NICER observations of MAXI J1820+070 suggest a rapidly-brightening black hole X-ray binary in the hard state


Published in:
The astronomer's telegram

Link to publication

Creative Commons License (see https://creativecommons.org/use-remix/cc-licenses):
Unspecified

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
NICER observations of MAXI J1820+070 suggest a rapidly-brightening black hole X-ray binary in the hard state

ATel #11423; P. Uttley (University of Amsterdam), K. Gendreau, C. Markwardt, T. E. Strohmayer, P. Bulf, Z. Arzoumanian (GSFC), K. Pottschmidt (GSFC/UMBC), P. S. Ray (NRL), R. Remillard, D. Pasham, J. Steiner (MIT), J. Neilsen (Villanova University), J. Homan (Eureka Scientific & SRON), J. M. Miller (University of Michigan), W. Iwakiri (RIKEN), A. C. Fabian (University of Cambridge), for the NICER Team

on 15 Mar 2018; 14:24 UT

Credential Certification: Phil Uttley (p.uttley@uva.nl)

Subjects: X-ray, Binary, Black Hole, Transient

Referred to by ATel #: 11426, 11427, 11432, 11437, 11451, 11478, 11481, 11488, 11510, 11533, 11574, 11576, 11578, 11723, 11820, 11833, 12534, 12567, 12573, 12688

NICER observed the new X-ray transient MAXI J1820+070 (ATel #11399, #11400, #11403, #11404, #11406, #11418, #11420, #11421) on multiple occasions from 2018 March 12 to 14. During this time the source brightened rapidly, from a total NICER mean count rate of ~880 count/s on March 12 to 2800 count/s by March 14 17:00 UTC, corresponding to a change in 2-10 keV modelled flux (see below) from 1.9E-9 to 5E-9 erg cm-2 s-1. The broadband X-ray spectrum is absorbed by a low column density (fitting the model given below, we obtain 1.5E21 cm -2), in keeping with the low Galactic column in the direction of the source (ATel #11418; Dickey & Lockman, 1990, ARAA, 28, 215; Kalberla et al. 2005, A&A, 440, 775) and consists of a hard power-law component with weak reflection features (broad iron line and narrow 6.4 keV line core) and an additional soft X-ray component. Approximating the broadband spectrum in XSPEC using a disk blackbody up-scattered into a power-law, all absorbed by neutral gas (tbabs*simpl*diskbb) we find that during March 12-14 the power-law photon index Gamma steepens from 1.54 to 1.62 while the disk blackbody temperature increases from kT=0.16 to 0.185, the disk normalization changes from 1.15E5 to 2.3E5 and the fraction of disk photons scattered into the power-law drops from 0.47 to 0.38. Note that due to the simplified and exploratory nature of the spectral fit, the best-fitting parameter values given here are intended to be indicative and errors are not quoted.

The light curve shows large amplitude flaring on minutes time-scales, with a broadband power spectrum that can be approximated throughout the observations as either a sum of broad Lorentzians or a doubly-broken power-law, with low-frequency break 0.01 Hz and high frequency break ~3 Hz. The integrated 0.1-64 Hz fractional rms is ~40 per cent and depends only weakly on energy. At high frequencies, the power spectrum shows hints (4-sigma single trial probability, in the first half of the data only) for a narrow (5 Hz FWHM) QPO at 66 Hz (with

Related
12688 Continued Swift Monitoring of the Galactic Black-Hole Binary MAXI J1820+070
12608 Optical spectroscopy and photometry of MAXI J1820+070 (ASASSN-18ey) during the large multi-wavelength re-brightening of March 2019
12596 Optical observations of MAXI J1820+070 confirm the rebrightening
12577 AMI-LA and Swift confirm the multi-wavelength rebrightening of MAXI J1820+070
12573 Swift observation of the rebrightening in MAXI J1820+070
12567 Rebrightening of ASASSN-18ey = MAXI J1820+070
12534 MAXI J1820+070 is close to quiescence
12157 MAXI 1820+070 has completed the decline from the recent optical re-brightening following the soft to hard transition
12128 Optical brightening of MAXI J1820+070 over the soft to hard transition observed with LCO and the A1 Sadeem Observatory
12068 MAXI J1820+070 continuing its rapid evolution toward the hard state
12064 Swift observes MAXI J1820+070 in transition from the soft to the hard-intermediate state
12061 AMI radio detection of the black hole candidate MAXI J1820+070 during the soft to hard transition.
12057 MAXI/GSC detection of a rapid increase in the hard X-ray flux of MAXI J1820+070
11960 The 55 Hz signal we detected in MAXI J 1820+070 is not a QPO
11951 Detection of a 55 Hz high-frequency QPO in MAXI J1820+070 with NICER
11936 Optical timing observations of MAXI J1820+070 with IF+IQUEYE and AQUEYE+ soon after state transition
ATel #11423: NICER observations of MAXI J1820+070 suggest a rapidly-brightening black hole X-ray binary in the hard state

fractional rms of 3% in 0.3-10 keV), which disappears as the source flux increases. Although only a tentative detection, the QPO frequency is intriguing, since QPOs have been observed at a similar frequency in two black hole X-ray binaries (GRS 1915+105 and IGR J17091-3624).

Taken together, the hard power-law spectrum, low temperature disk blackbody and large amplitude broadband power spectrum strongly suggest that the source is a black hole X-ray binary that is rapidly increasing in flux through the canonical hard state. This interpretation is consistent with the optical constraints and radio source detection (ATel #11418, #11420). Given the already high flux and low absorbing column and associated extinction, MAXI J1820+070 offers the possibility of observing a hard state rise and possible state transition of an accreting black hole in unprecedented detail. Due to the rapid rise in flux, we advise urgency in scheduling further multiwavelength observations.
NICER observations of MAXI J1820+070 suggest a rapidly-brightening black hole X-ray binary in the hard state.
ATel #11423: NICER observations of MAXI J1820+070 suggest a rapidly-brightening black hole X-ray binary in the hard state

http://www.astronomerstelegram.org/?read=11423[29-4-2019 08:30:19]