Intelligent processing to optimize the benefits of hearing aids
Boymans, M.

Citation for published version (APA):
Boymans, M. (2003). Intelligent processing to optimize the benefits of hearing aids

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

Download date: 28 Jan 2019
CONTENTS

1. INTRODUCTION 14

1.1. BENEFITS OF BILATERAL HEARING AIDS 14
 1.1.1. RATIONALE OF BILATERAL FITTING 14
 1.1.2. CURRENT CRITERIA FOR REIMBURSEMENT OF A BILATERAL FITTING WITH HEARING AIDS 15
 1.1.3. RATIONALE FOR THE STUDY ON THE BENEFITS OF BILATERAL HEARING AIDS 16

1.2. BENEFITS OF ADVANCED SIGNAL PROCESSING IN HEARING AIDS 17
 1.2.1. THE USE OF MULTIPLE PROGRAMS 18
 1.2.2. SIGNAL PROCESSING IN MULTIPLE CHANNELS 19
 1.2.3. THE USE OF MODULATION-BASED NOISE REDUCTION 20
 1.2.4. THE USE OF DIRECTIONAL MICROPHONES 21
 1.2.5. THE USE OF FEEDBACK REDUCTION 22
 1.2.6. RATIONALE FOR THE EVALUATION OF ADVANCED SIGNAL PROCESSING IN HEARING AIDS 24

2. ASSESSMENT OF HEARING AID CANDIDACY AND HEARING AID BENEFIT 26

2.1. PSYCHOPHYSICAL TESTS WITH NON-SPEECH STIMULI 26
 2.1.1. LOUDNESS SCALING 26
 2.1.2. HORIZONTAL LOCALIZATION 27
 2.1.3. BINAURAL MASKING LEVEL DIFFERENCES (BMLD) 28
 2.1.4. INTERAURAL TIME DIFFERENCES (IATD) 29

2.2. PSYCHOPHYSICAL TESTS WITH SPEECH STIMULI 30
 2.2.1. INTELLIGIBILITY OF SINGLE WORDS 30
 2.2.2. DICHTIC DISCRIMINATION TESTS 31
 2.2.3. INTELLIGIBILITY OF SENTENCES 33
 2.2.4. USE OF THE METHOD OF ADJUSTMENT IN SPEECH AUDIOMETRY 35
 2.2.5. USE OF PAIRED COMPARISONS WITH SPEECH STIMULI 36
 2.2.6. APPLICATIONS OF SPEECH STIMULI FOR THE EVALUATION OF HEARING AID BENEFIT 36

2.3. SUBJECTIVE EVALUATION TECHNIQUES 39
 2.3.1. TRADITIONAL HEARING AID QUESTIONNAIRES IN THE NETHERLANDS 39
 2.3.2. TRADITIONAL INTERNATIONAL HEARING AID QUESTIONNAIRES 41
 2.3.3. COMPOSITION OF AVETA TO EVALUATE BILATERAL BENEFIT 42
6.4. DISCUSSION

6.5. CONCLUSIONS

7. NOISE REDUCTION AND DUAL-MICROPHONE DIRECTIONALITY

7.1. INTRODUCTION

7.2. METHOD
7.2.1. SUBJECTS
7.2.2. HEARING AIDS
7.2.3. FITTING PROCEDURE OF THE DIGITAL HEARING AID
7.2.4. PERFORMANCE WITH SPEECH IN NOISE
7.2.5. PAIRED COMPARISONS
7.2.6. SELF REPORT

7.3. RESULTS
7.3.1. PERFORMANCE ON SPEECH PERCEPTION IN NOISE
7.3.2. SUBJECTIVE DATA ON PAIRED COMPARISON
7.3.3. COMPARISON OF THE “OBJECTIVE” (SRT) AND “SUBJECTIVE” RESULTS (PC)
7.3.4. SUBJECTIVE DATA FROM THE FIELD TRIAL QUESTIONNAIRES

7.4. DISCUSSION

7.5. CONCLUSIONS

8. THE EFFECTIVENESS OF ADAPTIVE DIRECTIONALITY BY DUAL MICROPHONES

8.1. INTRODUCTION

8.2. METHOD
8.2.1. SUBJECTS
8.2.2. HEARING-AID FITTING
8.2.3. TEST ON HORIZONTAL LOCALIZATION
8.2.4. SPEECH IN NOISE MEASUREMENTS
8.2.5. KEMAR MEASUREMENTS