Mesoscopic Computational Haemodynamics

Artoli, A.M.M.

Publication date
2003

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Bibliography


Bibliography


uber die Wellen tropfbarer Flussigkeiten mit Anwendung auf die Schall-und 


[208] Womersley JR (1955b): Method for calculation of velocity, rate of flow and vis-
cous drag in arteries when the pressure gradient is known. Journal of Physiol-
ogy 127: 553–563.

estic tube-I: The linear approximation for long waves. Philosophical Magazine 
46 199–221.


Reducing risks, promoting healthy life. World Health Organization. 
http://www.who.int/whr/en/

[212] Yeleswarapu KK(1996): Evaluation of continuum model for characterizing the 

blood in tubes - theory and experiment. Mechanics Research Communications 
25: 257–262.

[214] Young T (1809): On the functions of the heart and arteries. The Croonian lect-

viscous fluid flows. International Journal for Numerical Methods in Fluids 39: 
99–120.

[216] Zamir M (1977): The role of shear forces in arterial branching. Journal of Gen-
eral Physiology 67:213–222.

703.


[219] Zou Q, He X (1997): On pressure and velocity boundary conditions for the lattice 
