Intelligent processing to optimize the benefits of hearing aids

Boymans, M.

Citation for published version (APA):
CONTENTS

1. INTRODUCTION

<table>
<thead>
<tr>
<th>1.1. Benefits of Bilateral Hearing Aids</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1. Rationale of Bilateral Fitting</td>
<td>14</td>
</tr>
<tr>
<td>1.1.2. Current Criteria for Reimbursement of a Bilateral Fitting with Hearing Aids</td>
<td>15</td>
</tr>
<tr>
<td>1.1.3. Rationale for the Study on the Benefits of Bilateral Hearing Aids</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.2. Benefits of Advanced Signal Processing in Hearing Aids</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.1. The Use of Multiple Programs</td>
<td>18</td>
</tr>
<tr>
<td>1.2.2. Signal Processing in Multiple Channels</td>
<td>19</td>
</tr>
<tr>
<td>1.2.3. The Use of Modulation-Based Noise Reduction</td>
<td>20</td>
</tr>
<tr>
<td>1.2.4. The Use of Directional Microphones</td>
<td>21</td>
</tr>
<tr>
<td>1.2.5. The Use of Feedback Reduction</td>
<td>22</td>
</tr>
<tr>
<td>1.2.6. Rationale for the Evaluation of Advanced Signal Processing in Hearing Aids</td>
<td>24</td>
</tr>
</tbody>
</table>

2. Assessment of Hearing Aid Candidacy and Hearing Aid Benefit

<table>
<thead>
<tr>
<th>2.1. Psychophysical Tests with Non-Speech Stimuli</th>
<th>26</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.1. Loudness Scaling</td>
<td>26</td>
</tr>
<tr>
<td>2.1.2. Horizontal Localization</td>
<td>27</td>
</tr>
<tr>
<td>2.1.3. Binaural Masking Level Differences (BMLD)</td>
<td>28</td>
</tr>
<tr>
<td>2.1.4. Interaural Time Differences (IATD)</td>
<td>29</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.2. Psychophysical Tests with Speech Stimuli</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.1. Intelligibility of Single Words</td>
<td>30</td>
</tr>
<tr>
<td>2.2.2. Dichotic Discrimination Tests</td>
<td>31</td>
</tr>
<tr>
<td>2.2.3. Intelligibility of Sentences</td>
<td>33</td>
</tr>
<tr>
<td>2.2.4. Use of the Method of Adjustment in Speech Audiometry</td>
<td>35</td>
</tr>
<tr>
<td>2.2.5. Use of Paired Comparisons with Speech Stimuli</td>
<td>36</td>
</tr>
<tr>
<td>2.2.6. Applications of Speech Stimuli for the Evaluation of Hearing Aid Benefit</td>
<td>36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.3. Subjective Evaluation Techniques</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.1. Traditional Hearing Aid Questionnaires in the Netherlands</td>
<td>39</td>
</tr>
<tr>
<td>2.3.2. Traditional International Hearing Aid Questionnaires</td>
<td>41</td>
</tr>
<tr>
<td>2.3.3. Composition of AVETA to Evaluate Bilateral Benefit</td>
<td>42</td>
</tr>
</tbody>
</table>
3. A SYSTEMATIC REVIEW ON THE BENEFITS OF BILATERAL HEARING AIDS 46

3.1. INTRODUCTION 46

3.2. METHOD 47
3.2.1. CRITERIA FOR SELECTING STUDIES FOR THIS REVIEW 47
3.2.2. SEARCH STRATEGY FOR IDENTIFICATION OF STUDIES 48
3.2.3. METHODOLOGICAL QUALITY 48
3.2.4. CLASSIFICATION OF STUDIES 49

3.3. RESULTS 53
3.3.1. PERFORMANCE MEASURES 53
3.3.2. SUBJECTIVE OUTCOME MEASURES 58
3.3.3. OTHER FACTORS 61

3.4. DISCUSSION 66

3.5. CONCLUSIONS 69

4. RETROSPECTIVE ANALYSIS OF THE BENEFITS OF BILATERAL HEARING AIDS 72

4.1. INTRODUCTION 73

4.2. METHOD 75
4.2.1. POPULATION 75
4.2.2. INVESTIGATION OF THE CLINICAL FILES 76
4.2.3. QUESTIONNAIRES 76
4.2.4. RELATIONS BETWEEN DATA FROM CLINICAL FILES AND THE SUBJECTIVE RESULTS 77

4.3. RESULTS 78
4.3.1. FITTING RESULTS, INFORMATION FROM THE CLINICAL FILES 78
4.3.2. SUBJECTIVE RESULTS / QUESTIONNAIRES 83
4.3.3. RELATION BETWEEN SUBJECTIVE RESULTS AND ANAMNESTIC AND AUDILOGICAL DATA 90

4.4. DISCUSSION 98

4.5. CONCLUSIONS 101
5. PROSPECTIVE ANALYSIS OF THE BENEFITS OF BILATERAL HEARING AIDS

5.1. INTRODUCTION

5.2. METHODS
5.2.1. SUBJECTS
5.2.2. MEASUREMENTS
5.2.3. RELATION BETWEEN THE DIAGNOSTIC MEASUREMENTS AND THE EVALUATION TESTS

5.3. RESULTS
5.3.1. DIAGNOSTIC TESTS
5.3.2. EVALUATION TESTS
5.3.3. SUBJECTIVE RESULTS / QUESTIONNAIRES
5.3.4. RELATIONS BETWEEN THE DIAGNOSTIC MEASUREMENTS AND THE EVALUATION TESTS.

5.4. DISCUSSION

5.5. CONCLUSIONS

6. CLINICAL EVALUATION OF A FULL-DIGITAL IN-THE-EAR HEARING AID

6.1. INTRODUCTION

6.2. METHOD
6.2.1. SUBJECTS
6.2.2. HEARING AIDS
6.2.3. THE FITTING PROCEDURE OF THE CONVENTIONAL HEARING AID
6.2.4. THE FITTING PROCEDURE OF THE DIGITAL HEARING AID
6.2.5. OBJECTIVE EVALUATION WITH SPEECH
6.2.6. LABORATORY EXPERIMENTS ON LOUDNESS SCALING
6.2.7. SUBJECTIVE ASSESSMENT

6.3. RESULTS
6.3.1. DATA ON SPEECH PERCEPTION IN NOISE
6.3.2. DATA ON LOUDNESS SCALING
6.3.3. SUBJECTIVE DATA FROM THE FIELD TEST QUESTIONNAIRES
6.3.4. OVERALL PREFERENCE AFTER TWO TRIAL PERIODS
6.4. Discussion

6.5. Conclusions

7. Noise Reduction and Dual-Microphone Directionality

7.1. Introduction

7.2. Method
7.2.1. Subjects
7.2.2. Hearing Aids
7.2.3. Fitting Procedure of the Digital Hearing Aid
7.2.4. Performance with Speech in Noise
7.2.5. Paired Comparisons
7.2.6. Self Report

7.3. Results
7.3.1. Performance on Speech Perception in Noise
7.3.2. Subjective Data on Paired Comparison
7.3.3. Comparison of the “Objective” (SRT) and “Subjective” Results (PC)
7.3.4. Subjective Data from the Field Trial Questionnaires

7.4. Discussion

7.5. Conclusions

8. The Effectiveness of Adaptive Directionality by Dual Microphones

8.1. Introduction

8.2. Method
8.2.1. Subjects
8.2.2. Hearing-Aid Fitting
8.2.3. Test on Horizontal Localization
8.2.4. Speech in Noise Measurements
8.2.5. KEMAR Measurements