Clinical relevance and refinement of the sentinel node procedure in breast cancer and melanoma
Estourgie, S.H.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
CHAPTER 6

LYMPHATIC DRAINAGE PATTERNS OF THE BREAST

Susanne H Estourgie*, Omgo E Nieweg*, Renato A Valdés Olmos‡, Emiel JTh Rutgers*, Bin BR Kroon*

Departments of Surgery* and Nuclear Medicine‡, The Netherlands Cancer Institute/ Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands

CHAPTER 6

INTRODUCTION

The existence of lymphatic drainage of the breast to axillary and extra-axillary sites has been known for centuries. Interest in drainage patterns of breast cancer, however, is growing since the introduction of the sentinel node procedure. Lymphatic mapping allows visualization and identification of sentinel nodes and the possibility to document the drainage patterns. The aim of this study was to describe the drainage patterns in all breast cancer patients who underwent a sentinel node procedure at our institute. Our intratumoral tracer injection technique enables accurate visualization of drainage from the actual primary tumors.

MATERIALS AND METHODS

Between January 1997 and June 2002, 691 cN0 breast cancer patients underwent 700 sentinel node biopsy procedures at The Netherlands Cancer Institute. Nine patients had a bilateral tumor and 152 patients had a non-palpable tumor. Pathologic proof of breast cancer was routinely obtained by core biopsy or fine needle aspiration. The primary tumor was still present in all patients.

A two-day protocol was used. On the day before surgery, \(^{99m}\)Tc-nanocolloid (Nanocoll®, Amersham Cygne, Eindhoven, the Netherlands) was injected into the lesion in a mean volume of 0.2 ml and a mean radioactivity dose of 107.7 MBq (2.8 mCi). In case of non-palpable breast cancer, the intratumoral injection was guided by ultrasound or stereotaxis. Static imaging was performed at 30 minutes and four hours post-injection. A dual-head gamma camera (ADAC Vertex®, Milpitas, California, U.S.A.) was used. Since July 1999, additional views were obtained after two hours. Both anterior and lateral images were obtained. The location of the node was marked on the skin with indelible ink. Patent blue dye (Laboratoire Guerbet, Aulnay-Sous-Bois, France) and a gamma ray detection probe (Neoprobe®, Johnson & Johnson Medical, Hamburg, Germany) were used to identify the sentinel node. All procedures were performed by one of four experienced surgeons or under their supervision by a resident or fellow. A hot spot on the lymphoscintigram was considered to be a sentinel node either if an afferent lymphatic channel was visualized or the hot spot was the first one seen in a sequential pattern, or the hot spot was the only one depicted. An afferent blue lymphatic vessel coming directly from the tumor also defined a node as the sentinel node. The sentinel node regions suggested by lymphoscintigraphy were verified intraoperatively.

Patient characteristics and both lymphoscintigraphic and surgical results were recorded prospectively. Only patients with drainage from the tumor, either visualized during lymphoscintigraphy or identified during operation, were included in the study. The patients were divided in five groups according to the location of the primary breast cancer: upper outer quadrant (UOQ), upper inner quadrant (UIQ), lower outer quadrant (LOQ), lower inner quadrant (LIQ) and center (C). In each group, an extra distinction was made between palpable and non-palpable lesions of the breast. The \(\chi^2 \)-test was performed to evaluate differences in drainage between various patient groups.

RESULTS

In 22 of the 700 procedures, no drainage was observed. The drainage patterns of the remaining 678 patients from each ‘quadrant’ of the breast towards the axilla (level I and II), the internal mammary chain, the lateral and medial intramammary regions, the interpectoral region and to the subclavicular (level III) and supraclavicular regions are shown in Figures 1 through 5. The
drainage pattern of all 678 patients combined is presented in Figure 6. In case of drainage to the internal mammary chain region, the intercostal space location of that sentinel node is given in the sub-figures D. Table 1 shows the drainage towards the axilla and the internal mammary chain region. Both palpable and non-palpable lesions may drain towards the internal mammary chain, although the latter more frequently, regardless of the quadrant ($P=0.001$). Non-palpable lesions in the UOQ, UIQ and LIQ have less often drainage to the axilla compared with the palpable breast lesions. All lesions from the center drain to the axilla. The outer quadrants show drainage to the internal mammary chain in 14.4%, which is less than the inner quadrants (37.4%, $P<0.001$).

The drainage patterns for each ‘quadrant’ in all 700 patients are shown in detail in Table 2.

Table 1. The drainage from the five ‘quadrants’ towards the axilla and the internal mammary chain region in the 678 patients.

<table>
<thead>
<tr>
<th></th>
<th>All lesions</th>
<th>Palpable lesions</th>
<th>Non-palpable lesions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Axillaa (%)</td>
<td>IMC (%)</td>
<td>Axillaa (%)</td>
</tr>
<tr>
<td>UOQ</td>
<td>95.8</td>
<td>10.4</td>
<td>97.7</td>
</tr>
<tr>
<td>UIQ</td>
<td>93.1</td>
<td>32.4</td>
<td>94.1</td>
</tr>
<tr>
<td>LOQ</td>
<td>97.7</td>
<td>29.5</td>
<td>97.1</td>
</tr>
<tr>
<td>LIQ</td>
<td>88.0</td>
<td>52.0</td>
<td>91.7</td>
</tr>
<tr>
<td>C</td>
<td>100</td>
<td>23.7</td>
<td>100</td>
</tr>
</tbody>
</table>

IMC = internal mammary chain; UOQ = upper outer quadrant; UIQ = upper inner quadrant; LOQ = lower outer quadrant; LIQ = lower inner quadrant; C = center.

Table 2. The drainage patterns of all 700 patients among the five groups.

<table>
<thead>
<tr>
<th></th>
<th>UOQ</th>
<th>UIQ</th>
<th>LOQ</th>
<th>LIQ</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of patients</td>
<td>343</td>
<td>155</td>
<td>90</td>
<td>52</td>
<td>60</td>
</tr>
<tr>
<td>Non-palpable lesions (%)</td>
<td>22.2</td>
<td>18.7</td>
<td>22.2</td>
<td>28.8</td>
<td>20.0</td>
</tr>
<tr>
<td>No drainage (%)</td>
<td>2.0</td>
<td>5.8</td>
<td>2.2</td>
<td>1.9</td>
<td>1.7</td>
</tr>
<tr>
<td>Only axillary drainage (%)</td>
<td>78.4</td>
<td>61.9</td>
<td>55.6</td>
<td>42.3</td>
<td>65.0</td>
</tr>
<tr>
<td>Axillary and IMC drainage (%)</td>
<td>6.4</td>
<td>21.9</td>
<td>18.9</td>
<td>32.7</td>
<td>20.0</td>
</tr>
<tr>
<td>Axillary and Clavicular/Interval drainage (%)</td>
<td>9.0</td>
<td>1.3</td>
<td>13.3</td>
<td>3.8</td>
<td>10.0</td>
</tr>
<tr>
<td>Only IMC drainage (%)</td>
<td>1.5</td>
<td>2.6</td>
<td>1.1</td>
<td>5.8</td>
<td>0.0</td>
</tr>
<tr>
<td>IMC and Clavicular/Interval drainage (%)</td>
<td>0.0</td>
<td>1.9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Only Clavicular/Interval drainage (%)</td>
<td>0.3</td>
<td>0.6</td>
<td>0.0</td>
<td>1.9</td>
<td>0.0</td>
</tr>
<tr>
<td>Axillary, IMC and Clavicular/Interval drainage (%)</td>
<td>2.3</td>
<td>3.9</td>
<td>8.9</td>
<td>11.5</td>
<td>3.3</td>
</tr>
</tbody>
</table>

IMC = internal mammary chain; Clavicular = subclavicular and infraclavicular; Interval = interpectoral, lateral intramammary and medial intramammary; UOQ = upper outer quadrant; UIQ = upper inner quadrant; LOQ = lower outer quadrant; LIQ = lower inner quadrant; C = center.
Figure 1. Drainage pattern from the upper outer quadrant. A=all breast lesions, B=palpable breast lesions, C=non-palpable breast lesions, D=intercostal space location of the sentinel node in case of drainage to the internal mammary chain region, arrow=interpectoral region.
Figure 2. Drainage pattern from the upper inner quadrant. A=all breast lesions, B=palpable breast lesions, C=non-palpable breast lesions, D=intercostal space location of the sentinel node in case of drainage to the internal mammary chain region, arrow=interpectoral region.
Figure 3. Drainage pattern from the lower outer quadrant. A=all breast lesions, B= palpable breast lesions, C= non-palpable breast lesions, D= intercostal space location of the sentinel node in case of drainage to the internal mammary chain region, arrow= interpectoral region.
Figure 4. Drainage pattern from the lower inner quadrant. A=all breast lesions, B=palpable breast lesions, C=non-palpable breast lesions, D=intercostal space location of the sentinel node in case of drainage to the internal mammary chain region, arrow=interpectoral region.
Figure 5. Drainage pattern from the center. A=all breast lesions, B=palpable breast lesions, C=non-palpable breast lesions, D=intercostal space location of the sentinel node in case of drainage to the internal mammary chain region. arrow=interpectoral region.
Figure 6. Drainage pattern from the whole breast. A=all breast lesions, B=palpable breast lesions, C=non-palpable breast lesions, D=intercostal space location of the sentinel node in case of drainage to the internal mammary chain region, arrow=interpectoronal region.
DISCUSSION

This study describes lymphatic drainage pathways from the breast. An advantage of our technique of intratumoral tracer administration is that it allows visualization of lymph drainage from the actual breast cancers. The small volumes that were injected limit the risk of disturbing the normal physiology. Sentinel node biopsy was always performed with the primary tumor still present, so there was no risk of disruption of lymphatics. Several observations were made. In addition to the axilla and the internal mammary node chain, drainage occurs to other locations in and around the breast in a substantial percentage of the patients. Non-palpable tumors drain more frequently to the internal mammary chain, irrespective of the quadrant. The LIQ has less drainage to the axilla compared to the other quadrants, but more to the internal mammary chain. The lateral side of the breast often drains to the internal mammary chain as well (10-30%).

We have described our hypothesis on the finding of more extra-axillary drainage in non-palpable breast cancer patients in a recent study. In that study, the percentage of visualized extra-axillary sentinel nodes in non-palpable breast cancer patients was 43% and differed significantly from the visualization rate in palpable tumors (24%). Anatomical studies dealing with the arrangement of the breast lymphatics show that internal mammary nodes and interpectoral nodes are supplied by retromammarian lymphatics. These lymphatics arise from the breast lobules, run on the surface of the pectoral fascia and accompany penetrating blood vessels on their way through the pectoral and intercostal muscles. The finding that a deep tracer injection in particular will visualize extra-axillary sentinel nodes supports the observation that deep lymphatics from the dorsal part of the breast drain to these nodes. Deeper located tumors are less accessible to palpation. So, the depth of the tumor may be the explanation of the difference in drainage to extra-axillary sentinel nodes between palpable and non-palpable lesions.

Lymphatic drainage patterns from various regions of the breast have been studied once before the sentinel node era. In 1972, Vendrell-Toorde and coworkers used an intraparenchymal radioactive gold administration and a conventional scanner that depicts less detail than the now ubiquitous gamma cameras. Their study performed in normal individuals without breast cancer showed frequent drainage to the internal mammary chain. Tracer administered in the LOQ traveled there in 36% of the cases and for the LOQ this was 64%. The LIQ drained even more frequently to the internal mammary nodes than to the axilla, 86% vs. 68%. Vendrell-Toorde and coworkers did not observe drainage to intramammary or interpectoral nodes, perhaps due to the primitive equipment that was used at the time and the lack of intraoperative confirmation of the exact location of the sentinel node seen on the scan.

The development of lymphatic mapping has generated a renewed interest in drainage patterns because a sentinel node may be located outside the axilla. Paganelli and others have shown that tracer administration deep in the parenchyma of the inner quadrants travels to internal mammary nodes in 66% of the cases, whereas these nodes are seen in just 10% when the tracer is administered in an outer quadrant. Drainage to nodes elsewhere around the breast was not observed. Byrd and coworkers also found that 10% of UOQ's drain to the internal mammary chain. For the LOQ, UIQ and LIQ these percentages were 27, 17 and 25 respectively. No nodes outside the axilla or the internal mammary chain were described. Uren and others found drainage to sentinel nodes outside the axilla in a surprisingly high 56%.

The clinical relevance of extra-axillary sentinel nodes is being debated. Some investigators have taken it upon them to pursue these nodes and to take their tumor-status into account when making a treatment plan. Our group has shown that these nodes can be harvested in 84% of the patients and they led us to modify the treatment plan in 20% of these patients. Other surgeons
are following suit and the current study may increase their awareness of where to expect sentinel nodes.11-16

REFERENCES

