Top quark production at hadron colliders
Phaf, L.K.

Citation for published version (APA):
Phaf, L. K. (2004). Top quark production at hadron colliders
Chapter 3

Massive Dipole Formalism

3.1 Introduction

Reliable theoretical predictions of hard-scattering processes in QCD require at least the evaluation of Next to Leading Order (NLO) QCD corrections. Next to leading order calculations have to combine virtual one-loop corrections with the real emission contributions from unresolved partons. Treated separately, each of the two parts gives an infrared divergent contribution. Only the sum of the virtual corrections and the real emission contributions is infrared finite. Setting up a numerical general-purpose NLO Monte Carlo program requires therefore the analytical cancellation of infrared singularities before any numerical integration can be done. The two main methods to handle this task are phase space slicing [46, 47, 48] and the subtraction method [49, 50]. For massless partons both methods are available and have been applied to a variety of specific processes, see for example Refs. [51, 52, 53, 54, 55] and the references therein. For electron-positron annihilation a general formulation of phase space slicing has been given by Giele and Glover [56]. It has been extended to initial-state partons by these authors and Kosower [57]. The extension of phase space slicing to massive partons and identified hadrons has been given by Laenen and Keller [58].

There are two general formulations of the subtraction method. One is the residue approach by Frixione, Kunzst and Signer [59] and the other the dipole formalism by Catani and Seymour [45]. Both variants can handle massless partons in the final and/or initial state. The subtraction method has already been applied to some specific processes with massive partons [60, 61, 62, 63]. Up to now there is no extension of the dipole formalism to massive partons. Dittmaier has considered the dipole formalism for photon radiation from fermions [64]. In that work infrared divergences are regularized with small masses (as it is popular in electroweak physics). However this does not allow a simple application to QCD, where divergences are usually regularized by dimensional regularization.
In this chapter we extend the dipole formalism to heavy fermions. The formulae we provide are relevant to top, bottom and charm production. With a simple change of the color factors they can be used as well for gluino production in SUSY QCD. Our results are not applicable for processes with identified hadrons in the final state, massive initial-state partons and processes with different species of massive fermions of unequal masses.

One-loop amplitudes may be calculated in different variants of dimensional regularization, such as conventional dimensional regularization (CDR), the 't Hooft-Veltman scheme (HV) or the four-dimensional scheme (FD), whereas the Born amplitudes entering the real emission part and/or parton densities are given in another variant. Of course, the final result has to be scheme-independent. The obvious way to ensure this is to calculate everything in the same scheme. Often this is not the most economical solution. Loop amplitudes are most easily computed in the FD scheme, whereas parton densities are given in the conventional scheme. Within the dipole formalism it is possible to perform different parts of the calculation with different variants of dimensional regularization and to correct for the mismatch by some universal terms [65]. We would like to keep this freedom also in the extension to massive partons. We therefore keep track of all scheme-dependent terms and our final results can be used with any variant of dimensional regularization (CDR, HV or FD).

Recently, Catani, Dittmaier and Trocsanyi considered the singular behavior of one-loop QCD and supersymmetric QCD amplitudes with massive partons in the dipole framework [66]. As a byproduct, we confirm their results for the singular terms.

This chapter is organized as follows. In the next section we review the dipole formalism and the factorization of QCD amplitudes in the soft and collinear limit. In Section 3.3 we outline our calculational technique. In Section 3.4 we derive the D-dimensional dipole phase space measure. Section 3.5 gives the dipole terms together with the integrated counterpart if all particles are in the final state. In Section 3.6 we consider the case if there are QCD partons in the initial state. Finally, Section 3.7 contains our conclusions.

3.2 Dipole formalism and factorization in singular limits

In this section we briefly review the dipole formalism and the factorization properties of QCD amplitudes in the soft and collinear limit. We use the notation of Catani and Seymour [45].

The dipole formalism is based on the subtraction method. We explain it for electron-positron annihilation, where all QCD partons are in the final state. The NLO cross
section is rewritten as
\[
\sigma^{\text{NLO}} = \int_{n+1} d\sigma^R + \int_{n} d\sigma^V
\]
\[
= \int_{n+1} \left(d\sigma^R - d\sigma^A \right) + \int_{n} \left(d\sigma^V + \int_{1} d\sigma^A \right).
\] (3.1)

In the second line an approximation term \(d\sigma^A\) has been added and subtracted. The approximation \(d\sigma^A\) has to fulfill the following requirements:

- \(d\sigma^A\) must be a proper approximation of \(d\sigma^R\) such as to have the same pointwise singular behavior (in \(D\) dimensions) as \(d\sigma^R\) itself. Thus, \(d\sigma^A\) acts as a local counterterm for \(d\sigma^R\) and one can safely perform the limit \(\varepsilon \to 0\). This defines a cross section contribution

\[
\sigma_{\{n+1\}}^{\text{NLO}} = \int_{n+1} \left(d\sigma^R \big|_{\varepsilon=0} - d\sigma^A \big|_{\varepsilon=0} \right).
\] (3.2)

- Analytic integrability (in \(D\) dimensions) over the one-parton subspace leading to soft and collinear divergences. This gives the contribution

\[
\sigma_{\{n\}}^{\text{NLO}} = \int_{n} \left(d\sigma^V + \int_{1} d\sigma^A \right)_{\varepsilon=0}.
\] (3.3)

The final structure of an NLO calculation is then

\[
\sigma^{\text{NLO}} = \sigma_{\{n+1\}}^{\text{NLO}} + \sigma_{\{n\}}^{\text{NLO}}.
\] (3.4)

Since both contributions on the r.h.s of eq.(3.4) are now finite, they can be evaluated with numerical methods. The \((n+1)\) matrix element is approximated by a sum of dipole terms

\[
\sum_{\text{pairs } i,j,k \neq i,j} \sum \mathcal{D}_{ij,k} =
\]
\[
= \sum_{\text{pairs } i,j,k \neq i,j} -\frac{1}{2p_i \cdot p_j} \left(1, ..., (i\hat{j}), ..., \hat{k}, ..., \mathbf{T}_{k} \cdot \mathbf{T}_{ij} V_{ij,k} |1, ..., (i\hat{j}), ..., \hat{k}, ... \right),
\] (3.5)

where the emitter parton is denoted by \(i\hat{j}\) and the spectator by \(\hat{k}\). Here \(\mathbf{T}_{i}\) denotes the color charge operator \([45]\) for parton \(i\) and \(V_{ij,k}\) is a matrix in the helicity space of the emitter with the correct soft and collinear behavior. \([1, ..., (i\hat{j}), ..., \hat{k}, ... \) is a
vector in color- and helicity space. By subtracting from the real emission part the fake contribution we obtain

\[d\sigma^R - d\sigma^A = d\phi_{n+1} \left[|M(p_1, \ldots, p_{n+1})|^2 \theta_{n+1}^{\text{cut}}(p_1, \ldots, p_{n+1}) \right. \]

\[\left. - \sum_{\text{pairs } i,j \, k \neq i,j} \sum_{k \neq i,j} D_{ij,k}(p_1, \ldots, p_{n+1}) \theta_n^{\text{cut}}(p_1, \ldots, \tilde{p}_{ij}, \ldots, \tilde{p}_k, \ldots, p_{n+1}) \right]. \]

(3.6)

Both \(d\sigma^R \) and \(d\sigma^A \) are integrated over the same \((n + 1)\) parton phase space, but it should be noted that \(d\sigma^R \) is proportional to \(\theta_{n+1}^{\text{cut}} \), whereas \(d\sigma^A \) is proportional to \(\theta_n^{\text{cut}} \). Here \(\theta_n^{\text{cut}} \) denotes the jet-defining function for \(n \)-partons.

The subtraction term can be integrated over the one-parton phase space to yield the term

\[I \otimes d\sigma^B = \int d\sigma^A = \sum_{\text{pairs } i,j \, k \neq i,j} \int d\phi_{\text{dipole}} D_{ij,k}. \]

(3.7)

The universal factor \(I \) still contains color correlations, but does not depend on the unresolved parton \(j \). The term \(I \otimes d\sigma^B \) lives on the phase space of the \(n \)-parton configuration and has the appropriate singularity structure to cancel the infrared divergences coming from the one-loop amplitude. Therefore

\[d\sigma^V + I \otimes d\sigma^B \]

is infrared finite and can easily be integrated by Monte Carlo methods. The explicit forms of the dipole terms \(D_{ij,k} \), together with the integrated counterparts, can be found in Ref. [45] for the massless case.

In order to extend the dipole formalism to massive fermions, we have to provide three ingredients. First, we need the correct subtraction terms for the real emission contribution. Second, we have to integrate these subtraction terms over the dipole phase space. The integrated terms are combined with the virtual corrections. Third, we have to specify a mapping of the momenta, which relates the \((n + 1)\)-parton configuration \(p_1, \ldots, p_i, \ldots, p_j, \ldots, p_k, \ldots, p_{n+1} \) to the \(n \)-parton configuration \(p_1, \ldots, \tilde{p}_{ij}, \ldots, \tilde{p}_k, \ldots, p_{n+1} \).

In order to find appropriate dipole terms, one considers the soft and collinear limits of the matrix element. In the soft limit where the momentum of parton \(j \) becomes soft, the \(m + 1 \)-parton matrix element behaves as

\[\langle 1, \ldots, m + 1 | 1, \ldots, m + 1 \rangle = -4\pi \mu^2 \alpha_s \langle 1, \ldots, m | J^{\mu} J_\mu | 1, \ldots, m \rangle \]

(3.9)

with

\[J^{\mu} J_\mu | 1, \ldots, m \rangle = \left(2 \sum_{i \neq k} \frac{\bar{q}_i q_k}{(2p_ip_j)^2(2p_jp_k)} T_i \cdot T_k + \sum_i \frac{4m_i^2}{(2p_ip_j)^2} T_i \cdot T_i \right) | 1, \ldots, m \rangle \]
3.2 Dipole formalism and factorization in singular limits

\[= 4 \sum_{i \neq k} \left(\frac{2p_ip_k}{(2p_ip_j)(2p_jp_k + 2p_jp_k)} - \frac{m_i^2}{(2p_ip_j)^2} \right) T_i \cdot T_k|1, \ldots, m). \]

(3.10)

We used

\[\frac{2p_ip_k}{(2p_ip_j)(2p_jp_k + 2p_jp_k)} = \frac{2p_ip_k}{(2p_ip_j)(2p_jp_k + 2p_jp_k)} + \frac{2p_ip_k}{(2p_ip_k)(2p_jp_j + 2p_jp_k)} \]

(3.11)

and color conservation

\[\sum_i T_i|1, \ldots, m) = 0. \]

(3.12)

The color charge operators \(T_i \) for a quark, gluon and antiquark in the final state are

- quark: \(\langle \ldots q_i \ldots | T_{ij}^a | \ldots q_j \ldots \rangle \),
- gluon: \(\langle \ldots g^a \ldots | f^{cab} | g^b \ldots \rangle \),
- antiquark: \(\langle \ldots \bar{q}_i \ldots | (-T_{ij}^a) | \ldots \bar{q}_j \ldots \rangle \).

(3.13)

If the particles are massless, there is also a singularity in the collinear limit. For final-state partons the momenta are parameterized as

\[p_i = \hat{z}p + k_\perp \frac{k_\perp^2}{2pn}, \]
\[p_j = (1 - \hat{z})p - k_\perp \frac{k_\perp^2}{1 - \hat{z}2pn}. \]

(3.14)

Here \(n \) is a massless four-vector and the transverse component \(k_\perp \) satisfies \(2pk_\perp = 2nk_\perp = 0 \). The collinear limit occurs for \(k_\perp^2 \rightarrow 0 \). In this limit the matrix element behaves as

\[\langle 1, \ldots, m + 1|1, \ldots, m + 1 \rangle = 4\pi \mu^{2\epsilon} \alpha_s(1, \ldots, m|2p_ip_j \hat{p}_{(ij)l}(\hat{z}, k_\perp, \epsilon)|1, \ldots, m). \]

(3.15)

The splitting functions are given by

\[\langle s| \hat{P}_{qq}(z, k_\perp, \epsilon)|s' \rangle = \delta_{ss'}C_F \left[\frac{2z}{1 - z} + (1 - \rho \epsilon)(1 - z) \right], \]
\[\langle s| \hat{P}_{gq}(z, k_\perp, \epsilon)|s' \rangle = \delta_{ss'}C_F \left[\frac{2(1 - z)}{z} + (1 - \rho \epsilon)z \right], \]
\[\langle \mu| \hat{P}_{gg}(z, k_\perp, \epsilon)|\nu \rangle = T_R \left[-g_{\mu\nu} + 4z(1 - z) \frac{k_\perp^\mu k_\perp^\nu}{k_\perp^2} \right], \]
\[\langle \mu| \hat{P}_{gg}(z, k_\perp, \epsilon)|\nu \rangle = 2C_A \left[-g_{\mu\nu} \left(\frac{1}{1 - z} + \frac{1 - z}{z} \right) - 2(1 - \rho \epsilon)(1 - z) \frac{k_\perp^\mu k_\perp^\nu}{k_\perp^2} \right]. \]

(3.16)
We introduced the parameter ρ, which specifies the variant of dimensional regularization: $\rho = 1$ for the CDR/HV schemes and $\rho = 0$ for the FD scheme. Later on we will chose the dipole terms to have the same soft and collinear behavior as the appropriate limit of the $(n + 1)$-parton matrix element.

If the emitting particle is in the initial state the collinear limit is defined as

$$p_a = p,$$
$$p_i = (1 - x)p + k_\perp - \frac{k_i^2}{1 - x} \frac{n}{2m},$$
$$p_{ai} = xp - k_\perp + \frac{k_i^2}{1 - x} \frac{n}{2m}.$$ \hspace{1cm} (3.17)

The color charge operators for a quark, gluon and antiquark in the initial state are

$$\text{quark : } \langle \ldots q_i \ldots | \left(-T^a_{ji} \right) | \ldots q_j \ldots \rangle,$$
$$\text{gluon : } \langle \ldots g^{i} \ldots | f^{a\beta} | \ldots g^{\beta} \ldots \rangle,$$
$$\text{antiquark : } \langle \ldots q_i \ldots | T^a_{ji} | \ldots q_j \ldots \rangle.$$ \hspace{1cm} (3.18)

We denoted in the amplitude an incoming quark as an outgoing antiquark and vice versa.

3.3 Calculational technique for the integration

The integration of the dipole terms over the dipole phase space is highly non-trivial. We first find a suitable parameterization of the phase space such that all integrals are of one of the following types:

$$\int_0^1 dx x^{a - 1}(1 - x)^{c - a - 1} = \frac{\Gamma(a)\Gamma(c - a)}{\Gamma(c)},$$
$$\int_0^1 dx x^{a - 1}(1 - x)^{c - a - 1}(1 - x_0 x)^{-b} = \frac{\Gamma(a)\Gamma(c - a)}{\Gamma(c)} _2 F_1 (a, b; c; x_0),$$
$$\int_0^1 dx x^{a - 1}(1 - x)^{c - a - 1}(1 - x_1 x)^{-b_1}(1 - x_2 x)^{-b_2} = \frac{\Gamma(a)\Gamma(c - a)}{\Gamma(c)} F_1 (a, b_1, b_2; c; x_1, x_2).$$ \hspace{1cm} (3.19)

These integrals yield the Euler-Beta function, the hypergeometric function and the first Appell function, respectively. The last two are then rewritten as a Taylor series in x_0.
or x_1 and x_2, respectively.

\[2F_1(a, b; c, x_0) = \sum_{n=0}^{\infty} \frac{(a)_n (b)_n x_0^n}{(c)_n n!}, \]
\[F_1(a, b_1, b_2; c; x_1, x_2) = \sum_{m_1=0}^{\infty} \sum_{m_2=0}^{\infty} \frac{(a)_{m_1+m_2} (b_1)_{m_1} (b_2)_{m_2} x_1^{m_1} x_2^{m_2}}{(c)_{m_1+m_2} m_1! m_2!}. \quad (3.20) \]

Here $(a)_n = \Gamma(a + n)/\Gamma(a)$ denotes the Pochhammer symbol. Taylor expansion allows us to perform the next integral, which is of the same type as above. After all integrals have been performed, we end up with multiple sums involving Γ-functions depending on $\varepsilon = (4 - D)/2$. These Γ-functions are then expanded according to

\[
\frac{\Gamma(n + \varepsilon)}{\Gamma(n)} = \varepsilon (1 + \varepsilon Z_1(n - 1) + \varepsilon^2 Z_{11}(n - 1) + \varepsilon^3 Z_{111}(n - 1) + \ldots + \varepsilon^{n-1} Z_{1\ldots 1}(n - 1)),
\]

where $Z_{1\ldots 1}(n)$ are Euler-Zagier sums defined by

\[Z_{m_1,\ldots,m_k}(n) = \sum_{i_1>i_2>\ldots>i_k>0} \frac{1}{i_1^{m_1} i_2^{m_2} \ldots i_k^{m_k}}. \quad (3.22) \]

Rearranging summation indices we recognize that all sums fall in the class of Goncharov’s multiple polylogarithms [67, 68]

\[\text{Li}_{m_k,\ldots,m_1}(x_1,\ldots,x_2,x_1) = \sum_{i_1>i_2>\ldots>i_k>0} \frac{x_1^{i_1} x_2^{i_2} \ldots x_k^{i_k}}{i_1^{m_1} i_2^{m_2} \ldots i_k^{m_k}}. \quad (3.23) \]

In the case with only one massive parton it is actually sufficient to restrict oneself to harmonic polylogarithms [69, 70], defined by

\[H_{m_1,m_2,\ldots,m_k}(x) = \sum_{i_1>i_2>\ldots>i_k>0} \frac{x^{i_1} 1 1 1}{i_1^{m_1} i_2^{m_2} \ldots i_k^{m_k}}. \quad (3.24) \]

The additional dipole corresponding to gluon emission from a massive quark-antiquark system can be expressed in terms of two-dimensional harmonic polylogarithms [71].

3.4 Dipole phase space measure in D dimensions

In this section we derive the appropriate phase space measure for the dipoles with massive particles. Since singularities are regulated by dimensional regularization, this has
to be done in D dimensions. The phase space measure for n particles in D dimensions is given by [72]

$$
d\phi_n(P \rightarrow p_1, \ldots, p_n) = (2\pi)^D \delta^D \left(P - \sum_{i=1}^{n} p_i \right) \prod_{i=1}^{n} \frac{d^D p_i}{(2\pi)^{D-1}} \delta(p_i^0) \delta(p_i^2 - m_i^2)
$$

$$
= (2\pi)^D \delta^D \left(P - \sum_{i=1}^{n} p_i \right) \prod_{i=1}^{n} \frac{d^{D-1} p_i}{(2\pi)^{D-2} E_i}
$$

(3.25)

with

$$
E_i = \sqrt{(p_i^2 + m_i^2)}.
$$

(3.26)

The phase space measure factorizes according to

$$
d\phi_n(P \rightarrow p_1, \ldots, p_n) = \frac{1}{2\pi} d\phi_{n-j+1}(P \rightarrow Q, p_{j+1}, \ldots, p_n) dQ^2 d\phi_j(Q \rightarrow p_1, \ldots, p_j).
$$

(3.27)

3.4.1 Phase space measure with no initial-state particles

We first evaluate the two particle phase space

$$
\int d\phi_2(P \rightarrow \tilde{p}_{ij}, \tilde{p}_k) = \int \frac{d^{D-1} \tilde{p}_{ij}}{(2\pi)^{D-1} 2E_{ij}} \frac{d^{D-1} \tilde{p}_k}{(2\pi)^{D-1} 2E_k} (2\pi)^D \delta^D(P - \tilde{p}_{ij} - \tilde{p}_k)
$$

(3.28)

in the rest frame of P, e.g. $P = (\sqrt{P^2}, 0)$. We obtain

$$
\int d\phi_2(P \rightarrow \tilde{p}_{ij}, \tilde{p}_k)
$$

$$
= (2\pi)^{2-D} \left(\frac{1}{2} \right)^{D-1} (P^2)^{1-D/2} \left(\sqrt{(P^2 - m_{ij}^2 - m_k^2)^2 - 4m_{ij}^2 m_k^2} \right)^{D-3} \int d\Omega_{D-1},
$$

(3.29)

where Ω_{D-1} parameterizes the solid angle of the $(D-1)$ spatial components of \tilde{p}_k in $(D-1)$ (spatial) dimensions. With this convention we have

$$
\int d\Omega_D = \frac{2\pi^{D/2}}{\Gamma(D/2)}.
$$

(3.30)

We then evaluate the three particle phase space

$$
\int d\phi_3(P \rightarrow p_i, p_j, p_k)
$$

$$
= \int \frac{d^{D-1} p_i}{(2\pi)^{D-1} 2E_i} \frac{d^{D-1} p_j}{(2\pi)^{D-1} 2E_j} \frac{d^{D-1} p_k}{(2\pi)^{D-1} 2E_k} (2\pi)^D \delta^D(P - p_i - p_j - p_k)
$$

(3.31)
in the rest frame of P, e.g. $P = (\sqrt{P^2}, 0)$. We shall orient our frame such that
the solid angle of the spatial components of p_k coincides with the solid angle of the
spatial components of \mathbf{p}_k in (3.28). It will be convenient to parameterize the spatial
components of p_i with spherical coordinates, using \mathbf{p}_k as polar axis, e.g.

$$d^{D-1}p_i = |\mathbf{p}_i|^{D-2} d |\mathbf{p}_i| d\theta_1 \sin^{D-3} \theta_1 d\Omega^{(i)}_{D-2}. \quad (3.32)$$

We therefore have

$$2\mathbf{p}_i \cdot \mathbf{p}_k = 2 |\mathbf{p}_i| |\mathbf{p}_k| \cos \theta_1. \quad (3.33)$$

Finally we obtain the three-particle phase space as the product of a two-particle phase
space and a dipole phase space:

$$\int d\phi_3(P \rightarrow p_1, p_j, p_k) = \int d\phi_2(P \rightarrow \mathbf{p}_i, \mathbf{p}_k) d\phi_{\text{dipole}}(2p_ip_j, 2p_jp_k, 2p_ip_k, \Omega^{(i)}_{D-2}), \quad (3.34)$$

where

$$d\phi_{\text{dipole}}(2p_ip_j, 2p_jp_k, 2p_ip_k) = (2\pi)^{1-D} \frac{2\pi^{D/2-1}}{\Gamma(\frac{D}{2} - 1)} \frac{1}{4} \left(P^2 - m_i^2 - m_k^2 \right)^{\frac{3-D}{2}} \left(P^2 - m_i^2 - m_k^2 - 2p_ip_j - 2p_jp_k \right)\left(-P^2 \lambda \left(|\mathbf{p}_i|^2, |\mathbf{p}_j|^2, |\mathbf{p}_k|^2 \right) \right)^{\frac{D-4}{2}} \theta \left(-\lambda \left(|\mathbf{p}_i|^2, |\mathbf{p}_j|^2, |\mathbf{p}_k|^2 \right) \right). \quad (3.35)$$

Note that we already performed the angular integration over $d\Omega^{(i)}_{D-2}$. The triangle
function λ is defined by

$$\lambda(x, y, z) = x^2 + y^2 + z^2 - 2xy - 2yz - 2xz. \quad (3.36)$$

We further have

$$|\mathbf{p}_i|^2 = \frac{1}{4P^2} \left(P^2 + m_i^2 + m_k^2 - 2p_ip_j \right)^2 - m_i^2, \quad (3.37)$$

so that

$$-P^2 \lambda \left(|\mathbf{p}_i|^2, |\mathbf{p}_j|^2, |\mathbf{p}_k|^2 \right) = 2p_ip_k2p_ip_j2p_jp_k - m_i^2 (2p_ip_j)^2 - m_k^2 (2p_jp_k)^2 - m_j^2 (2p_ip_k)^2 + 4m_i^2 m_j^2 m_k^2. \quad (3.38)$$
To find a suitable parametrization of the dipole phase space, we treat the various cases separately. We consider first the case where two particles are massless $m_i = m_j = 0$. With $D = 4 - 2\varepsilon$ the dipole phase space becomes

$$d\phi_{\text{dipole}} = \frac{(4\pi)^{\varepsilon - 2}}{\Gamma(1 - \varepsilon)} \left(P^2 \right)^{1-\varepsilon} \left(u_0 \right)^{2-2\varepsilon} \cdot \int_0^1 du u^{1-2\varepsilon} (1 - u)^{1-2\varepsilon} (1 - u_0 u)^{-1+\varepsilon} \int_0^1 dv v^{-\varepsilon} (1 - v)^{-\varepsilon}, \quad (3.39)$$

where

$$u_0 = \frac{P^2 - m_k^2}{P^2},$$

$$u = \frac{2p_ip_j + 2p_jp_k}{2p_ip_j + 2p_ip_j + 2p_jp_k} = \frac{2p_ip_j + 2p_jp_k}{P^2 - m_k^2},$$

$$v = \frac{2p_ip_j (2p_ip_k + m_k^2)}{2p_ip_k (2p_ip_j + 2p_jp_k)} = \frac{2p_ip_j (2p_ip_k + m_k^2)}{2p_ip_k (P^2 - m_k^2 - 2p_ip_k)}. \quad (3.40)$$

In the case where one mass vanishes ($m_j = 0$) and the other two are equal ($m_i = m_k = m$) we obtain

$$d\phi_{\text{dipole}} = \frac{(4\pi)^{\varepsilon - 2}}{\Gamma(1 - \varepsilon)} \left(P^2 \right)^{1-\varepsilon} (r_0)^{2-2\varepsilon} 2^{2\varepsilon - 1} \cdot \int_0^1 dr r^{1-2\varepsilon} (1 - r)^{-\varepsilon + 1/2} (1 - r_0 r)^{-1/2} \int_1^1 ds (1 - s^2)^{-\varepsilon}, \quad (3.41)$$

with

$$r_0 = 1 - \frac{4m^2}{P^2},$$

$$2p_ip_j = \frac{1}{2} P^2 r_0 r \left(1 - s \sqrt{\frac{r_0 (1 - r)}{1 - r_0 r}} \right),$$

$$2p_jp_k = \frac{1}{2} P^2 r_0 r \left(1 + s \sqrt{\frac{r_0 (1 - r)}{1 - r_0 r}} \right). \quad (3.42)$$

3.4.2 Phase space involving initial state particles

If initial state particles are involved, we obtain the following convolution:

$$d\phi(p_a + p_b \rightarrow K + p_k + p_i) = \int_0^1 dx d\phi^1(\tilde{p}_a + p_b \rightarrow K + \tilde{p}_k) d\phi_{\text{dipole}} \quad (3.43)$$
3.5 Dipole terms with no initial-state partons

with
\[\tilde{p}_a = x p_a. \] \hfill (3.44)

In the case \(m_a = m_t = 0 \) we obtain

\[
d\phi_{\text{dipole}} = \frac{(4\pi)^{\varepsilon-2}}{\Gamma(1-\varepsilon)} (\varepsilon P^2)^{1-\varepsilon} x_0^{1-\varepsilon} x^{1+\varepsilon} (1-x)^{1-2\varepsilon} (1-x_0 x)^{-1+\varepsilon} \int_0^1 dw w^{-\varepsilon} (1-w)^{-\varepsilon}
\]

with \(P = p_k + p_t - p_a \) and

\[
x_0 = \frac{-P^2}{m_k^2 - P^2}, \quad x = \frac{2p_a p_t + 2p_a p_k - 2p_t p_k}{2p_a p_t + 2p_a p_k}, \quad w = \frac{2p_a p_t (2p_t p_k + m_k^2)}{2p_t p_k (2p_a p_t + 2p_a p_k)}. \] \hfill (3.45)

Eq. (3.43) and eq. (3.45) are derived as follows: From the factorization of phase space we have

\[
d\phi(p_a + p_b \rightarrow K + p_k + p_t) = \frac{1}{2\pi} d\phi(p_a + p_b \rightarrow K + Q) dm_Q^2 d\phi(Q \rightarrow p_t + p_k).
\] \hfill (3.47)

We then derive

\[
d\phi(p_a + p_b \rightarrow K + Q) = xd\phi(\tilde{p}_a + p_b \rightarrow K + \tilde{p}_k).
\] \hfill (3.48)

This equation can be obtained by writing out the explicit expressions for the phase space measures in the rest frame of \(p_a + p_b \) and \(\tilde{p}_a + p_b \), respectively. These two frames are related by a boost. Further, since \(\tilde{p}_a = x p_a \), the boost does not affect the transverse components. Next, one writes out the parameterization for \(d\phi(Q \rightarrow p_t + p_k) \) in terms of solid angles of particle \(p_k \), singles out one angle \(\theta_1 = \zeta(p_k, p_a) \) and replaces the integrations over \(dm_Q^2 d\cos \theta_1 \) by integrations over \(dx dw \).

\section*{3.5 Dipole terms with no initial-state partons}

In this section we give the dipole factors corresponding to the case where all relevant partons are in the final state. Initial-state partons are considered in the next section. We distinguish the cases of (i) a massless emitter and massive spectator, (ii) a massive
emitter and a massless spectator and (iii) a massive emitter and a massive spectator of equal mass. We follow closely the notation of Catani and Seymour [45].

The generic form of the dipole terms is given by

$$D_{ij,k} = -\frac{1}{2p_i \cdot p_j} \langle 1, \ldots, (i_j), \ldots, \tilde{k}, \ldots \rangle \frac{T_k \cdot T_{ij} V_{ij,k}}{T_{ij}^2} \langle 1, \ldots, (i_j), \ldots, \tilde{k}, \ldots \rangle. \quad (3.49)$$

The explicit forms of the functions $V_{ij,k}$ are given below.

3.5.1 Massless final emitter, massive final spectator

We consider first the case of massless emitter (particle i) and a massive spectator (particle k), both in the final state. The variables y and z of Catani and Seymour are given by

$$y = \frac{2p_i p_j}{2p_i p_j + 2p_j p_k + 2p_i p_k}, \quad z = \frac{2p_i p_k}{2p_i p_j + 2p_j p_k} \quad (3.50)$$

and related to the variables u and v as follows:

$$y = \frac{u_0 u}{1 - u_0 u}, \quad u_0 = 1 - \frac{m_k^2}{(p_i + p_j + p_k)^2}$$

$$z(1 - y) = 1 - u. \quad (3.51)$$

In the collinear limit eq.(3.14) we have

$$y \to 0, \quad z \to \tilde{z} \quad (3.52)$$

and in the soft limit $p_j \to 0$

$$y \to 0, \quad z \to 1. \quad (3.53)$$

In addition, the subtraction term for the splitting $g \to gg$ has to match the soft limit $p_i \to 0$, corresponding to $y \to 0$, $z \to 0$.

As subtraction terms we use

$$\langle s|V_{g,q,k}|s'\rangle = 8\pi\alpha_s C_F \delta_{s's} \left[\frac{2z(1 - y)}{1 - z(1 - y)} + (1 - \rho\varepsilon)(1 - z(1 - y)) \right],$$

$$\langle \mu|V_{g,q,k}|\nu\rangle = 8\pi\alpha_s T_R \left[-g^{\mu\nu} - \frac{4}{2p_i p_j} S^{\mu\nu} \right],$$

$$\langle \mu|V_{g,q,k}|\nu\rangle = 16\pi\alpha_s C_A \left[-g^{\mu\nu} \left(\frac{z(1 - y)}{1 - z(1 - y)} + \frac{(1 - z)(1 - y)}{1 - (1 - z)(1 - y)} \right) \right.$$

$$+ (1 - \rho\varepsilon) \frac{2}{2p_i p_j} S^{\mu\nu} \right], \quad (3.54)$$
where the spin correlation tensor is given by
\[
S_{\mu\nu} = (z(1-y)p_\mu^\nu - (1-z(1-y))p_\mu^\nu) (z(1-y)p_\nu^\nu - (1-z(1-y))p_\nu^\nu).
\] (3.55)

The momenta are mapped as follows:
\[
\begin{align*}
\tilde{p}_i & = a p_i + b p_j + c p_k, \\
\tilde{p}_k & = (1-a)p_i + (1-b)p_j + (1-c)p_k,
\end{align*}
\] (3.56)

with
\[
\begin{align*}
c & = \frac{yu_0}{(2u - 1 - y(1-u))^2 u_0 + 4u(1-u)y} \left(2u(1-u) - \frac{N}{\sqrt{1-v}} \right), \\
b & = \frac{1}{N} \left\{ u + c \frac{yu_0}{y u_0} \left[-2yu - u_0 \left((1-2u-u^2)y + 1 - 3u + 2u^2 \right) \right] \right\}, \\
a & = \frac{1}{N} \left\{ 1 - u - c \frac{yu_0}{yu_0} \left[2y(1-u) - u_0 \left((1-u)y^2 + (1-u-2u^2)y + u - 2u^2 \right) \right] \right\}, \\
N & = u^2 + (1-u)^2 + (1-u)y.
\end{align*}
\] (3.57)

This mapping satisfies momentum conservation
\[
\tilde{p}_i + \tilde{p}_k = p_i + p_j + p_k,
\] (3.58)

and the on-shell conditions
\[
\tilde{p}_i^2 = 0, \quad \tilde{p}_k^2 = m_k^2.
\] (3.59)

In the limit \(y \to 0 \) we have
\[
\lim_{y \to 0} \tilde{p}_i = p_i + p_j, \quad \lim_{y \to 0} \tilde{p}_k = p_k.
\] (3.60)

In addition we have
\[
S_{\mu\nu} \tilde{p}_i^\nu = 0,
\] (3.61)

e.g. \(\tilde{p}_i \) is orthogonal to the spin correlation tensor. The integral over the spin correlation can be written as
\[
\int d\phi_{dipole} \frac{-2}{(2p_i p_j)^2} S_{\mu\nu} = C_{21} \tilde{p}_i^\mu \tilde{p}_j^\nu + C_{22} \tilde{p}_k^\mu \tilde{p}_k^\nu + C_{23} (\tilde{p}_i^\mu \tilde{p}_j^\nu + \tilde{p}_k^\mu \tilde{p}_i^\nu) + C_{24} g^{\mu\nu}.
\] (3.62)

Using \(S_{\mu\nu} \tilde{p}_i^\nu = 0 \) and \(\tilde{p}_i^2 = 0 \) this reduces to
\[
C_{21} \tilde{p}_i^\mu \tilde{p}_j^\nu - C_{24} \left(-g^{\mu\nu} + 2 \frac{\tilde{p}_i^\mu \tilde{p}_j^\nu + \tilde{p}_k^\mu \tilde{p}_i^\nu}{2 \tilde{p}_i \tilde{p}_k} \right).
\] (3.63)
Due to gauge invariance only the term $-C_{24}(-g^{\mu\nu})$ will give a non-vanishing contribution. C_{24} is obtained by contracting with $g_{\mu\nu}$:

$$C_{24} = \frac{1}{2(1-\rho^2)} \int d\phi_{dipole} \frac{-2}{(2p_i p_j)^2} g_{\mu\nu} S_{\mu\nu}^{\epsilon}. \quad (3.64)$$

Integration of the subtraction terms yields:

$$V_{q,g,k} = \int d\phi_{dipole} \frac{1}{2p_i p_j} V_{q,g,k} = \frac{\alpha_s}{2\pi \Gamma(1-\varepsilon)} \left(\frac{4\pi \mu^2 P^2}{(P^2 - m_k^2)^2} \right)^\varepsilon V_{qg}(u_0, \varepsilon).$$

Integration of the subtraction term yields:

$$V_{qg}(u_0, \varepsilon) = C_F \delta_{s's'} \int_0^1 du \int_0^1 dv u^{-2\varepsilon} (1-u)^{-2\varepsilon} (1-u_0 u)^{-1-\varepsilon}(1-v)^{-\varepsilon} \left[2 \frac{1-u}{u} + (1-\rho \varepsilon) u \right]$$

$$= C_F \delta_{s's'} \frac{\Gamma(-\varepsilon) \Gamma(1-\varepsilon)}{\Gamma(1-2\varepsilon)} \Gamma(2-2\varepsilon) \left[2 \frac{\Gamma(-2\varepsilon)}{\Gamma(2-4\varepsilon)} (1-2\varepsilon; 2-4\varepsilon; u_0) \right] + \Gamma(1-2\varepsilon) \Gamma(3-4\varepsilon) (1-2\varepsilon; 3-4\varepsilon; u_0)$$

$$= C_F \delta_{s's'} \left[\frac{1}{\varepsilon^2} + \frac{3}{2\varepsilon} + \frac{17}{4} + \frac{1}{2} \frac{5}{\rho^2} \frac{\pi^2}{6} + \frac{1}{2} \frac{1}{2u_0} + \frac{1}{2} \frac{(1-u_0)(1-3u_0)}{u_0^2} \ln(1-u_0) \right]$$

$$= 2 \ln(2)(u_0) + O(\varepsilon),$$

$$V_{q,q,k} = \int d\phi_{dipole} \frac{1}{2p_i p_j} V_{q,q,k} = \frac{\alpha_s}{2\pi \Gamma(1-\varepsilon)} \left(\frac{4\pi \mu^2 P^2}{(P^2 - m_k^2)^2} \right)^\varepsilon V_{qq}(u_0, \varepsilon).$$

Integration of the subtraction term yields:

$$V_{q,q}(u_0, \varepsilon) = \int_0^1 du \int_0^1 dv u^{-2\varepsilon} (1-u)^{-2\varepsilon} (1-u_0 u)^{-1-\varepsilon}(1-v)^{-\varepsilon} \left[2 \frac{1-u}{u} + (1-\rho \varepsilon) u \right]$$

$$= T_R(-g^{\mu\nu}) \frac{\Gamma(-\varepsilon) \Gamma(1-\varepsilon)}{\Gamma(1-2\varepsilon)} \left[\frac{\Gamma(1-2\varepsilon)^2}{\Gamma(2-4\varepsilon)} (1-2\varepsilon; 2-4\varepsilon; u_0) \right]$$

$$= T_R(-g^{\mu\nu}) \left[- \frac{2}{3\varepsilon} - \frac{13}{6} + \frac{1}{3} \frac{1}{\rho^2} + \frac{2}{3} \frac{(1-u_0)}{u_0^2} \right]$$

$$+ \frac{1}{3} \frac{(1-u_0)(2u_0^2 - u_0 + 2)}{u_0^2} \ln(1-u_0) + \text{gauge terms} + O(\varepsilon),$$

$$V_{g,g,k} = \int d\phi_{dipole} \frac{1}{2p_i p_j} V_{g,g,k} = \frac{\alpha_s}{2\pi \Gamma(1-\varepsilon)} \left(\frac{4\pi \mu^2 P^2}{(P^2 - m_k^2)^2} \right)^\varepsilon V_{gg}(u_0, \varepsilon),$$
\[V_{yy}(u_0, \varepsilon) = 2C_A \int_0^1 du \int_0^1 dv u^{-2\varepsilon}(1-u)^{-2\varepsilon}(1-u_0 u)^{\varepsilon} v^{-1-\varepsilon}(1-v)^{-\varepsilon} \cdot \frac{1-u}{u} + \frac{u}{1-u} - \frac{u}{(1-u)(1-u_0 u(1-v))} \right) + \left(1 - \rho \varepsilon\right) \frac{2}{2p_i p_j} S^{\mu\nu} \]

\[= 2C_A (-g^{\mu\nu}) \frac{\Gamma(-\varepsilon) \Gamma(1-\varepsilon)}{\Gamma(1-2\varepsilon)} \left[\frac{\Gamma(-2\varepsilon) \Gamma(2-2\varepsilon)}{\Gamma(2-4\varepsilon)} \right] \left(2F_1(-\varepsilon, -2\varepsilon, 2 - 4\varepsilon, u_0) + \frac{\Gamma(2-2\varepsilon)^2}{\Gamma(4-4\varepsilon)} 2F_1(-\varepsilon, 2-2\varepsilon, 4-4\varepsilon, u_0) \right) \]

\[+ 2C_A (-g^{\mu\nu})(-u_0) \frac{\Gamma(1-\varepsilon) \Gamma(-2\varepsilon)}{\Gamma(-\varepsilon)} \]

\[\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{\Gamma(n+1-\varepsilon)}{\Gamma(n+2-2\varepsilon)} \frac{\Gamma(m+n+2-2\varepsilon)}{\Gamma(m+n+2-4\varepsilon)} \frac{\Gamma(m-\varepsilon)}{m!} u_0^{n+m} + \text{gauge terms} \]

\[= 2C_A (-g^{\mu\nu})(-u_0) \frac{\Gamma(1-\varepsilon) \Gamma(-2\varepsilon)}{\Gamma(-\varepsilon)} \]

\[\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{\Gamma(n+1-\varepsilon)}{\Gamma(n+2-2\varepsilon)} \frac{\Gamma(m+n+2-2\varepsilon)}{\Gamma(m+n+2-4\varepsilon)} \frac{\Gamma(m-\varepsilon)}{m!} u_0^{n+m} + \text{gauge terms} + O(\varepsilon). \]

\section*{3.5.2 Massive final emitter, massless final spectator}

We now consider the case of a massive emitter (particle \(k \)) and a massless spectator (particle \(i \)). It is sufficient to consider the case where a heavy quark (or antiquark) emits a gluon. We now have

\[y = \frac{2p_j p_k}{2p_i p_j + 2p_j p_k + 2p_i p_k}, \quad z = \frac{2p_j p_k}{2p_i p_j + 2p_j p_k} \quad (3.66) \]

and

\[y = u \left(1 - \frac{(1-u)u_0}{1-u_0 u} \right), \quad u_0 = 1 - \frac{m_k^2}{(p_i + p_j + p_k)^2} \]

\[z(1-y) = 1 - u. \quad (3.67) \]

The momenta are mapped as follows:

\begin{align*}
\text{emitter:} & \quad \hat{p}_k = p_k + p_j - \frac{y}{1-y} p_i, \\
\text{spectator:} & \quad \hat{p}_i = \frac{1}{1-y} p_i. \quad (3.68)
\end{align*}
Since there is no collinear singularity, we just have to match the part of the soft singularity which corresponds to this dipole factor:

$$\langle s|V_{q,k,j,i}|s'\rangle = 8\pi\mu^2\alpha_sC_F\delta_{ss'}\left[\frac{2\varepsilon(1-y)}{1-z(1-y)} - 2\left(\frac{1-u_0}{u_0}\right)\frac{1}{y}\right].$$ \hspace{1cm} (3.69)

With

$$v_0 = \frac{u_0(1-u)}{1-u_0u}$$ \hspace{1cm} (3.70)

we obtain for the integral over the dipole phase space

$$\mathcal{V}_{q,k,j,i} = \int d\phi_{\text{dipole}} \frac{1}{2p_jp_k} V_{q,k,j,i} = \frac{\alpha_s}{2\pi} \frac{1}{\Gamma(1-\varepsilon)} \left(\frac{4\pi\mu^2P^2}{(P^2-m_k)^2}\right)^\varepsilon \mathcal{V}_{Qg}(u_0,\varepsilon),$$ \hspace{1cm} (3.71)

$$\mathcal{V}_{Qg}(u_0,\varepsilon) = C_F\delta_{ss'} \cdot 2\int_0^1 du \int_0^1 dv u^{-2\varepsilon-1}(1-u)^{-2\varepsilon}(1-u_0u)^{-1}$$

$$v^{-\varepsilon}(1-v)^{-\varepsilon}(1-v_0v)^{-1}\left[u_0(1-u) - (1-u_0)(1-v_0v)^{-1}\right]$$

$$= C_F\delta_{ss'} \cdot 2\Gamma(1-\varepsilon) \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{\Gamma(m+2\varepsilon)\Gamma(n+m+1-\varepsilon)}{\Gamma(n+m+2-4\varepsilon)} \left(\frac{n+2-2\varepsilon}{n+m+2-4\varepsilon}\right)\frac{u_0^{n+m}}{m!}$$

$$\cdot \left[\frac{1}{\varepsilon} (1+\ln(1-u_0)) + 4 + \ln(1-u_0) - 4\text{Li}_2(u_0) - \frac{1}{2}\ln^2(1-u_0)\right]$$

$$+ O(\varepsilon).$$ \hspace{1cm} (3.72)

Here we used

$$\sum_{i_1=2}^{\infty} \sum_{i_2=1}^{i_1-1} \frac{u_0^{i_1}}{i_1 i_2} = \text{Li}_{1,1}(1,u_0) = H_{11}(u_0) = \frac{1}{2}\ln^2(1-u_0),$$

$$\sum_{i_1=2}^{\infty} \sum_{i_2=1}^{i_1-1} \frac{u_0^{i_1}}{i_2} = \text{Li}_{1,0}(1,u_0) = \frac{u_0}{1-u_0}\ln(1-u_0).$$ \hspace{1cm} (3.73)

3.5.3 Massive final emitter and massive final spectator of equal mass

We now consider the case of a massive emitter (particle i) and a massive spectator (particle k) of equal mass ($m_i = m_k = m$). It is sufficient to consider the case where
a heavy quark (or antiquark) emits a gluon. Since there is no collinear singularity, we just have to match the part of the soft singularity which corresponds to this dipole factor:

$$\langle s|V_{q,g,k}|s'\rangle = \frac{8\pi \mu^2 \alpha_s C_F \delta_{ss'}}{r_0 r \sqrt{(1-r)(1-r_0 r)}} \left[\frac{1}{2p_i p_j + 2p_j p_k - 2m^2} \right]^{2m^2} \left[\frac{2p_i p_k}{2p_i p_j + 2p_j p_k} - \frac{m^2}{2p_i p_j} \right]$$

$$= \frac{8\pi \mu^2 \alpha_s C_F \delta_{ss'}}{r_0 r \sqrt{(1-r)(1-r_0 r)}} \left[\frac{1}{2(1-r_0 r) - (1-r_0) - \frac{1-r_0}{1-s_0 s}} \right],$$

(3.74)

where

$$r = \frac{2p_i p_j + 2p_j p_k}{2p_i p_j + 2p_j p_k + 2p_k p_k - 2m^2},$$

$$s = \frac{1}{2p_i p_j - 2p_j p_k},$$

$$s_0 = \sqrt{\frac{r_0 (1-r)}{1-r_0 r}}, \quad r_0 = 1 - \frac{4m^2}{(p_i + p_j + p_k)^2}. \quad (3.75)$$

The singularity occurs for $r \to 0$. In this limit, the expression in the square root tends to 1. The inclusion of the square root term facilitates the analytic integration of the dipole term. The momenta are mapped as follows:

$$\tilde{p}_i = \frac{1}{2} P - \sqrt{\frac{r_0}{y_0 (1-r_0)}} \left(p_k - \frac{y_0 P}{2} \right),$$

$$\tilde{p}_k = \frac{1}{2} P + \sqrt{\frac{r_0}{y_0 (1-r_0)}} \left(p_k - \frac{y_0 P}{2} \right), \quad (3.76)$$

with $P = p_i + p_j + p_k$ and

$$y_0 = \frac{2p_i p_k + 2p_j p_k + 2m^2}{P^2}. \quad (3.77)$$

This mapping satisfies the on-shell conditions $\tilde{p}_i^2 = \tilde{p}_k^2 = m^2$. In the soft limit y_0 tends to 1 and the correct asymptotic behavior of the mapping is easily verified. Integration yields:

$$V_{q,g,k} = \int d\phi_{\text{dipole}} \frac{1}{2p_i p_j} V_{q,g,k} = \frac{\alpha_s}{2\pi \Gamma(1-\varepsilon)} \left(\frac{4\pi \mu^2}{P^2} \right)^\varepsilon V_{QQ}(r_0, \varepsilon), \quad (3.78)$$
\[\mathcal{V}_{QS}(r_0, \varepsilon) = r_0^{-2\varepsilon} 2^{2\varepsilon} \int_0^1 \frac{d\tau\tau^{-2\varepsilon-1}(1-\tau)^{-\varepsilon}}{(1-r_0\tau)^{-1}} \int_{-1}^{1} \frac{ds(1-s^2)^{-\varepsilon}}{} \]

\[C_F \delta_{qs'} \left[(2(1-r_0)-I_1(1-s_0^r))(1-s_0^s)^{-1} - (1-r_0)(1-s_0^s)^{-2}\right] \]

\[= C_F \delta_{qs'} \frac{1}{1-\varepsilon} 2^{2\varepsilon} r_0^{2\varepsilon} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sum_{i+k+j} (-1)^i (1+(-1)^j) r_0^{k+j/2} \]

\[\Gamma(1+i+j)\Gamma(2-\varepsilon)\Gamma(i+\varepsilon)\Gamma(k+j/2)\Gamma(k-2\varepsilon)\Gamma(1+j/2-\varepsilon) \]

\[\frac{\Gamma(2+i+j-\varepsilon)}{\Gamma(2+j-\varepsilon)} \Gamma(\varepsilon)\Gamma(j/2) \Gamma(k+j/2+1-3\varepsilon)k! \]

\[\left[2 - (1-r_0)(2+j)\frac{j+2k}{j}\right] \]

\[= C_F \delta_{qs'} \left\{ \frac{1}{\varepsilon} \left(1-\frac{1}{2} r_0 \ln \frac{1+\sqrt{r_0}}{1-\sqrt{r_0}} \right) - 2 \ln r_0 \right. \]

\[- \ln^2 \left(1 + \frac{\sqrt{r_0}}{2} \right) + \frac{1}{\sqrt{r_0}} \ln \left(1 + \frac{\sqrt{r_0}}{1-\sqrt{r_0}} \right) \]

\[- \frac{1}{2} \frac{r_0}{\sqrt{r_0}} \left(\text{Li}_2(\sqrt{r_0}) - \text{Li}_2(-\sqrt{r_0}) + 2 \text{Li}_2 \left(\frac{1+\sqrt{r_0}}{2}\right) \right) \]

\[- 2 \text{Li}_2 \left(\frac{1-\sqrt{r_0}}{2}\right) + \frac{\sqrt{r_0}-1}{2\sqrt{r_0}} - \text{Li}_2 \left(\frac{1+\sqrt{r_0}}{2}\right) \]

\[+ \text{Li}_2 \left(\frac{1}{1+\sqrt{r_0}}\right) - \text{Li}_2 \left(1-\frac{\sqrt{r_0}}{1+\sqrt{r_0}}\right) \]

\[- 2 \ln r_0 \ln \left(1 + \frac{\sqrt{r_0}}{1-\sqrt{r_0}} \right) + \ln 2 \ln \frac{\sqrt{r_0}}{1+\sqrt{r_0}} + \frac{1}{2} \ln^2 2 \]

\[+ \ln(1-\sqrt{r_0}) \ln \left(1 + \frac{\sqrt{r_0}}{\sqrt{r_0}}\right) + \frac{1}{2} \ln^2(1+\sqrt{r_0}) - \frac{1}{2} \ln^2(1-\sqrt{r_0}) \right\} \]

\[+ O(\varepsilon). \] (3.79)

Here we used

\[\sum_{i_1=2, i_2=1}^{i_1-1} \frac{x_1^{i_1} x_2^{i_2}}{i_1 i_2} = \text{Li}_{1,1}(x_2, x_1) \]

\[= \ln(1-x_1) \ln(1-x_2) + \text{Li}_2 \left(-\frac{x_2}{1-x_2}\right) - \text{Li}_2 \left(-\frac{x_2(1-x_1)}{1-x_2}\right) \]

\[= -\frac{1}{2} \ln^2(1-x_1 x_2) + \ln(x_2(1-x_1)) \ln(1-x_1 x_2) - \text{Li}_2 \left(\frac{1-x_2}{1-x_1 x_2}\right) \]

\[+ \text{Li}_2 \left(1-x_2\right). \]

\[\sum_{i_1=2, i_2=1}^{i_1-1} \frac{x_1^{i_1} x_2^{i_2}}{i_2} = \text{Li}_{1,0}(x_2, x_1) = -\frac{x_1}{1-x_1} \ln(1-x_1 x_2), \]
3.6 Dipole terms with initial-state partons

In this section we consider initial-state partons. We distinguish the cases of (i) a massless emitter in the initial state and massive spectator in the final state, (ii) a massive emitter in the final state and a massless spectator in the initial state. The generic form of the dipole terms for case (i) is given by

$$D_{ki}^{ai} = -\frac{1}{2p_i \cdot p_k x} \langle 1,...,(a),...,\tilde{k},... | T_{k}^{ai} | 1,...,(a),...,\tilde{k},... \rangle. \quad (3.81)$$

In case (ii) we have

$$D_{ki}^{ai} = -\frac{1}{2p_i \cdot p_k x} \langle 1,...,(\tilde{k}),...,\tilde{a},... | T_{k}^{ai} | 1,...,(\tilde{k}),...,\tilde{a},... \rangle. \quad (3.82)$$

The explicit forms of the functions V_{k}^{ai} and V_{ki}^{ai} are given below.

3.6.1 Massless initial emitter, massive final spectator

We now consider the case of a massless emitter (particle a) in the initial state and a massive spectator (particle k) in the final state. The variables u and x of Catani and Seymour are given by

$$u = \frac{2p_a p_k}{2p_p p_a + 2p_k p_a}, \quad x = \frac{2p_p p_a + 2p_k p_a - 2p_p p_k}{2p_p p_a + 2p_k p_a}. \quad (3.83)$$

The variables u and w are related by

$$u = \frac{1 - x}{1 - x_0 x}, \quad x_0 = 1 - \frac{m_k^2}{m_k^2 - (p_k + p_i - p_a)^2}. \quad (3.84)$$

As subtraction terms we use

$$\langle s|V_{k}^{q_a a_i}|s'\rangle = 8\pi \mu^{2}\alpha_{s} C_{F} \delta_{s's} \left[\frac{2}{1 - x + u} - (1 + x) - \rho \varepsilon (1 - x) \right],$$

$$\langle s|V_{k}^{q_{a} q_{i}}|s'\rangle = 8\pi \mu^{2}\alpha_{s} T_{R} \delta_{s's} \left[1 - \rho \varepsilon - 2x(1 - x) \right],$$

$$\langle \mu|V_{k}^{q a q_{i}}|\nu\rangle = 8\pi \mu^{2}\alpha_{s} C_{F} \left[-g_{\mu\nu} x + 2 x(1 - x) \frac{1 - x}{2p_{i} q} \right],$$

$$\langle \mu|V_{k}^{q_{q} q_{a}}|\nu\rangle = 16\pi \mu^{2}\alpha_{s} C_{A} \left[-g_{\mu\nu} \left(\frac{1}{1 - x + u} - 1 + x(1 - x) \right) \right. \left. + 2(1 - \rho \varepsilon) \frac{(1 - x)(1 - r)}{x} \frac{1 - x}{2p_{i} q} \right], \quad (3.85)$$
with
\[S^{\mu \nu} = \left(\frac{1}{r} p_i^\mu - \frac{1}{1 - r} q^\mu \right) \left(\frac{1}{r} p_k^\nu - \frac{1}{1 - r} q^\nu \right). \] (3.86)

Here \(q \) is an arbitrary null vector not equal to \(p_i \) and
\[r = \frac{2p_ip_a}{2p_ip_a + 2qp_a}. \] (3.87)

The momenta are mapped as follows:
\[\tilde{p}_a = xp_a, \]
\[\tilde{p}_k = p_k + p_i - (1 - x)p_a. \] (3.88)

This mapping satisfies momentum conservation
\[\tilde{p}_k - \tilde{p}_a = p_k + p_i - p_a, \] (3.89)

and the on-shell conditions
\[\tilde{p}_a^2 = 0, \quad \tilde{p}_k^2 = m_k^2. \] (3.90)

The desired asymptotic behavior
\[\lim_{u \to 0} \tilde{p}_a = xp_a, \quad \lim_{u \to 0} \tilde{p}_k = p_k \] (3.91)

is fulfilled. In addition we have
\[S_{\mu \nu} \tilde{p}_a^\nu = 0, \] (3.92)

c.e. \(\tilde{p}_a \) is orthogonal to the spin correlation tensor. We start with the integration of \(V_{qq}^{t q_0 q_0} \). We obtain
\[V_{qq}^{t q_0 q_0} = \int d\phi_{dipole} \frac{1}{2p_ip_a} V_{qq}^{t q_0 q_0} = \alpha_s \frac{1}{2\pi \Gamma(1 - \varepsilon)} \left(\frac{4\pi \mu^2}{m_k^2 - P^2} \right) \varepsilon V_{qq}(x, x_0, \varepsilon), \]
\[V_{qq}(x, x_0, \varepsilon) = x^\varepsilon(1 - x)^{-2\varepsilon} \int_0^1 dw w^{-\varepsilon - 1}(1 - w)^{-\varepsilon}, \]
\[C_F \delta_{ss'} \left[\frac{2}{1 - x + u} - (1 + x) - \rho \varepsilon(1 - x) \right] \]
\[= C_F \delta_{ss'} x^\varepsilon(1 - x)^{-2\varepsilon}(1 - x_0 x)^\varepsilon \frac{\Gamma(-\varepsilon) \Gamma(1 - \varepsilon)}{\Gamma(1 - 2\varepsilon)} \]
\[\cdot \left(\frac{2}{1 - x} F_1 \left(1, -\varepsilon; 1 - 2\varepsilon; \frac{-1}{1 - x_0 x} \right) - (1 + x) - \rho \varepsilon(1 - x) \right). \] (3.93)
\(V^q_q \) is a distribution in \(x \). In order to obtain expressions which are integrable at \(x = 1 \) we rewrite

\[
(1 - x)^{-2\varepsilon - 1} = (1 - x)^{-2\varepsilon - 1} \bigg|_+ + \delta(1 - x) \int_0^1 dy (1 - y)^{-2\varepsilon - 1},
\]

where

\[
(1 - x)^{-2\varepsilon - 1} \bigg|_+ = \frac{1}{1 - x} \bigg|_+ - 2\varepsilon \frac{\ln(1 - x)}{1 - x} \bigg|_+ + O(\varepsilon^2).
\]

In order to expand the hypergeometric function we use the analytical continuation formula [73]

\[
\begin{align*}
2F_1(a, b; c; -x) &= (x)^{-a} \frac{\Gamma(c) \Gamma(b - a)}{\Gamma(b) \Gamma(c - a)} 2F_1 \left(a, 1 + a - c; 1 + a - b; \frac{-1}{x} \right) \\
&+ (x)^{-b} \frac{\Gamma(c) \Gamma(a - b)}{\Gamma(a) \Gamma(c - b)} 2F_1 \left(b, 1 + b - c; 1 + b - a; \frac{-1}{x} \right),
\end{align*}
\]

where \(|\arg x| < \pi\).

We obtain

\[
\begin{align*}
V^q_q(x, x_0, \varepsilon) &= C_R \delta_{ss'} \left[-\frac{1}{\varepsilon} \left(\frac{2}{1 - x} \bigg|_+ - (1 + x) \right) + \rho(1 - x) \\
&+ \delta(1 - x) \left(\frac{1}{\varepsilon^2} + \frac{1}{\varepsilon} \ln(2 - x_0) + \frac{\pi^2}{6} + 2 \ln(1 - x_0) \ln(2 - x_0) + 2 \ln(1 - x_0) - 1 \right) \\
&- \frac{1}{2} \ln^2(2 - x_0) - 2 \ln(x + 2 \ln(2 - x_0x)) \left(\frac{1}{1 - x} \bigg|_+ \right) + 4 \ln(1 - x) \bigg|_+ \\
&+ (1 + x) (\ln x + 2 \ln(1 - x) + \ln(1 - x_0x))] + O(\varepsilon).
\end{align*}
\]

For the integration of the other dipole terms we proceed in a similar way and we obtain

\[
\begin{align*}
V^{\gamma_0 q_1}_k &= \int d\phi_{dipole} \frac{1}{2p_1 p_0} \frac{n_s(q)}{n_s(g)} V^{\gamma_0 q_1}_k = \frac{\alpha_s}{2\pi} \frac{1}{\Gamma(1 - \varepsilon)} \left(\frac{4\pi^2}{m_k^2 - P^2} \right)^\varepsilon V^{q q}(x, x_0, \varepsilon),
\end{align*}
\]

\[
\begin{align*}
V^{q q}(x, x_0, \varepsilon) &= x^\varepsilon (1 - x)^{-2\varepsilon} (1 - x_0x)^\varepsilon \int_0^1 dw w^{-\varepsilon - 1} (1 - w)^{-\varepsilon} T_R \delta_{ss'} \frac{1 - \rho \varepsilon - 2x(1 - x)}{1 - \rho \varepsilon} \\
&= T_R \delta_{ss'} x^\varepsilon (1 - x)^{-2\varepsilon} (1 - x_0x)^\varepsilon \frac{\Gamma(-\varepsilon) \Gamma(1 - \varepsilon)}{\Gamma(1 - 2\varepsilon)} \frac{1 - \rho \varepsilon - 2x(1 - x)}{1 - \rho \varepsilon}.
\end{align*}
\]
\[V_{k}^{q_{0}q} = \int d\phi_{\text{dipole}} \left(\frac{1}{2p_{l}q_{s}} \right) V_{k}^{q_{0}q} = \frac{\alpha_{s}}{2\pi \Gamma(1-\varepsilon)} \left(\frac{4\pi \mu^{2}}{m_{k}^{2} - P^{2}} \right)^{\varepsilon} V^{q_{0}q}(x,x_{0},\varepsilon), \]

\[V^{gg}(x,x_{0},\varepsilon) = x^{\varepsilon}(1-x)^{-2\varepsilon}(1-x_{0}x)^{\varepsilon} \int_{0}^{1} dw w^{-\varepsilon-1}(1-w)^{-\varepsilon} \]

\[C_{F} \left[-g^{\mu\nu} x + 4 \frac{1 - x}{x} \frac{r(1-r)}{2p_{l}q} S^{\mu\nu} \right] (1 - \rho \varepsilon) \]

\[= C_{F} \left[-g^{\mu\nu} \frac{\Gamma(-\varepsilon)\Gamma(1+\varepsilon)}{\Gamma(1-2\varepsilon)} x^{\varepsilon}(1-x)^{-2\varepsilon}(1-x_{0}x)^{\varepsilon} \right] \]

\[\left(x + \frac{2}{1 - \rho \varepsilon} \frac{1 - x}{x} \right) (1 - \rho \varepsilon) \]

+ gauge terms

\[= C_{F} \left[-g^{\mu\nu} \left(-\frac{1}{\varepsilon} \left(x + 2 \frac{1 - x}{x} \right) + \rho x - \left(x + 2 \frac{1 - x}{x} \right) \ln x - 2 \ln(1 - x) \right. \right. \]

\[+ \ln(1 - x_{0}x)) \]

\[+ \text{gauge terms + } O(\varepsilon), \]

\[(3.99) \]

\[V_{k}^{g_{0}g_{1}} = \int d\phi_{\text{dipole}} \left(\frac{1}{2p_{l}p_{a}} \right) V_{k}^{g_{0}g_{1}} = \frac{\alpha_{s}}{2\pi \Gamma(1-\varepsilon)} \left(\frac{4\pi \mu^{2}}{m_{k}^{2} - P^{2}} \right)^{\varepsilon} V^{g_{0}g_{1}}(x,x_{0},\varepsilon), \]

\[V^{gg}(x,x_{0},\varepsilon) = x^{\varepsilon}(1-x)^{-2\varepsilon}(1-x_{0}x)^{\varepsilon} \int_{0}^{1} dw w^{-\varepsilon-1}(1-w)^{-\varepsilon} \]

\[C_{A} \left[-g^{\mu\nu} \left(1 - \frac{1}{1 - x + u} - 1 + x - x^{2} \right) + 2(1 - \rho \varepsilon) \frac{1 - x}{x} \frac{r(1-r)}{2p_{l}q} S^{\mu\nu} \right] \]

\[= 2C_{A} \left[-g^{\mu\nu} \left(1 - x \right)^{-2\varepsilon} \right] \frac{\Gamma(-\varepsilon)\Gamma(1+\varepsilon)}{\Gamma(1-2\varepsilon)} \frac{1}{1 - x_{0}x} \]

\[\cdot \left[\frac{1}{1 - x} 2F_{1} \left(1, -\varepsilon; 1 + 2\varepsilon; \frac{1 - x}{1 - x_{0}x} \right) - 1 + x - x^{2} + \frac{1 - x^{2}}{x} \right] \]

+ gauge terms

\[= 2C_{A} \left[-g^{\mu\nu} \left[-\frac{1}{\varepsilon} \left(1 \right) \frac{1}{1 - x} \right]_{+} - (\ln x + \ln(2 - x_{0}x)) \right] \left(\frac{1}{1 - x} \right)_{+} + 2 \frac{\ln(1 - x)}{1 - x} \]
3.6 Dipole terms with initial-state partons

\[+ \left(\frac{1}{\varepsilon} + \ln x - 2\ln(1 - x) + \ln(1 - x_0 x) \right) \left(1 - x + x^2 - \frac{1 - x}{x} \right) \]
\[+ \delta(1 - x) \left(\frac{1}{2\varepsilon^2} + \frac{\pi^2}{12} + \frac{1}{2\varepsilon} \ln(2 - x_0) + \ln(1 - x_0) \ln(2 - x_0) + \text{Li}_2(x_0 - 1) \right) \]
\[- \frac{1}{4} \ln^2(2 - x_0) \right] + \text{gauge terms} + O(\varepsilon). \quad (3.100) \]

Here \(n_s(q) = 2 \) denotes the polarizations of a fermion and \(n_s(g) = 2(1 - \rho \varepsilon) \) denotes the polarizations of a gluon. Note that the dependence on the momentum \(q \) in \(\mathcal{V}_{kqg}^q \) and \(\mathcal{V}_{kqg}^{qg} \) dropped out after integration.

3.6.2 Massive final emitter, massless initial spectator

We now consider the case of a massive emitter (particle \(k \)) in the final state and a massless spectator (particle \(a \)) in the initial state. It is sufficient to consider the case where a heavy quark (or antiquark) emits a gluon. The variables \(z \) and \(x \) of Catani and Seymour are given by

\[z = \frac{2p_k p_a}{2p_i p_a + 2p_k p_a}, \quad x = \frac{2p_i p_a + 2p_k p_a - 2p_i p_k}{2p_i p_a + 2p_k p_a}. \quad (3.101) \]

The variables \(z \) and \(w \) are related by

\[z = 1 - \frac{1 - x}{1 - x_0 x} w, \quad x_0 = 1 - \frac{m_k^2}{m_k^2 - (p_k + p_i - p_a)^2}. \quad (3.102) \]

Since there is no collinear singularity, we just have to match the part of the soft singularity which corresponds to this dipole factor:

\[\langle s| V_{qsg}^a | s' \rangle = 8\pi \mu^{2\varepsilon} \alpha_s C_F \delta_{ss'} \frac{2}{1 + (1 - x)} - 2(1 - x_0) \frac{x^2}{1 - x}. \quad (3.103) \]

We use the same mapping for the momenta as in the previous section:

\[\hat{p}_a = x p_a, \]
\[\hat{p}_k = p_k + p_i - (1 - x)p_a. \quad (3.104) \]

This mapping fulfills the asymptotic behavior

\[\lim_{2p_k p_i \to 0} x = 1, \quad \lim_{2p_k p_i \to 0} \hat{p}_k = p_k + p_i, \quad \lim_{2p_k p_i \to 0} \hat{p}_a = p_a. \quad (3.105) \]

Integration yields

\[\mathcal{V}_{qsg}^a = \int d\phi_{dipole} \frac{1}{2p_i p_k} V_{qsg}^a = \frac{\alpha_s}{2\pi} \frac{1}{1 - \varepsilon} \left(\frac{4\pi \mu^2}{m_k^2 - P^2} \right)^\varepsilon \mathcal{V}_{Qg}(x, x_0, \varepsilon), \]
\[\mathcal{V}_{Qg}(x, x_0, \varepsilon) \]
\[= x^\varepsilon (1 - x)^{-2\varepsilon} (1 - x_0 x)^{\varepsilon - 1} \int_0^1 dw w^{-\varepsilon} (1 - w)^{-\varepsilon} \]
\[C_F \left[\frac{2}{1 - z + (1 - x)} - 2(1 - x_0) \frac{x^2}{1 - x} \right] \]
\[= C_F \delta_{s's'} x^\varepsilon (1 - x)^{-2\varepsilon} (1 - x_0 x)^{\varepsilon - 1} \frac{\Gamma(1 - \varepsilon)^2}{\Gamma(2 - 2\varepsilon)} \]
\[\cdot \left(\frac{2}{1 - x} \binom{1}{1 - \varepsilon} \binom{1 - \varepsilon; 2 - 2\varepsilon; \frac{-1}{1 - x_0 x}}{1 - x_0 x} - 2(1 - x_0) \frac{x^2}{1 - x} \right) \]
\[= C_F \delta_{s's'} \left[\delta(1 - x) \left(\frac{1}{\varepsilon} \left(1 + \ln(1 - x_0) - \ln(2 - x_0) \right) + 2 - \frac{\pi^2}{3} + \ln(1 - x_0) \right) \right. \]
\[\left. + \frac{1}{2} \ln^2(1 - x_0) + \frac{1}{2} \ln^2(2 - x_0) - 2 \ln(1 - x_0) \ln(2 - x_0) - 2 \text{Li}_2(x_0 - 1) \right] \]
\[+ 2 \left(\ln(2 - x_0 x) - \ln(1 - x_0 x) - \frac{(1 - x_0)x^2}{1 - x_0 x} \right) \left(\frac{1}{1 - x} \right) \right) \]
\[+ O(\varepsilon^0). \quad (3.106) \]

3.7 Conclusions

In this chapter we have extended the dipole formalism to processes involving heavy fermions. We gave the explicit subtraction terms, together with a mapping of the momenta from the \((n + 1)\)-parton configuration to the \(n\)-parton configuration. We evaluated the integrals of the subtraction terms over the dipole phase space to order \(O(\varepsilon^0)\). These ingredients are sufficient to set up numerical NLO programs based on the dipole formalism for processes involving heavy fermions. This we will now do in the next chapter for single-top production.