Photoinduced processes in dendrimers
Dirksen, A.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Table of Contents

Chapter 1 Shining Light on Dendrimers
1. Introduction
1.1 The Purposes behind the Development of Photoactive Dendrimers
1.2 Dendrimers as Luminescent Materials
1.2.1 Interchromophoric Interactions in Periphery-Functionalized Dendrimers
1.2.2 Core-Functionalized Dendrimers
1.2.3 Self-Organized Fluorescent Dendritic Materials
1.3 Photoisomerization of Azobenzene-Containing Dendrimers
1.4 Energy Transfer
1.4.1 Excitation Energy Transfer among Chromophores at the Periphery
1.4.2 Light-Harvesting (Antenna Effect)
1.4.3 Single Molecule Spectroscopy (SMS)
1.5 Photoinduced Electron Transfer (PET)
1.5.1 (Organic) Light Emitting Diodes ((O)LEDs)
1.6 Summary and Outlook
1.7 Scope and Contents of this Thesis
1.8 References

Chapter 2 The Photoactivity and pH Sensitivity of Methyl Orange-Functionalized Poly(propyleneamine) Dendrimers
2.1 Introduction
2.2 Results and Discussion
2.2.1 Photophysical Properties
2.2.2 Isomerization
2.2.3 pH Sensitivity
2.3 Conclusions
2.4 Experimental Section
2.4.1 Materials
2.4.2 Synthesis
Table of Contents

2.4.3 UV-Vis Absorption and Fluorescence Spectroscopy 58
2.4.4 pH Sensitivity 58
2.4.5 Kinetics of the Z to E Isomerization 58
2.5 References 59

Chapter 3 Ultrafast Photoinduced Electron Transfer across Hydrogen Bonds of a Self-Assembled Donor-Acceptor System 61

3.1 Introduction 62
3.2 Results and Discussion 64
3.2.1 Synthesis and Characterization of Guest and Host Molecules 64
3.2.2 Photophysical Properties of BAR_r-H1 and G2 64
3.2.3 Characterization of PF_6-H1-G2 in Acetonitrile-d_3 by ^1H NMR 65
3.2.4 Diffusion Ordered NMR Spectroscopy (DOSY) 66
3.2.5 Photophysical Study for BAR_r-H1-G2 67
3.3 Conclusions 72
3.4 Experimental Section 74
3.4.1 Solvents and Starting Materials 74
3.4.2 Synthesis 74
3.4.3 Instrumentation 77
3.4.4 Determination of the Association Constant (K_{ass}) of PF_6-H1-G2 in Acetonitrile-d_3 78
3.4.5 Determination of the Association Constant (K_{ass}) of BAR_r-H1-G2 in CH_2Cl_2 78
3.5 References and Notes 79

Chapter 4 Multiple Recognition of Barbiturate Guests by "Hamilton" Receptor-Functionalized Dendrimers 83

4.1 Introduction 84
4.2 Results and Discussion 87
4.2.1 Synthesis and Characterization of the HR-dendrimers 87
4.2.2 Determination of the Association Constants (K_{ass}) 88
4.2.3 Photophysical Properties of G0 and the HR-Dendrimers ($\text{Gx}; x = 1, 2, 3, 4$) 89
4.2.4 Energy Transfer in the Gx-B2 ($x = 0, 1, 2, 3, 4$) Complex 92
4.2.5 Competition Experiment between B2 and B1 96
4.3 Conclusions 96
4.4 Experimental 97
4.4.1 Synthesis 97
Table of Contents

4.4.2 Instrumentation 97
4.4.3 Determination of the Quantum Yields of Emission 98
4.4.4 Determination of the Binding Constant of B1 to G0 Using 1H NMR Spectroscopy 98
4.4.5 Determination of the Binding Constant of B2 to G0 Using Fluorescence Spectroscopy 98
4.4.6 Energy Transfer Study of Gx (x = 1, 2, 3, 4) with B2 98
4.4.7 Competition Experiment between B1 and B2 98
4.4.8 Deprotonation of B2 by the Poly(propyleneamine) Core 98
4.5 References 99

Chapter 5 Simultaneous Selective Binding of Different Guests within Dendrimers: towards Well-Defined Functional Supramolecular Assemblies 103

5.1 Introduction 104
5.2 Results and Discussion 105
5.2.1 Design of the Dendritic Template 105
5.2.2 Synthesis and Characterization of the Guest Molecules 107
5.2.3 Selective Binding of Guests in Model Systems 109
5.2.4 Characterization of the Assemblies Formed between the HR-Dendrimers and the Fluorinated Urea Guest Molecules by NMR Spectroscopy 111
5.2.5 Characterization of the Host-Guest Complex between the HR-Dendrimers, AQ, and Barbital Using NMR Spectroscopy 119
5.2.6 Approach for the Construction of the Photoactive Assembly 122
5.2.7 Photophysical Properties of the Host-Guest Complex \text{G2-4AQ-2[Re(Br)(CO)$_3$(barbi-bpy)]} 123
5.3 Conclusions 125
5.4 Experimental 126
5.4.1 Solvents and Starting Materials 126
5.4.2 Synthesis 126
5.4.3 Instrumentation 131
5.4.4 NMR study of the Fluorinated Guest Molecules 131
5.4.5 NMR Study of AQ 132
5.4.6 Photophysical Study of the Host-Guest Complex \text{G2-4AQ-2[Re(Br)(CO)$_3$(barbi-bpy)]} 132
5.5 References and Notes 133
<table>
<thead>
<tr>
<th>Table of Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix</td>
<td>137</td>
</tr>
<tr>
<td>Summary</td>
<td>143</td>
</tr>
<tr>
<td>Samenvatting</td>
<td>149</td>
</tr>
<tr>
<td>Samenvatting voor niet-chemici</td>
<td>155</td>
</tr>
<tr>
<td>Dankwoord</td>
<td>161</td>
</tr>
</tbody>
</table>