Interactions between the entorhinal cortex and hippocampal formation
Kloosterman, F.

Citation for published version (APA):
Kloosterman, F. (2003). Interactions between the entorhinal cortex and hippocampal formation

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.


Assaf SY, Mason ST and Miller JJ (1979) Noradrenergic modulation transmission between the entorhinal cortex and the dentate gyrus of the rat [proceedings]. *Journal of Physiology* 292:52P.


Bland SK and Bland BH (1986) Medial septal modulation of hippocampal theta cell


Dickson CT, Kirk IJ, Oddie SD and Bland BH (1995) Classification of theta-related cells in the entorhinal cortex: cell discharges are controlled by the ascending brainstem synchronizing pathway in parallel with hippocampal theta-related cells. *Hippocampus*
5:306-319.


Kaut KP and Bunsey MD (2001) The effects of lesions to the rat hippocampus or rhinal cortex on olfactory and spatial memory: retrograde and anterograde findings. *Cognitive, Affective and Behavioral Neuroscience* 1:270-286.


Köhler C, Ericson H and Radesater AC (1991) Different laminar distributions of dopamine


Levy WB, Colbert CM and Desmond NL (1995) Another network model bites the dust: entorhinal inputs are no more than weakly excitatory in the hippocampal CA1 region. *Hippocampus* 5:137-140.


Miyakawa H and Kato H (1986) Active properties of dendritic membrane examined by current source density analysis in hippocampal CA1 pyramidal neurons. *Brain Research*
399:303-309.


Naber PA, Lopes da Silva FH and Witter MP (2001) Reciprocal connections between the entorhinal cortex and hippocampal fields CA1 and the subiculum are in register with the projections from CA1 to the subiculum. *Hippocampus* 11:99-104.


Paré D, de Curtis M and Llinas R (1992) Role of the hippocampal-entorhinal loop in temporal...


Ramón y Cajal S (1955) Histologie du systeme nerveux de l'homme et des vertébres. Madrid: Consejo Superior de Investigaciones Científicas Instituto "Ramon y Cajal".


Sharp PE (1999) Complimentary roles for hippocampal versus subicular/entorhinal place cells
Sorensen KE and Shipley MT (1979) Projections from the subiculum to the deep layers of the ipsilateral presubiculum and entorhinal cortices in the guinea pig. *Journal of Comparative Neurology* 188:313-333.
Steriade M (1997) Synchronized activities of coupled oscillators in the cerebral cortex and thalamus at different levels of vigilance. *Cerebral Cortex* 7:583-604.
Steriade M, Nunez A and Amzica F (1993) A novel slow (<1 Hz) oscillation of neocortical neurons *in vivo*: depolarizing and hyperpolarizing components. *Journal of Neuroscience*


Wouterlood FG and Jorritsma-Byham B (1993) The anterograde neuroanatomical tracer biotinylated dextran-amine: comparison with the tracer Phaseolus vulgaris-


