Search for leptoquark pairs decaying into $\nu\nu$ plus jets in $p\bar{p}$ collisions at TeV at root $s=1.8$ TeV

Abazov, V.M.; Balm, P.W.; Bos, K.; Peters, O.

Published in:
Physical Review Letters

Citation for published version (APA):
Abazov, V. M., Balm, P. W., Bos, K., & Peters, O. (2002). Search for leptoquark pairs decaying into $\nu\nu$ plus jets in $p\bar{p}$ collisions at TeV at root $s=1.8$ TeV. Physical Review Letters, 88, 191801.
Search for Leptoquark Pairs Decaying into $\nu\nu +$ jets in $p\bar{p}$ Collisions at $\sqrt{s} = 1.8$ TeV

(D0 Collaboration)

1 Universidad de Buenos Aires, Buenos Aires, Argentina
2 LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
3 Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
4 Institute of High Energy Physics, Beijing, People’s Republic of China
5 Universidad de los Andes, Bogotá, Colombia
6 Charles University, Center for Particle Physics, Prague, Czech Republic
7 Institute of Physics, Academy of Sciences, Center for Particle Physics, Prague, Czech Republic
8 Universidad San Francisco de Quito, Quito, Ecuador
9 Institut des Sciences Nucléaires, IN2P3-CNRS, Université de Grenoble 1, Grenoble, France
10 CPPM, IN2P3-CNRS, Université de la Méditerranée, Marseille, France
11 Laboratoire de l’Accélérateur Linéaire, IN2P3-CNRS, Orsay, France
12 LPNHE, Universités Paris VI and VII, IN2P3-CNRS, Paris, France
13 DAPNIA/Service de Physique des Particules, CEA, Saclay, France
14 Universität Mainz, Institut für Physik, Mainz, Germany
15 Panjab University, Chandigarh, India
16 Delhi University, Delhi, India
17 Tata Institute of Fundamental Research, Mumbai, India
18 Seoul National University, Seoul, Korea
19 CINVESTAV, Mexico City, Mexico
20 FOM-Institute NIKHEF and University of Amsterdam/NIKHEF, Amsterdam, The Netherlands
21 University of Nijmegen/NIKHEF, Nijmegen, The Netherlands
22 Institute of Nuclear Physics, Kraków, Poland
23 Joint Institute for Nuclear Research, Dubna, Russia
24 Institute for Theoretical and Experimental Physics, Moscow, Russia
25 Moscow State University, Moscow, Russia
26 Institute for High Energy Physics, Protvino, Russia
27 Lancaster University, Lancaster, United Kingdom
28 Imperial College, London, United Kingdom
29 University of Arizona, Tucson, Arizona 85721
30 Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720
31 University of California, Davis, California 95616
32 California State University, Fresno, California 93740
33 University of California, Irvine, California 92697
34 University of California, Riverside, California 92521
35 Florida State University, Tallahassee, Florida 32306
36 Fermi National Accelerator Laboratory, Batavia, Illinois 60510
37 University of Illinois at Chicago, Chicago, Illinois 60607
38 Northern Illinois University, DeKalb, Illinois 60115
39 Northwestern University, Evanston, Illinois 60208
40 Indiana University, Bloomington, Indiana 47405
41 University of Notre Dame, Notre Dame, Indiana 46556
42 Iowa State University, Ames, Iowa 50011
43 University of Kansas, Lawrence, Kansas 66045
44 Kansas State University, Manhattan, Kansas 66506
45 Louisiana Tech University, Ruston, Louisiana 71272
46 University of Maryland, College Park, Maryland 20742
47 Boston University, Boston, Massachusetts 02215
48 Northeastern University, Boston, Massachusetts 02115
49 University of Michigan, Ann Arbor, Michigan 48109
50 Michigan State University, East Lansing, Michigan 48824
51 University of Nebraska, Lincoln, Nebraska 68588
52 Columbia University, New York, New York 10027
53 University of Rochester, Rochester, New York 14627
We present the results of a search for leptoquark (LQ) pairs in $(85.2 \pm 3.7)\, \text{pb}^{-1}$ of $p\bar{p}$ collider data collected by the D0 experiment at the Fermilab Tevatron. We observe no evidence for leptoquark production and set a limit on $\sigma(p\bar{p} \rightarrow LQ\bar{L}Q \rightarrow q\bar{q} + \text{jets})$ as a function of the mass of the leptoquark (m_{LQ}). Assuming the decay $LQ \rightarrow \nu q$, we exclude scalar leptoquarks for $m_{LQ} < 98$ GeV/c^2, and vector leptoquarks for $m_{LQ} < 200$ GeV/c^2 and coupling which produces the minimum cross section, at a 95% confidence level.

The observed symmetry between the lepton (l) and quark (q) sectors suggests the existence of a force connecting the two that is mediated by leptoquark (LQ) particles that couple directly to both leptons and quarks. Such particles arise naturally as vector [1] or scalar bosons [2] in grand unified theories [1], as composite particles [3], as techniparticles [4], or as R-parity violating supersymmetric particles [5].

Leptoquarks would carry both color and fractional electric charge. They could be pair-produced at the Fermilab Tevatron through a virtual gluon (g) in the strong process $p\bar{p} \rightarrow g \rightarrow LQ\bar{L}Q + X$, with a production cross section that, for scalar leptoquarks, is independent of the LQ – q – l^\pm coupling. For vector leptoquarks, we consider the specific cases of the coupling resulting in the minimal cross section (σ_{min}), minimal vector coupling (MV), and Yang-Mills coupling (YM) [6].

Limits from flavor-changing neutral currents imply that leptoquarks of low mass O(TeV) couple only within a single generation [7], and the decays of leptoquark pairs would therefore be expected to yield one of three possible final states: $l^-l^-\bar{q}q$, $\nu\bar{\nu}q\bar{q}$, and $\nu\bar{\nu}q\bar{q}$. This analysis [8] is based on the $\nu\bar{\nu}q\bar{q}$ final state, and is sensitive to leptoquarks of all three generations. In a previous study of this final state [9] with the assumed decay $LQ \rightarrow \nu q$, D0 set limits of $m_{LQ} > 79$ GeV/c^2 for scalar leptoquarks, and $m_{LQ} > 144$ GeV/c^2, 159 GeV/c^2, and 206 GeV/c^2, for vector leptoquarks with couplings that correspond to σ_{min}, MV, and YM couplings, respectively [9,10]. The present analysis is based on a factor of 10 increase in data over the previous analysis. The CDF Collaboration has conducted a search for second and third generation leptoquarks, also assuming the decay $LQ \rightarrow \nu q$, and set mass limits of $123(148)$ GeV/c^2 for second (third) generation scalar leptoquarks, and $171(199)$ GeV/c^2 and $222(250)$ GeV/c^2 for second (third) generation vector leptoquarks with MV and YM couplings, respectively [11]. The OPAL Collaboration has searched $\sqrt{s} = 183$ GeV e^+e^- collisions for vector and scalar leptoquarks with specific weak isospins and decay modes [12]. For first and second generation scalar leptoquarks with the decay $LQ \rightarrow \nu q$, OPAL has set mass limits ranging from 71.6 GeV/c^2 to 84.8 GeV/c^2. Other searches [13] require a nonzero $LQ \rightarrow q - l^\pm$ coupling, a scenario that reduces the sensitivity of this analysis. Our new results extend the range of sensitivity of the vector leptoquark searches and the first generation scalar leptoquark searches.

The D0 detector [14] consists of three major subsystems: an inner detector for tracking charged particles; a uranium/liquid-argon calorimeter for measuring electromagnetic and hadronic showers; and a muon spectrometer. The inner detector consists of two outer drift chambers separately covering the regions $|\eta| < 1$ and $1.2 < |\eta| < 2.8$, and an inner drift chamber covering the region $|\eta| < 2$. The calorimeter consists of three cryostats supplemented with scintillators between the cryostats. The main ring beam pipe used to accelerate and inject protons and antiprotons into the Tevatron traverses the hadronic region of the calorimeter. The jets measured with the calorimeter have a resolution of approximately $\delta E = 0.8\sqrt{E}$ (E in GeV). We measure the missing transverse energy (E_T) by summing the calorimeter energy vectorially in the plane transverse to the beam. The projection of E_T on a given axis has a resolution of $\delta E_{x,y} = 1.08$ GeV + 0.019($\Sigma E_{x,y}$) ($E_{x,y}$ in GeV).

The event sample for our search is collected with a trigger requiring a jet with $E_T > 25$ GeV, a second jet with $E_T > 10$ GeV, $E_T > 25$ GeV, and the azimuthal angle between any jet and $E_T(\Delta \phi(\text{jet}, E_T))$ greater than 14.3°. We remove data affected by accelerator noise or detector malfunctions. The former are identified by significant energy measurement in the region surrounding the main ring. The latter are identified by recurring energy measurement in a particular region of the calorimeter, by energy measurement isolated to a single calorimeter cell, and by documented subsystem malfunctions. The integrated luminosity for this sample corresponds to 85.2 ± 3.7 pb$^{-1}$.

PACS numbers: 13.85.Rm, 12.60.Nz, 12.60.Rc, 14.80.–j
We select events with well-understood trigger efficiency by requiring at least two jets with $E_T > 50$ GeV, $E_T > 40$ GeV, $\Delta \phi$ (jet, E_T) > 30°, and ΔR (jet, jet) > 1.5, where $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$, η is the jet pseudorapidity, and ϕ is the jet azimuthal angle. Jets are defined as the calorimeter energy within a $\Delta R = 0.5$ cone. We reduce cosmic-ray backgrounds by rejecting events containing jets with little energy in the electromagnetic sections of the calorimeter. Backgrounds arising from W or Z boson production are reduced by rejecting events with isolated muons or jets with a large fraction of their energy measured in the electromagnetic calorimeter.

The remaining backgrounds in the sample consist of events with jets produced in association with a W or a Z boson, and events from top quark and multijet production. We use Monte Carlo generators to simulate the kinematics and topologies of events with W or Z bosons or top quarks, and a GEANT-based simulation [15] of the detector to predict the acceptance for these events.

The W and Z backgrounds correspond to processes involving only neutrinos and jets (Z + 2 jets → $\nu \bar{\nu}$ + 2 jets and W + jet → $\tau \nu$ + jet, with τ → hadrons + ν), processes with undetected charged leptons ($W + 2$ jets → $l^\pm \nu + 2$ jets, Z + 2 jets → $\mu \bar{\mu}$ + 2 jets, and Z + jet → $\tau \nu$ + jet, with one τ → hadrons + ν), and processes in which an electron is misidentified as a jet ($W + \bar{t} + e + \nu$ + jet and $W + \bar{t} + \tau + \nu$ + jet, with τ → $e\nu\nu$). We use the PYTHIA Monte Carlo generator [16] to generate the W/Z + jet processes, and the VECBOS Monte Carlo generator [17] to generate the W/Z + 2 jets processes. We scale the generator cross sections to match the corresponding W/Z + jet(s) cross sections measured using decays into electrons. These cross sections were remeasured specifically for this analysis.

To obtain the background from $t\bar{t}$, $t\bar{b}$, and $t\bar{b}$ production, where the top quark decays to an unobserved charged lepton, a neutrino, and a jet, we use our measured cross section for $t\bar{t}$ production [18], and the calculated next-to-leading-order cross section for the single-top production processes [19]. We use the HERWIG Monte Carlo program [20] to generate $t\bar{t}$ events and the COMBHEP Monte Carlo [21] program to generate $t\bar{b}$ and $t\bar{b}$ events.

The multijet background arises from the production of two or more jets, with a measurement error resulting in E_T. Possible measurement errors include a misidentification of the interaction vertex or of jet energy. To reduce the number of events with mismeasured vertices, we use the central drift chamber (CDC) to associate tracks with the two highest E_T jets, if those jets are in the fiducial volume of the CDC ($|\eta| \leq 1$). These tracks are used to determine the point of origin of each jet, which is required to be no further than 15 cm from the reconstructed event vertex (the latter is determined from all tracks in the event). The 15 cm value is chosen to maximize the inverse of the fractional uncertainty on signal (see below). We reduce the number of events with poorly measured jet energies by requiring that the azimuth $\Delta \phi$ between the E_T vector and the direction of the jet with the second highest E_T exceed 60°. Table I shows the number of events remaining in the data after each additional selection criterion.

To estimate the remaining multijet background in our search sample, we count events in which jet-based vertex positions deviate by 15 to 50 cm from the position of the event vertex. In events with two central ($|\eta| \leq 1$) jets, we require both vertices to fall within this range. We normalize these events to the search sample using a multijet-dominated sample $[\Delta \phi(jet \ 2, E_T) < 60°]$. The expected multijet background is:

$$N_{mj} = N_{15 < \Delta \phi < 60°} \left(\frac{N_{15 < \Delta \phi < 50°}}{N_{15 < \Delta \phi < 50°}} \right) \Delta \phi < 60°.$$

We choose the upper bound of 50 cm to provide the best match between expected background and data for events with E_T between 30 and 40 GeV, a region dominated by multijet events. Changing the vertex threshold to 100 cm increases the multijet background prediction by 22% in this region, which we take as an estimate of the systematic effect.

Table I

<table>
<thead>
<tr>
<th>Selection criterion</th>
<th># of Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 jets + E_T</td>
<td>503 557</td>
</tr>
<tr>
<td>No accelerator noise or detector malfunctions</td>
<td>399 557</td>
</tr>
<tr>
<td>Leading jet $E_T \geq 50$ GeV</td>
<td>236 339</td>
</tr>
<tr>
<td>Second jet $E_T \geq 50$ GeV</td>
<td>86 826</td>
</tr>
<tr>
<td>$E_T \geq 40$ GeV</td>
<td>8996</td>
</tr>
<tr>
<td>$\Delta \phi(jet, E_T) \geq 30°$</td>
<td>1567</td>
</tr>
<tr>
<td>$\Delta R(jet, jet) > 1.5$</td>
<td>1495</td>
</tr>
<tr>
<td>Jet EM fraction cuts</td>
<td>1358</td>
</tr>
<tr>
<td>No isolated muons</td>
<td>1332</td>
</tr>
<tr>
<td>Leading or second jet $</td>
<td>\eta</td>
</tr>
<tr>
<td>jet vertex-primary vertex $</td>
<td><15 \ cm</td>
</tr>
<tr>
<td>$\Delta \phi(jet \ 2, E_T) \geq 60°$</td>
<td>231</td>
</tr>
</tbody>
</table>

Table II

<table>
<thead>
<tr>
<th>Type of events</th>
<th>No. of events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multijet</td>
<td>58.8 ± 14.1 ± 12.9</td>
</tr>
<tr>
<td>(W → $e\nu$) + jet</td>
<td>51.9 ± 7.0 ± 13.7</td>
</tr>
<tr>
<td>(W → $\tau \nu$) + jet</td>
<td>46.3 ± 5.0 ± 8.9</td>
</tr>
<tr>
<td>(Z → $\nu \bar{\nu}$) + 2 jets</td>
<td>36.1 ± 7.7 ± 9.0</td>
</tr>
<tr>
<td>(W → $\mu \bar{\nu}$) + 2 jets</td>
<td>18.7 ± 3.5 ± 3.7</td>
</tr>
<tr>
<td>$t\bar{t}$ + $l^\pm \nu + 4$ jets</td>
<td>10.6 ± 2.0 ± 2.3</td>
</tr>
<tr>
<td>(W → $e\nu$) + 2 jets</td>
<td>8.3 ± 2.5 ± 2.5</td>
</tr>
<tr>
<td>(W → $\tau \nu$) + 2 jets</td>
<td>5.6 ± 1.7 ± 1.4</td>
</tr>
<tr>
<td>$t\bar{b}$ + $l^\pm \nu + 2$ jets</td>
<td>2.0 ± 0.3 ± 0.2</td>
</tr>
<tr>
<td>(Z → $\tau \tau$) + jet</td>
<td>2.0 ± 0.4 ± 0.6</td>
</tr>
<tr>
<td>(Z → $\mu \bar{\nu}$) + 2 jets</td>
<td>1.7 ± 0.4 ± 0.3</td>
</tr>
<tr>
<td>Total background</td>
<td>242.0 ± 18.9 ± 19.0</td>
</tr>
<tr>
<td>Data</td>
<td>231</td>
</tr>
</tbody>
</table>
FIG. 1. The neural network output for data (points), for background (solid histogram), and for leptoquarks (dashed histogram). The optimization is for $100 \text{ GeV}/c^2$ scalar leptoquarks (left) and $200 \text{ GeV}/c^2$ vector leptoquarks with minimal vector coupling (right). We remove events to the left of the arrows.

error of the method. Table II shows the total expected background and the observed number of events for the final 2 jets $+ E_T$ data sample.

To model the characteristics of leptoquark production, we use scalar leptoquark events generated with the PYTHIA Monte Carlo program and vector leptoquark events generated with the COMPHEP Monte Carlo program. The cross sections for scalar leptoquark production have been calculated to next-to-leading order [22], while those for vector leptoquark production have been calculated to leading order [23]. The calculations use a QCD renormalization and factorization scale of $\mu = m_{LQ}$, with theoretical uncertainties estimated by changing the scale to $\mu = 2m_{LQ}$ and $\mu = m_{LQ}/2$. For scalar leptoquarks we use the smaller predicted cross section for determining the mass limits on LQ’s.

Failure to observe any hypothetical signal at 95% confidence level (C.L.) corresponds approximately to a downward fluctuation of that signal by two standard deviations. We separately optimize our selection criteria for the production of $100 \text{ GeV}/c^2$ scalar leptoquarks and for $200 \text{ GeV}/c^2$ vector leptoquarks with minimal vector coupling. Other choices of leptoquark masses do not significantly affect our results. We use the JETNET [24] neural network program to isolate regions of significant leptoquark production, with E_T and $\Delta\phi(\text{jet, jet})$ as inputs for scalar leptoquarks, and E_T and the E_T of the jet with the second highest E_T as inputs for vector leptoquarks. The values of the neural network output variables for scalar (vector) leptoquarks of mass 100 (200) GeV/c^2 and for the data are shown in Fig. 1. The vertical downward arrows show the thresholds chosen to maximize the quantity:

$$\frac{N_{lq}}{\sqrt{N_{lq} + N_{\text{back}} + (\Delta N_{lq})^2 + (\Delta N_{\text{back}})^2}},$$

where N_{lq} and N_{back} are the number of signal and background events, respectively, and ΔN_{lq} and ΔN_{back} are their associated uncertainties. This quantity reflects the inverse of the fractional uncertainty on signal. The uncertainties associated with the number of events include the Monte

FIG. 2. Limits on cross section at 95% confidence level, as a function of leptoquark mass, for scalar (left) and vector (right) leptoquarks, and different theoretical predictions. We assume the LQ decays exclusively to νq. The theoretical predictions correspond to the production of leptoquarks of a single generation, while the experimental limit corresponds to the sum of contributions from leptoquarks of all three generations.
Carlo statistical uncertainty, the jet energy scale uncertainty, the trigger efficiency uncertainty, the muon rejection and jet vertexing acceptance uncertainties, the luminosity uncertainty and, in the case of background, the cross section uncertainty. After applying these thresholds, we expect 56.0^{+8.1}_{-8.2} events and observe 58 events for the scalar leptoquark optimization, and expect 13.3^{+2.8}_{-2.6} events and observe 10 events for the vector leptoquark optimization.

After applying the optimal thresholds, we find that the observed number of events is consistent with the expected background, and that, consequently, we have no evidence for leptoquark production. This null result yields the 95% C.L. upper limit on cross section (Fig. 2) as a function of leptoquark mass. We calculate the limit using a Bayesian method [25] with a flat prior for the signal and Gaussian priors for background and acceptance uncertainties. The equivalent limits on mass are 98 GeV/c^2 for scalar leptoquarks, and 200 GeV/c^2, 238 GeV/c^2, and 298 GeV/c^2 for vector leptoquarks with couplings corresponding to the minimum cross section \sigma_{\text{min}}, minimal vector coupling, and Yang-Mills coupling, respectively. We combine the results of this analysis with the results of the previously published D0 first [9] and second [26] generation leptoquark searches, which use the final states \ell^-\ell^-q\bar{q} and \ell^+\ell^+\nu\bar{\nu}q\bar{q}. The combination is done using a Bayesian approach, with correlated errors taken into account. The resulting mass limits as a function of the branching fraction \mathcal{B}(LQ \rightarrow \ell^-\ell^-q\bar{q}) are shown in Fig. 3. We note that the gap at small values of \mathcal{B}(LQ \rightarrow \ell^-\ell^-q\bar{q}) in previous analyses has been filled as a result of this investigation.

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the Department of Energy and National Science Foundation (U.S.A.), Commissariat à L’Énergie Atomique and CNRS/Institut National de Physique Nucléaire et de Physique des Particules (France), Ministry for Science and Technology and Ministry for Atomic Energy (Russia), CAPES and CNPq (Brazil), Departments of Atomic Energy and Science and Education (India), Colciencias (Colombia), CONACyT (Mexico), Ministry of Education and KOSEF (Korea), CONICET and UBACyT (Argentina), The Foundation for Fundamental Research on Matter (The Netherlands), PPARC (United Kingdom), Ministry of Education (Czech Republic), and the A. P. Sloan Foundation.

*Visitor from University of Zurich, Zurich, Switzerland. †Visitor from Institute of Nuclear Physics, Krakow, Poland.