Improving radiotherapy treatment for left-sided breast cancer

Cho, B-C. J.

Citation for published version (APA):
Cho, B-C. J. (2004). Improving radiotherapy treatment for left-sided breast cancer

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
LIST OF FIGURES

Figure 1-1. Reproductions from an 18th century surgical textbook illustrating the procedure for breast amputation..22

Figure 1-2. Radiotherapeutic chain with various procedural links...27

Figure 2-1. Representative axial CT slices of the clinical example with a gray scale dose wash to represent the dose distribution for a displacement error (δ) of 0 cm (A) and a δ=+3.6 cm (from isocenter) for an invariant dose distribution, ignoring the effects of contour changes and tissue inhomogeneities (B), and a variant recalculated dose distribution with the same displacement error (C). The straight lines represent the beam and leaf edges. The multichannel leaves are tightly conformed to the planning target volume with a 0 cm margin. The apparent discrepancy in the margins is due to the oblique view of the slice with respect to the beam..37

Figure 2-2. B-spline interpolation and the effects of the number of iterations (iter) and lattice size (latsz) on the interpolant using the 5 input data points (x,y,z): (0,0,2), (1,1,1), (-1,-1,1), and (-1,-1,1). Increasing the number of iterations reduces the residual error between the interpolant and the input data. Increasing the initial lattice size decreases the “stiffness” of the interpolant surface..44

Figure 2-3. A plot of the planning target volume’s differential dose-volume histogram (dDVH) curves as a function of displacement error (δ) assuming an invariant dose distribution (A, dDVH invar) as well as the difference (B, dDVH invar–dDVHcalc) between the invariant and calculated dDVH curves..46

Figure 2-4. A plot of the planning target volume’s differential dose-volume histograms (dDVHs) as a function of displacement error (δ) for: (A) the calculated dDVHs (dDVH calc), (B) the interpolated dDVHs (dDVH interp) and (C) the difference (dDVH interp–dDVH calc). The dDVH interp is plotted for δ from -3.6 to +3.6 cm in 0.1 cm increments. The other curves, dDVH calc and dDVH interp–dDVH calc, are plotted for δ=±3.6, ±2.4, ±1.5, ±1.2, ±0.9, ±0.6, ±0.3, and 0 cm. Note the waterfall plot axes shown in Figure 2-4C are reversed. Because the plot is floating, the corner closest to the viewer at dose=0% corresponds to δ=-3.6 cm..48

Figure 2-5. A plot of the planning target volume’s equivalent uniform dose (EUD) for the invariant (dotted line), variant (solid line) and calculated (‘x’) differential dose-volume histograms (dDVHs) as a function of: (A) displacement error (δ) and (B) setup uncertainty standard deviation (δSD). Only 15 calculated EUD points are plotted in Figure 2-5A since only 15 variant dDVHs were calculated. A reference dose per fraction of 2 Gy, a survival fraction at 2 Gy of 0.5, an α of 0.35 Gy⁻¹, and a homogeneous clonogen density is assumed..50

Figure 2-6. A plot of the planning target volume’s differential dose-volume histogram (dDVH) curves comparing the calculated (solid line) and the interpolated (dotted line) curves at a displacement error (δ) of +2.4 cm (A) and +0.3 cm (B)..52

Figure 3-1. Setup of oblique electron technique. (A=ischocentre, AB=non-divergent dorsal field edge of tangential photon beam, ABCD=non-divergent oblique IMC photon field (electrons not shown), E=IMC, S=source)..69
Figure 3-2. Beam's-eye-view of the medial tangential field of wide split tangent technique. Block (BK) placed in the lower left corner to spare as much heart (H) as possible without compromising coverage of the breast (B) and IMC.................................70

Figure 3-3. Typical beam intensity profile generated by KonRad prior to segmentation.............71

Figure 3-4A-B. Average dose-volume histograms for the breast. (imrt=IMRT tangent technique, obl=oblique electron technique, wide=wide split tangent technique).74

Figure 3-5. Normal tissue complication probability for excess late cardiac mortality by patient and technique. Patients sorted by the wide split tangent technique's NTCP values. (wide= wide split tangent, obl= oblique electrons, imrt=IMRT tangent)............77

Figure 3-6. Normal tissue complication probability for radiation pneumonitis by patient and technique. Patients sorted by the wide split tangent technique's NTCP values. Patient numbers correspond to the previous figure. (wide=wide split tangent, obl=oblique electrons, imrt=IMRT tangent)..78

Figure 4-1. The MHD is defined as the maximum distance of the heart contour, as seen in a beam's eye view of the medial tangential field, to the medial field edge, determined perpendicular to the dorsal field border. The MHD of the rectangular field (MHD\textsubscript{rectangular}) is measured to the medial field border determined by the collimator jaw, while the MHD of the conformal field (MHD\textsubscript{conformal}) is measured to the medial field border determined by the conformal block...93

Figure 4-2. Difference between the IMRT and conformal dose distribution in percentage of the prescribed dose. The plane perpendicular to the beam axis at the position where the largest part of the heart is inside the conformal fields for patient 15 is shown in (A) and (B). The area where the dose is lower for the IMRT technique is shown in (A), while the area where the dose is higher for the IMRT technique is shown in (B)..95

Figure 4-3. Calculated NTCP values for late cardiac mortality for the rectangular field technique (dashed bars), the conformal technique (open bars) and the IMRT technique (black bars)...95

Figure 4-4. NTCP for late cardiac mortality versus MHD for the rectangular (■) and conformal (○) techniques. The data of a previous study (x) using the rectangular field technique [15] has also been included. The solid line represents the best fit through all data points using a second order polynomial, while the dotted lines show the 95% confidence interval of the fitted curve (r²=0.88). The dotted rectangle outlines the area where the NTCP is below 3%...96

Figure 4-5. Cumulative DVHs for the lung (A) and heart (B) for one patient (patient #8). The thick, normal and thin lines represent the rectangular field, conformal and IMRT technique, respectively..99

Figure 5-1. Cartesian coordinates (x, y, z) and spherical directional coordinates (θ, φ) for a patient lying supine on the treatment table. The origin (0,0,0) corresponds to isocenter. Theta (θ) extends along the xy-plane while phi (φ) extends between the xy-plane and z-axis..106
Figure 5-2. A simplified flow chart of the target-eye-view (TEV) mapping program. Planning target volume, organ at risk, and beam’s eye view are abbreviated as PTV, OR, and BEV, respectively.

Figure 5-3. (a) Lateral view of a radiation beam along the central axis. The ‘+’ (symbol) in the circle is the isocenter within the planning target volume (PTV). Various organs at risk (A, B, C, and D) exist around the PTV. The outer-most lines delineate the geometric penumbra. Both A and B have at least one point of overlap. A is a distal hit and B is a proximal hit. C is a miss. D is a marginal hit. (b) Beam’s eye view (BEV) along the central axis. The point source projects shadows from the planning target volume (PTV) and organs at risk. The outermost circle delineates the geometric penumbra. Both A and B are hits. C is a miss. D is a marginal hit. This BEV corresponds to a point on the spherical target-eye-view map.

Figure 5-4. A spherical target-eye-view map for the left optic globe. The lighter central area represents proximal hits, the circumscribing gray area represents marginal hits, and the darker area on the left represents distal hits. Note that the proximal and distal hits lie antipodal to each other. The upper portion of the distal hits overlaps with forbidden angles.

Figure 5-5. A target-eye-view (TEV) mapped sphere and the corresponding three-dimensional structural anatomy for an optic chiasm. Structures A and B, the planning target volume (PTV), and optic chiasm, respectively, are depicted inside a transparent TEV mapped sphere. The patient is inverted and facing the right, and the other structures (C-optic nerves, D-left optic globe, E-right optic globe) are provided for orientation. Isocenter is within the PTV and lies concentric with the mapped sphere. The dark area above represents forbidden angles, where the gantry and table collide. The grey area in the middle represents distal hits, where the entire critical structure lies beyond the isocenter. The light area below represents proximal hits, where part of the critical structure lies closer than the isocenter. No complete misses are seen since the chiasm is hit, at least partially, regardless of the beam direction.

Figure 5-6. A composite spherical target-eye-view map for a patient with pituitary tumor. Lighter areas represent beam’s eye views with more structural and/or more critical type of overlap. The arrow is arbitrarily chosen to point out corresponding BEVs between different mapping displays of Figure 5-6 and Figure 5-7.

Figure 5-7. A treatment target-eye-view map. The arrow marks the same BEV (θ=48°, φ=23°) in both maps of Figs. 5-6 and 5-7. According to the lightness of the spot, placing a beam here will not provide an optimal BEV.

Figure 6-1. Predefined segments of a typical patient used for conformal (3DCRT) breast and simplified intensity modulated (sIMRT) breast techniques.

Figure 6-2. Schematic flow-chart for beam orientation optimization program. The two main parts are: dose calculation and segment weight optimization.

Figure 6-3. Typical objective cost function surface and contour plots corresponding to plans 3CDRT (A and B) and sIMRT (C and D). The ordinate axis is the optimized objective cost value while the abscissas represent the gantry angles for the corresponding beams. The ‘x’s mark the global minimum at (300°, 130°) and (130°, 300°) for uniform beams and (305°, 105°) and (105°, 305°) for non-uniform beams. Beam transposition does not affect the cost so two global minima exist. Figure 6-3D.
shows the bimodal solutions near (305°, 105°) and (300°, 155°) with a local maximum at (300°, 130°). .. 127

Figure 6-4. Typical axial dose distributions comparing 3CDRT (A) and sIMRT (B) plans. Notice the redistribution of dose within the breast, shifting dose away from the heart and the medial aspect of the breast. .. 128

Figure 6-5. Renormalized (A) and un-normalized (B) dose-volume histograms (DVHs) comparing optimized segment weights for a typical patient. The lines represent the optimal 3DCRT and sIMRT beam orientations using maximum breast dose thresholds of 55 Gy (sIMRT55) and 60 Gy (i.e. sIMRT60). The volumes of interest are the breast and the heart. The 3DCRT DVH has excellent target coverage but limited cardiac sparing. The sIMRT60 DVH has excellent target coverage with dramatic heart sparing but increased target dose heterogeneity. The sIMRT55 DVH has similar heart sparing, improved target dose homogeneity but slightly inferior target coverage (as measured by the volume enclosed by the 95% isosurface) compared to sIMRT60. .. 129

Figure 7-1. A typical full fluence intensity profile seen from a tangential beam’s-eye-view used in the full IMRT plans. Note the outlined region of low intensity overlaying the heart that corresponds to the heart outline depicted in Figure 7-2. 150

Figure 7-2. Representative diagram showing a tangential beam’s-eye-view with predefined segments (A, B and C) used in the simplified IMRT plans. The dotted lines represent the outlines for the planning target volume (PTV), the heart (HRT) and the left lung (LNG). The solid line around the PTV represents segment A, defined as the PTV with a 6 mm margin. Segment B is defined as segment A minus the heart outline shown vertically hatched. Segment C is defined as segment B minus the left lung outline shown horizontally hatched. For clarity, margins are not drawn to scale. 151

Figure 7-3. A schematic diagram demonstrating the geometry of beam orientation, planning target volume (PTV) and organ at risk (OR). Parallel beams, used clinically, cannot adequately spare the OR and cover the PTV. Regions of relative underdosage are indicated by the solid arrows. More optimal beams with a hinge angle of 210° better spare the OR and cover the PTV but at the cost of increased target dose inhomogeneity. Regions of relative overdosage are indicated by the dotted arrow. 152

Figure 7-4. The axial view with a dose wash for a patient for all the plans: 3D conformal with clinical beam orientations (CN-C), full intensity modulation with clinical beam orientations (FI-C), simplified intensity modulation with clinical beam orientations (SI-C), full intensity modulation with optimal beam orientations (FI-O) and simplified intensity modulation with optimal beam orientations (SI-O). The dose washes are normalized to the maximum dose and the curves outlined correspond to the 25, 47.5, 50 and 55 Gy isodose lines. The uniform beams of the CN-C plan do not allow modulation of dose to the heart while the non-uniform beams of the FI-C and SI-C plans do. The optimal beam orientations clearly allow better conformality of dose to the target. .. 154

Figure 7-5. Typical dose-volume histograms corresponding to the plans in Figure 7-4 for the planning target volume (PTV) and the heart (HRT). The dark lines represent the PTV and the light lines represent the HRT. There is significant sparing of the heart when going from uniform (e.g. CN-C plans) to non-uniform (e.g. all other plans)
beams. The encircled portion is magnified and corresponds to the region of underdosage where the PTV and HRT overlap. Note the greater dose inhomogeneity present with the SI plans: SI-C and SI-O. There is less target underdosage going from clinical to optimal beam orientations and better cardiac sparing with the IMRT plans (compared to the CN-C plans). The maximum dose to the heart corresponds to the beam orientation with the -C plans being slightly higher than the -O plans...

Figure 7-6. Magnified views of the dose-volume histograms shown in Figure 7-5. Comparing CN-C to FI-C to SI-C, target coverage becomes worse (but with significant heart sparing). Comparing SI-O to CN-C to FI-O, target coverage and heart sparing improves but with greater target dose inhomogeneity. There is less target underdosage going from clinical to optimal beam orientations and better cardiac sparing with the IMRT plans (compared to the CN-C plans).................156