying showed an overall incidence of 35.5%: 34 patients after PD and 37 after PPPD (NS). The median hospital stay was shorter for patients undergoing PPPD: 20 versus 18 days ($p < 0.02$) (Table 4).

Risk factors for delayed gastric emptying. There was a higher incidence of delayed gastric emptying in patients with previous abdominal operations. Forty-seven percent of the patients with previous abdominal operations had a delay in gastric emptying ($p = 0.054$). Diabetes, malnutrition, and resection for malignancy were not identified as risk factors for delayed gastric emptying in the present series. The incidence of delayed gastric emptying in patients with intraabdominal complications was 65% ($p < 0.0001$) (Table 5). Figure 2 shows a cholangiogram of a patient after PPPD with gastric stasis at 16 days postoperatively. After contrast injection into the T-tube, filling of the jejunal loop revealed a subclinical leakage of the pancreaticojejunal anastomosis.

DISCUSSION

Since the introduction of PPPD by Traverso and Longmire in the late 1970s, many reports have been published that assessed delayed gastric emptying after this procedure. The wide range in the incidence of delayed gastric emptying after PD and PPPD, varying at 25–70%, seems related to the different criteria for gastric function set by the authors of different reports. In the present series, the patients required longer nasogastric intubation after PPPD than after PD. Although these results suggest some form of early gastric stasis after PPPD, it did not result in an overall increase in the incidence of delayed gastric emptying. In some reports, a similar number of days of postoperative nasogastric intubation was noted for both procedures. Others have reported a longer period of nasogastric intubation after the pylorus-preserving procedure, as in the present study. Days of jejunal catheter feeding and days until a regular diet was tolerated orally were not different between PD and PPPD. These results are in agreement with reports by others and lead to the conclusion that preservation of the pylorus is probably not an important factor in the occurrence of delayed gastric emptying.

Several factors are thought to play a role in the pathophysiology of delayed gastric emptying. In the present study, we found a high correlation between delayed gas-

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>Total patients with risk factor</th>
<th>PD (n = 100)</th>
<th>PPPD (n = 100)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>Median</td>
<td>Meanaleb</td>
<td>Range</td>
</tr>
<tr>
<td>Days of nasogastric intubation</td>
<td>5</td>
<td>6.3</td>
<td>1–31</td>
<td>6</td>
</tr>
<tr>
<td>Days of jejunal catheter feeding</td>
<td>9</td>
<td>10.6</td>
<td>0–38</td>
<td>9.5</td>
</tr>
<tr>
<td>Days until regular diet tolerated orally</td>
<td>10</td>
<td>12.9</td>
<td>4–80</td>
<td>11</td>
</tr>
<tr>
<td>Delayed gastric emptying,* n</td>
<td>34</td>
<td>30.6</td>
<td>8–219</td>
<td>18</td>
</tr>
</tbody>
</table>

*Overall incidence of delayed gastric emptying in the entire study group (n = 200) was 35.5%. Delayed gastric emptying was defined as nasogastric intubation = 10 days or regular diet started > 14th day postoperatively. NS, not significant: PD, pancreaticoduodenectomy; PPPD, pylorus-preserving pancreaticoduodenectomy.

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>Total patients with risk factor</th>
<th>PD (n = 100)</th>
<th>PPPD (n = 100)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>Median</td>
<td>Meanaleb</td>
<td>Range</td>
</tr>
<tr>
<td>Preoperative risk factor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previous abdominal operation</td>
<td>49</td>
<td>26</td>
<td>53</td>
<td>23</td>
</tr>
<tr>
<td>Diabetes</td>
<td>29</td>
<td>16</td>
<td>55</td>
<td>13</td>
</tr>
<tr>
<td>Malnutrition</td>
<td>62</td>
<td>38</td>
<td>61</td>
<td>24</td>
</tr>
<tr>
<td>Operation for malignancy</td>
<td>176</td>
<td>118</td>
<td>67</td>
<td>58</td>
</tr>
</tbody>
</table>

Postoperative risk factor

| Intraabdominal complications | 52 | 18 | 35 | 34 | 65 | < 0.0001 |

*DGE, delayed gastric emptying, defined as nasogastric intubation = 10 days or regular diet started > 14th day postoperatively. NS, not significant.
tric emptying and the development of intraabdominal complications. This relation was reported previously by others.14,26 Hocking and coworkers27 reported gastric dysrhythmias in a patient with delayed gastric emptying, which were considered to be caused by a perihepatic abscess. Other factors that might be considered as causative for this complication are disruption of gastroduodenal neural connections28,29 and ischemia of the pyloric muscle.30 Ligation of the right gastric artery is generally performed because it facilitates resection of the gastroduodenal artery, but some authors have advocated preserving the right gastric artery because of its arterial supply to the pylorus and antrum.31 In the present series, the right gastric artery was always ligated. Resection of the duodenum, the primary production site of most gastrointestinal hormones, might also play a role in the pathogenesis of this complication. Motilin, a gastrointestinal hormone, initiates interdigestive motility in the gastric antrum and small bowel and is produced primarily in the duodenum.32,33 Yeo and associates12 reported in a randomized trial that administration of erythromycin, a motilin agonist, decreased the incidence of delayed gastric emptying by 37% in patients who underwent PD. This difference, however, did not reach statistical significance.

In a study on delayed gastric emptying after different types of gastric operations, relations also were reported with resection for malignancy, preoperative malnutrition, and diabetes.14 In the present study, we did not find a higher incidence of delayed gastric emptying in patients with these risk factors.

In the present series, we found a decreased operative time, less blood loss, and consequently less transfusion need in patients who underwent PPPD. This difference might be explained by the difference in time period in which most of the resections were performed. Most PPPDs were performed in the later years, and other factors that might influence operative time and blood loss have

Figure 2. Cholangiogram in a patient after pylorus preserving pancreaticoduodenectomy with gastric stasis at 16 days postoperatively. The open arrows show the atonic gastric fundus. The solid arrows show the site of leakage of the pancreaticojejunal anastomosis, which was revealed by accident after filling of the jejunal loop. Note the proximity of the site of this subclinical pancreatic leakage with the stomach and pyloric region.
changed in this period, along with increased experience. Changes in the type of reconstruction (using a Roux-
Y loop or not) and type of anastomosis (one or two
layers) probably also played a role in decreasing operative
time and blood loss. Others, however, have reported
similar results favoring PPPD.6,22 It is obvious that per-
forming partial gastric resection requires more operating
time and blood loss, although a mean difference of 1.2
hours in operative time, as found in the present series,
cannot be considered solely due to performing a gastric
resection, but is also due to a higher number of Roux-
Y reconstructions in patients who underwent PD.

There have been reports arguing against the use of
PPPD for the resection of pancreatic tumors because of
a potential increase in positive duodenal resection mar-
gins,14 resulting in lower survival rates for pancreatic
cancer after PPPD compared with PD.15 Overall sur-
vival, however, does not seem to be compromised by
PPPD in the majority of reports.6,17,19–21 Currently
PPPD is accepted as an adequate surgical procedure for
patients with pancreatic malignancies except in those
patients with duodenal or distal bile duct tumors with
ingrowth or with a location close to the duodenal resec-
tion margins.19,20,36

In conclusion, the incidence of delayed gastric emp-
trying in this series of 200 consecutive patients was sim-
ilar after PD and PPPD. Patients who underwent PPPD
did require longer postoperative nasogastric drainage
than patients having PD, but time until a regular diet
was tolerated orally was not significantly different be-
tween the surgical procedures, and hospital stay was even
shorter after PPPD. The most important risk factor for
delayed gastric emptying was the presence of intraab-
dominal complications, such as leakage of the pancreatic
anastomosis or abscess. We have demonstrated that
PPPD is a safe procedure that can be performed with less
operative time, less blood loss, and less transfusion need
than PD.

REFERENCES

1. Cameron JL., Pitt HA, Yeo CJ, et al. One hundred and forty-five
consecutive pancreaticoduodenectomies without mortality. Ann
2. Trede M, Schwall G, and Saeger HD. Survival after pancre-
ato-duodenectomy: 118 consecutive resections without an oper-
following pancreaticoduodenectomy. Current management.
5. Crist DW, Sitzmann JV, and Cameron JL. Improved hospital
morbidity, mortality, and survival after the Whipple procedure.
advantages of pylorus-preserving pancreatectoduodenectomy in
malignant disease of the pancreas and periampullary region.
7. Allema JH, Reinders ME, van Gulik TM, et al. Prognostic fac-
tors for survival after pancreatectoduodenectomy for patients
with carcinoma of the pancreatic head region. Cancer 1995;75:
2069–2076.
ary drainage, colonisation of bile and postoperative complica-
tions in patients with tumours of the pancreatic head: a retro-
162:881–888.
9. Letur JP, Gaiannelo PR, Orte JB, and Kestens PJ. Pancreateco-
dodenal resection. Surgical experience and evaluation of risk fac-
10. Cullen JJ, Sarr MG, and Ilstrup DM. Pancreatic anastomotic
leak after pancreatectoduodenectomy: incidence, significance,
Delayed massive haemorrhage after pancreatic and biliary sur-
gastric emptying after pancreatectoduodenectomy. A prospective,
237.
Whipple resection for pancreatic cancer. Is it any better? Arch
28.
15. Braasch JW, Gongliang J, and Rossi RL. Pancreatectoduode-
tomy with preservation of the pylorus. World J Surg 1984;8:
900–905.
16. Warshaw AL, and Torchiana DL. Delayed gastric emptying after
pylorus-preserving pancreaticoduodenectomy. Surg Gynecol
pylorus-preserving and Whipple pancreatectoduodenectomy. Br J
18. McAfee MK, van Heerden JA, and Adson MA. Is proximal
pancreatectoduodenectomy with pyloric preservation superior to
serving pancreatic resection. Experience with 87 patients. Ann
20. Grace PA, Pitt HA, and Longmire WP. Pylorus preserving pan-
long term results of the standard Whipple procedure and the
pylorus preserving pancreatectoduodenectomy. J Am Coll Surg
22. Watanapa P, and Williamson RC. Resection of the pancreatic
head with or without gastrectomy. World J Surg 1995;190:403–
409.