NICER observations of MAXI J1820+070 suggest a rapidly-brightening black hole X-ray binary in the hard state


Published in:
The astronomer's telegram

Link to publication

Creative Commons License (see https://creativecommons.org/use-remix/cc-licenses):
Unspecified

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
NICER observations of MAXI J1820+070 suggest a rapidly-brightening black hole X-ray binary in the hard state

ATel #11423; P. Uttley (University of Amsterdam), K. Gendreau, C. Markwardt, T. E. Strohmayer, P. Bult, Z. Arzoumanian (GSFC), K. Potschmidt (GSFC/UMBC), P. S. Ray (NRL), R. Remillard, D. Pasham, J. Steiner (MIT), J. Neilsen (Villanova University), J. Homan (Eureka Scientific & SRON), J. M. Miller (University of Michigan), W. Iwakiri (RIKEN), A. C. Fabian (University of Cambridge), for the NICER Team

on 15 Mar 2018; 14:24 UT

Credential Certification: Phil Uttley (p.uttley@uva.nl)

Subjects: X-ray, Binary, Black Hole, Transient

Referred to by ATel #: 11426, 11427, 11432, 11439, 11440, 11451, 11478, 11481, 11488, 11510, 11533, 11574, 11576, 11578, 11723, 11820, 11833, 12534, 12567, 12573, 12688

NICER observed the new X-ray transient MAXI J1820+070 (ATel #11399, #11400, #11403, #11404, #11406, #11418, #11420, #11421) on multiple occasions from 2018 March 12 to 14. During this time the source brightened rapidly, from a total NICER mean count rate of ~880 count/s on March 12 to 2800 count/s by March 14 17:00 UTC, corresponding to a change in 2-10 keV modelled flux (see below) from 1.9E-9 to 5E-9 erg cm⁻² s⁻¹. The broadband X-ray spectrum is absorbed by a low column density (fitting the model given below, we obtain 1.5E21 cm⁻²), in keeping with the low Galactic column in the direction of the source (ATel #11418; Dickey & Lockman, 1990, ARAA, 28, 215; Kalberla et al. 2005, A&A, 440, 775) and consists of a hard power-law component with weak reflection features (broad iron line and narrow 6.4 keV line core) and an additional soft X-ray component. Approximating the broadband spectrum in XSPEC using a disk blackbody up-scattered into a power-law, all absorbed by neutral gas (tbabs*simpl*diskbb) we find that during March 12-14 the power-law photon index Gamma steepens from 1.54 to 1.62 while the disk blackbody temperature increases from kT=0.16 to 0.185, the disk normalization changes from 1.15E5 to 2.3E5 and the fraction of disk photons scattered into the power-law drops from 0.47 to 0.38. Note that due to the simplified and exploratory nature of the spectral fit, the best-fitting parameter values given here are intended to be indicative and errors are not quoted.

The light curve shows large amplitude flaring on minutes time-scales, with a broadband power spectrum that can be approximated throughout the observations as either a sum of broad Lorentzians or a doubly-broken power-law, with low-frequency break 0.01 Hz and high frequency break ~3 Hz. The integrated 0.1-64 Hz fractional rms is ~40 per cent and depends only weakly on energy. At high frequencies, the power spectrum shows hints (4-sigma single trial probability, in the first half of the data only) for a narrow (5 Hz FWHM) QPO at 66 Hz (with...
fractional rms of 3% in 0.3-10 keV), which disappears as the source flux increases. Although only a tentative detection, the QPO frequency is intriguing, since QPOs have been observed at a similar frequency in two black hole X-ray binaries (GRS 1915+105 and IGR J17091-3624).

Taken together, the hard power-law spectrum, low temperature disk blackbody and large amplitude broadband power spectrum strongly suggest that the source is a black hole X-ray binary that is rapidly increasing in flux through the canonical hard state. This interpretation is consistent with the optical constraints and radio source detection (ATel #11418, #11420). Given the already high flux and low absorbing column and associated extinction, MAXI J1820+070 offers the possibility of observing a hard state rise and possible state transition of an accreting black hole in unprecedented detail. Due to the rapid rise in flux, we advise urgency in scheduling further multiwavelength observations.
ATel #11423: NICER observations of MAXI J1820+070 suggest a rapidly-brightening black hole X-ray binary in the hard state

classification of optical transients

MAXI J1820+070: VLT and GTC spectroscopic follow-up shows a significant spectral evolution from the early stages of the outburst

ePESSTO spectroscopic classification of optical transients

INTEGRAL observations of MAXI J1820+070

Near Infrared JHKs observations of the transient MAXI J1820+070 / ASASSN-18ey: Erratum on 2MASS counterpart designation

Near Infrared JHKs observations of the transient MAXI J1820+070 / ASASSN-18ey

First measurements of linear polarization of MAXI J1820+070

NOEMA Sub-millimetre Detection of MAXI J1820+070

A flat radio spectrum of MAXI J1820+070

Red sub-second optical flaring in MAXI J1820+070 observed by ULTRACAM/NTT

Correlated Optical/X-ray Timing Variations in MAXI J1820+070 found by Swift UVOT and XRT

The hard X-ray spectrum of MAXI J1820+070 observed by Swift/BAT

Detection of 10-msec scale optical flares in the black-hole binary candidate MAXI J1820+070 (ASASSN-18ey)

Optical Spectra of MAXI J1820+070 with Keck

SOAR/Goodman optical spectroscopy of MAXI J1820+070

NICER observations of MAXI J1820+070 suggest a rapidly-brightening black hole X-ray binary in the hard state

Fast optical flaring in the suspected black-hole binary MAXI J1820+070 (ASASSN-18ey)

AMI radio observations of the black hole candidate MAXI J1820+070

Optical observations of MAXI J1820+070 suggest it is a black hole X-ray binary

MAXI J1820+070: Errata and updated XRT Position

MAXI J1820+070: Swift/UVOT counterpart correction

Swift detection of MAXI J1820+070

Optical follow-up of MAXI J1820+070 and possible identity with ASASSN-18ey

MAXI/GSC detection of a probable new X-ray transient MAXI J1820+070

Ongoing radio monitoring of Cyg X-1 with the RATAN-600 radio telescope
ATel #11423: NICER observations of MAXI J1820+070 suggest a rapidly-brightening black hole X-ray binary in the hard state

[Telegram Index]

R. E. Rutledge, Editor-in-Chief
Derek Fox, Editor
Mansi M. Kasliwal, Co-Editor

rrutledge@astronomerstelegram.org
dfox@astronomerstelegram.org
mansi@astronomerstelegram.org