Synthetic antimicrobial peptides delocalize membrane bound proteins thereby inducing a cell envelope stress response


DOI
10.1016/j.bbamem.2018.06.005

Publication date
2018

Document Version
Final published version

Published in
Biochimica et Biophysica Acta Biomembranes

License
CC BY-NC-ND

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
Synthetic antimicrobial peptides delocalize membrane bound proteins thereby inducing a cell envelope stress response

Soraya Omardien, Jan W. Drijfhout, Henk van Veen, Soraya Schachtschabel, Martijn Riol, Leendert W. Hamoen, Stanley Brul, Sebastian A.J. Zaat

Swammerdam Institute for Life Sciences, Department of Molecular Biology and Microbial Food Safety, University of Amsterdam, Amsterdam, The Netherlands
Leiden University Medical Centre (LUMC), Leiden University, Leiden, The Netherlands
Department Central Electron-Microscopy, Academic Medical Centre, Amsterdam, The Netherlands
Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
Swammerdam Institute for Life Sciences, Department of Bacterial Cell Biology and Physiology, University of Amsterdam, Amsterdam, The Netherlands

ABSTRACT

Keywords:
- Amphipathic peptides
- Cell envelope stress
- Membrane bound proteins
- Membrane perturbation
- Thrombocidin-1 derivatives
- BPI derivative

Background: Three amphipathic cationic antimicrobial peptides (AMPs) were characterized by determining their effect on Gram-positive bacteria using Bacillus subtilis strain 168 as a model organism. These peptides were TC19 and TC84, derivatives of thrombocidin-1 (TC-1), the major AMPs of human blood platelets, and Bactericidal Peptide 2 (BP2), a synthetic designer peptide based on human bactericidal permeability increasing protein (BPI).

Methods: To elucidate the possible mode of action of the AMPs we performed a transcriptomic analysis using microarrays. Physiological analyses were performed using transmission electron microscopy (TEM), fluorescence microscopy and various B. subtilis mutants that produce essential membrane bound proteins fused to green fluorescent protein (GFP).

Results: The transcriptome analysis showed that the AMPs induced a cell envelope stress response (cell membrane and cell wall). The cell membrane stress response was confirmed with the physiological observations that TC19, TC84 and BP2 perturb the membrane of B. subtilis. Using B. subtilis mutants, we established that the cell wall stress response is due to the delocalization of essential membrane bound proteins involved in cell wall synthesis. Other essential membrane proteins, involved in cell membrane synthesis and metabolism, were also delocalized due to alterations caused by the AMPs.

Conclusions: We showed that peptides TC19, TC84 and BP2 perturb the membrane causing essential proteins to delocalize, thus preventing the possible repair of the cell envelope after the initial interference with the membrane.

General significance: These AMPs show potential for eventual clinical application against Gram-positive bacterial cells and merit further application-oriented investigation.

1. Introduction

Due to an increase in antimicrobial resistance development, effort has been placed on understanding the means by which bacteria acquire resistance and to search for new antimicrobials. To address the latter, antimicrobial peptides (AMPs) have been proposed as a potential novel class of antibiotics [1, 2]. AMPs are thought to reduce the chances of resistance development due to their non-specific rapid membrane targeting effect [2]. However, the non-specific activity of AMPs can cause an increase in toxicity to mammalian cells [1, 2]. Additionally, AMPs have a low bioavailability, are prone to protease degradation, and the production cost is higher than for classical antimicrobials [1, 2]. Furthermore, reports have been made of pathogenic bacteria that have shown to develop resistance against natural AMPs [3]. Thus, rational design of AMPs has been employed with the intention of developing cost effective highly active short peptides with simple structures. Naturally occurring peptides or proteins are used as a starting point for peptide design, for example peptidomimetic POL7080 derived from protegrin 1 (PG-I) [4], semi-synthetic NVB302 derived from deoxyyactagardine B [5], P113 derived from histatin 5 [6] and Omiganan derived from indolicidin [7].

To understand the distinctive attributes of AMPs that lead to their
efficient antimicrobial activity, efforts are placed in determining the mode of action of designed peptides. For this study, peptides TC19 and TC84, derived from thrombocidin-1 (TC-1) [8], and the designer peptide BP2 [9] were selected. Peptide TC19 and TC84 were derived from the N-terminal end of TC-1 and were modified to improve their antimicrobial activity compared to the native peptide [8]. TC19 and TC84 only differ by one amino acid, i.e. a cysteine (C) was replaced by an alanine (A) near the C-terminal end, resulting in an increase in stability of TC84 in 100% human plasma compared to TC19 [8]. Both TC19 and TC84 showed antimicrobial activity against Staphylococcus aureus [8]. Peptide TC19 further showed to be a broad spectrum antimicrobial by being active against Staphylococcus epidermidis, Pseudomonas aeruginosa, and an extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli [8]. TC19 has antifungal activity against Aspergillus niger and Candida albicans, and has anti-biofilm activity against S. aureus [8]. BP2 was fashioned through molecular modelling and rational design based on the LPS-binding domains of bactericidal permeability increasing protein (BPI) [9]. BP2 has shown to be active against both Gram-positive and -negative bacteria [9–11].

All three peptides are predicted to share common features such as their amphipathic nature and cationic charge but differ in amino acid sequence. Noticeably, TC84 contained one alpha-helix promoting alanine residue [12, 13] and BP2 two. In this study, we aimed to determine the mode of action of TC19, TC84 and BP2 using the Gram-positive bacterium Bacillus subtilis. We expected to observe a related stress response between the TC peptides, but different from the response seen upon exposure to BP2. We found TC19, TC84 and BP2 to be active in the micro-molar range against B. subtilis. Our transcriptomic analysis showed that both the cell membrane and cell wall were targeted, which we confirmed during the physiological observations. We found that TC19, TC84 and BP2 perturbed the membrane of B. subtilis cells in a concentration dependent manner without directly damaging the cell wall. This lead to the delocalization of essential proteins involved in cell wall synthesis, cell membrane synthesis and metabolism contributing to the envelope stress. Minor differences in the stress response between the TC peptides and the BP2 peptide were observed.

2. Materials and methods

2.1. AMP information, strains used and the culturing conditions

TC19 (LRCMCIKWWSGKHKP), TC84 (LRAMCIKWWSGKHPK) and BP2 (GKWKLFFKAKFKFLKIL) were dissolved in 0.01% acetic acid and stored at −20 °C. Stocks were thawed on ice prior to experiments. Bacillus subtilis strains used in the study can be found in Table S1. B. subtilis cultures were prepared in complete minimal medium (CMM). This medium contained Spizizen's Minimal Medium (SMM), as described in Anagnostopoulos & Spizizen (1961) [14], with the modifications described in Halbedel et al. (2014) [15]. Pre-cultures were prepared by inoculating a single colony from Luria Broth (LB) solid medium into 5 ml LB medium and cultivating overnight. The overnight culture was inoculated into CMM or LB to have an initial optical density at an absorbance of 600 nm (OD600) of 0.05 and subsequently incubated until an OD600 of 0.4 to 0.6 (the early exponential growth phase) was obtained. The pre-cultures were diluted for each experiment to an OD600 of 0.2, if not specified otherwise. Culturing was performed at 37 °C under continuous agitation at 200 rpm where appropriate. Culturing media were supplemented when required. Information about the medium supplements required for each strain can be found in the Table S1.

2.2. Determination of the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC)

To obtain the lowest concentration necessary to have an inhibitory effect on B. subtilis (strain 168), the MIC was determined. The MBC was determined to establish whether the AMPs are lethal at concentrations close to the MIC. The MIC was determined by measuring the OD600 for 24 h in a microtiter plate reader (MultiSkant FC, Thermo Scientific). B. subtilis cells at an OD600 of 0.02 (1 × 10^7 CFU/ml) were treated in CMM containing the AMP. A two-fold serial dilution from 56 μM to 0.11 μM of the AMP was prepared in a final reaction volume of 150 μl in each well. The control consisted of CMM without AMP. The experimental conditions to determine the MBC were similar to the MIC, but after 24 h the culture in every well was plated out onto LB solid medium. The MIC was considered to be the lowest AMP concentration where no outgrowth was observed, meaning no change in OD600 for B. subtilis cells. The MBC was considered to be the lowest AMP concentration which killed 99.99% of the culture after 24 h. The Student’s t-test was applied to determine statistical significance between two groups.

2.3. Assessing the development of resistance to the AMPs

Adaptation or the development of resistance was evaluated by performing an evolutionary study. B. subtilis was inoculating at an OD600 of 0.02 (1 × 10^7 CFU/ml) in CMM with AMPs ranging from 56 μM to 0.44 μM. Culturing was performed for 24 h and the MICs were determined by measuring the OD600. The lowest concentration that had no detectable growth was noted as the MIC. Cultures that had an OD600 of ≥50% of the OD600 of the untreated cultures were selected to be inoculated in fresh CMM containing the AMPs. Cultures were inoculated into the fresh medium to a final OD600 of 0.02. Cultures were subjected to repeated exposure to the AMPs for 14 passages. Ciprofloxacin was used as a positive control. Ciprofloxacin is an antibiotic of the fluoroquinolone class known to target DNA gyrase and topoisomerase IV, thus inhibiting DNA replication [16]. Results were reported as fold change in MIC over number of passages.

2.4. Time-kill assay to observe the killing effect of the AMPs on B. subtilis at concentrations close to the MIC values

To observe the killing effect of the AMPs on B. subtilis cells over time, a time-kill assay was performed using the MIC concentrations determined previously. The cell number for the time-kill assay was increased from 1 × 10^7 CFU/ml, used during determining the MIC, to 1 × 10^8 CFU/ml. A pre-culture was diluted to an OD 600 of 0.2 (1 × 10^8 CFU/ml) with CMM and divided into 1 ml aliquots. To each 1 ml aliquot, the AMP was added to reach a concentration close to the MIC. The MIC was determined by measuring the OD600 for 50% of the OD600 of the untreated cultures were selected to be inoculated in fresh CMM containing the AMPs. From each 1 ml reaction, 25 μl was removed and spotted onto LB solid medium. When the culture reached an OD600 of 0.4, it was diluted with pre-warmed CMM to have a final OD600 of 0.2. The culture was considered to be the lowest AMP concentration which killed 99.99% of the culture after 24 h. The Student’s t-test was applied to determine statistical significance between two groups.

2.5. Preparation of RNA for microarray analysis

The sample preparation for RNA isolation was performed by culturing B. subtilis overnight in 200 ml CMM. The overnight culture was diluted with pre-warmed CMM to have a final OD600 of 0.02 and volume of 600 ml. When the culture reached an OD600 of 0.4, it was diluted with pre-warmed CMM to have a final OD600 of 0.2. The culture was split into 150 ml fractions and added to 11 polypropylene Erlenmeyer flasks. To each flask AMP was added to have a final concentration of 3.5 μM TC19 and TC84, and 0.22 μM BP2. These peptide concentrations were those of the MIC values close to the MIC. The MIC was considered to be the lowest AMP concentration which killed 99.99% of the culture after 24 h. The Student’s t-test was applied to determine statistical significance between two groups.
concentrations caused a one log reduction in CFU/ml during the time kill assay. The cultures were incubated for 5 min and 120 min. SPS was added to have a final concentration of 0.05% w/v and the cells harvested by centrifuging for 2 min at 10,000 rpm and at 20 °C using the Sorvall RC-6 (Thermo Scientific). Residual medium was removed by centrifuging the pellet for 5 min at 4000 rpm. The pellet was snap frozen using liquid nitrogen for subsequent RNA isolation.

RNA was isolated by initially grinding the frozen pellet with a mortar and pestle. The ground cells were added to occupy about 50 μl of a pre-chilled Eppendorf tube. To each Eppendorf tube, 300 μl Trizol was added. After incubating the mixture for 5 min at room temperature (20 °C), 60 μl chloroform was added and incubation at room temperature was continued for 3 min. The mixture was centrifuged for 15 min at 12,000 rpm at 4 °C and the upper aqueous layer removed. This aqueous layer was added to 1 volume 70% ethanol and the mixture transferred to a RNeasy MinElute spin column (Qiagen). Subsequently, the method prescribed by the manufacturer of the RNease Mini Kit (Qiagen) was followed.

2.6. Synthesis of labelled cDNA, hybridization, and scanning of the DNA microarrays

The RNA concentrations were measured on the NanoDrop ND-2000 (Thermo Scientific). The integrity of the RNA samples was assessed on a 2200 TapeStation system (Agilent Technologies) using the RNA ScreenTape (Agilent Technologies). Per sample, 5 μg of total RNA was combined with ArrayControl RNA Spikes (Ambion) and 1 μg random octamers (Biologio), denatured at 65 °C for 10 min and placed on ice-water for 5 min. Subsequently, a first strand master mix was added containing first strand buffer (Thermo Fisher Scientific), 0.5 mM dGAC, 0.35 mM dUTP, 0.15 mM dUTP-Cy3 (GE Healthcare) and 200 U SuperScript IV (Thermo Fisher Scientific). This mixture was subsequently incubated for 5 min at 25 °C, 60 min at 50 °C and 10 min at 80 °C. Finally, NaOH was added to hydrolyse the remaining RNA by heating at 70 °C for 15 min. The reaction was stopped by adding MOPS buffer and the labelled cDNA was purified with the E.Z.N.A. MicroElute RNA Clean-up Kit (Omega Biotek). Dye incorporation and cDNA yield were measured on the NanoDrop ND-2000 yielding a frequency of incorporation of > 10 pmol/μg.

Each hybridization mixture was made up from 1.1 μg Test (Cy3) and 1.1 μg Reference (Cy5) sample. Samples were dried and 1.98 μl water was added. The hybridization cocktail was made according to the manufacturer’s instructions (NimbleGen Arrays User’s Guide — Gene Expression Arrays Version 5.0, Roche NimbleGen). To each sample 7.2 μl from this mix was added. The samples were incubated for 5 min at 65 °C and 5 min at 42 °C prior to loading. Hybridization samples were loaded onto a 12 × 135 K microarray custom designed against B. subtilis (Roche NimbleGen). Microarrays were hybridized for 20 h at 42 °C with the NimbleGen Hybridization System (Roche NimbleGen). Afterwards, the slides were washed according to the NimbleGen Arrays User’s Guide — Gene Expression Arrays Version 6.0 and scanned with an Agilent DNA microarray scanner G2565CA (Agilent Technologies). Feature extraction was performed with NimbleScan v2.6 (Roche NimbleGen).

2.7. Microarray data extraction and processing

The microarray data were analysed using the R statistical language (https://cran.r-project.org/) with packages made available by the Bioconductor project (https://www.bioconductor.org/). Gene expression values were calculated using the robust multi-array average (RMA) algorithm [18]. The normalized data was statistically analysed for differential gene expression using a mixed linear model with coefficients for Block (random), and each experimental treatment (fixed) [19, 20]. A contrast analysis was applied to compare each exposure, which were 5 or 120 min of treatment with the peptide, with the control, which was the untreated sample. The Fs test statistic [21] was used for hypothesis testing and the resulting p-values were corrected for false discoveries according to [22]. Genes were considered to be differentially expressed when the expression ratio exceeded a factor of two and showed a significant difference in log expression ratio (p ≤ 0.05). Identified genes were categorized according to SubtiWiki (http://subtiwiki.uni-goettingen.de/). The hierarchical clustering was performed using the Euclidean distance method and complete agglomeration method.

2.8. Confirming membrane damage using transmission electron microscopy (TEM)

Physiological changes to B. subtilis after treatment were observed using TEM. The culture was prepared as mentioned previously in the time-kill assay and harvested after incubating the culture with the AMPs for 5 or 120 min. One volume of Mc Dowell’s fixative was added to the treated culture and the cells were pelleted using centrifugation for 2 min at 10,000 rpm. The supernatant, containing the fixative and medium, was removed and undiluted Mc Dowell’s fixative added to the pelleted cells for preservation until further processing.

Negative staining of the cells was performed using uranyl acetate. In brief, the Mc Dowell’s fixative was removed from the sample after centrifugation. The cells were washed once and re-suspended with double distilled water. Carbon coated grids were place on top of a 10 μl aliquot of bacterial cell suspension for 2 min and washed 5 times on a drop of distilled water. The grids were, subsequently, placed on top a small drop of 3.5% uranyl acetate for 1.5 min and excess uranyl acetate was removed by holding the grids to a filter paper at an angle of 45°. The grids were finally dried in the petri dish with filter paper prior to imaging.

The B. subtilis cells on the grids were visualized and examined with a FEI Technai-12 Spirit Biotwin transmission electron microscope (FEI, Eindhoven, Netherlands) and micrographs were taken with a Veleta side-mounted TEM camera using Radius acquisition software (Olympus Soft Imaging Solutions, Münster, Germany). Image measurements were performed with processing features within the Radius software package. One biological repeat was performed.

2.9. Membrane perturbation measurement using the fluorescent dye, Sytox Green

Sytox Green (Molecular Probes, Invitrogen), a nucleic acid staining dye that can only penetrate a compromised membrane, was used to determine whether the AMPs caused membrane perturbation. Flow cytometry was employed to quantify the number of cells positively stained with Sytox Green after treatment with the AMPs for 5 min. B. subtilis cells were pelleted using centrifugation at 10000 rpm for 2 min and residual CMM removed. The pellet was re-suspended in 0.85% w/v NaCl and 5 μM of Sytox Green (Molecular Probes, Invitrogen) added. The mixture was incubated for 15 min in the dark at room temperature. The stained cells were subsequently washed twice with 0.85% w/v NaCl and re-suspended in 1 ml 0.85% w/v NaCl. Stained and unstained cells were counted based on fluorescence measurements after exposure to an argon lamp (488 nm) at an excitation and emission wavelength of 500 to 550 nm, respectively, using the Gallios Flow cytometer (Beckman Coulter). A total of 10,000 cells were counted and the un gated results were reported as % Sytox Green stained cells. Three biological repeats were performed. Microscopy imaging was performed using the Olympus BX-60. The Olympus BX-60 was mounted with a CoolSnap fx (Photometrics) CCD camera and an UPLANFI 100 ×/1.3 oil objective (Tokyo, Japan). Microscopy images were analysed in ImageJ (http://rsweb.nih.gov/ij/).
2.10. Bacterial cytological profiling using mutants producing green fluorescent protein (GFP) fusion proteins

*B. subtilis* mutants expressing proteins fused to the GFP, were used to determine whether the AMPs caused delocalization of proteins involved in various cellular processes, thus rendering these processes inactive. Culturing was in CMM containing the required supplements for induction (Table S1). Treatment with the AMPs was for 5 min while shaking at 37 °C. GFP-fused proteins were visualized using the Nikon Eclipse Ti fluorescence microscope at an excitation wavelength of 395 ± 5 nm and emission wavelength of 509 ± 5 nm. Microscopy slides were prepared by transferring 0.5 μl culture onto a thin 1.5% w/v agarose pad on a microscopy slide. These experiments were performed in duplicate. Quantification of images were performed by counting 200 cells of three biological repeats and expressing the results as % cells with delocalized proteins of the total cells counted. The Nikon Eclipse Ti was equipped with an Intensilight HG 130 W lamp, a C11440-22CU Hamamatsu ORCA camera, a CFI Plan Apochromat DM 100× oil objective, an OkoLab stage incubator (Napoli, Italy) and with the NIS elements software version 4.20.01. Microscopy images were analysed in ImageJ/Fiji (http://rbsweb.nih.gov/ij/).

3. Results

3.1. Differences in antimicrobial activity between AMPs are marginal

The MIC and MBC were determined to observe possible differences in activity and to obtain the lowest peptide concentrations necessary to evaluate the mode of action of the AMPs against *B. subtilis* strain 168. The difference between the MIC and MBC values of the AMPs against *B. subtilis* were not significant (Table 1).

3.2. *B. subtilis* does not adapt or develop resistance to the AMPs

To determine whether *B. subtilis* adapts to or develops resistance against TC19, TC84 and BP2, *B. subtilis* was passaged 14 times through various concentrations of TC19, TC84 and BP2. Ciprofloxacin, a fluoroquinolone that inhibits DNA gyrase, was tested as a positive control for resistance development. Whereas *B. subtilis* developed resistance to ciprofloxacin within 10 passages, the strain was unable to grow at a concentration higher than two-fold of the MIC of the peptides, showing that adaption or resistance does not occur against TC19, TC84 or BP2 throughout the 14 passages of the experiment (Fig. 1).

3.3. TC19, TC84 and BP2 kill cells rapidly

The time-kill assay for TC19, TC84 and BP2 against *B. subtilis* cells showed a rapid decline in numbers of colony forming units (CFU) at 5 min at concentrations of 56 μM to 7 μM for TC19 and TC84, and 3.5 μM to 0.44 μM for BP2 (Fig. 2) against a cell number 10-fold higher than what was used during the MIC/MBC measurements. Concentrations higher than 3.5 μM BP2 also caused rapid killing and are not shown. Peptides TC19 and TC84, however, caused a further decline in

Table 1

<table>
<thead>
<tr>
<th>Antimicrobial peptide</th>
<th>MIC (μM)</th>
<th>MBC (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± SD</td>
<td>Mean ± SD</td>
</tr>
<tr>
<td>TC19</td>
<td>7.0 ± 3.3 (n = 6)</td>
<td>7.0 ± 4.6 (n = 3)</td>
</tr>
<tr>
<td>TC84</td>
<td>7.0 ± 4.2 (n = 6)</td>
<td>3.5 ± 0.2 (n = 3)</td>
</tr>
<tr>
<td>BP2</td>
<td>3.2 ± 1.5 (n = 6)</td>
<td>3.5 ± 0.2 (n = 3)</td>
</tr>
</tbody>
</table>

*n* is the number of biological repeats performed.
The genes associated with the BceRS TCS, the YtrA regulon, the PsdRS S2 and Table S2).

The number of di
cients of the medium or to the surface of the microtiter wells (Fig. S1). Concentrations used in the subsequent experiments were based on the time kill assay results.

Aliquots of the culture were taken at 0, 5, 30, 60 and 120 min. Surviving cells were expressed as colony forming units (CFU) per ml. Standard error bars represent three biological repeats. CFU/ml values that were zero were substituted with one, to display the values on the graph.

3.4. B. subtilis transcriptional response after treatment with AMPs reveals cell envelope stress

To elucidate the mode of action of TC19, TC84 and BP2, we first performed a transcriptomic analysis of B. subtilis cells treated with sub-lethal concentrations at 5 and 120 min after peptide addition. B. subtilis differentially expressed the highest number of genes in response to TC19 (Table 2). The majority of the genes differentially expressed after treatment with TC84 were also expressed in response to TC19 (Fig. 3). Five minutes of treatment with BP2 yielded the lowest number of differentially expressed genes, and most of these genes were also differentially expressed in response to TC19 and/or TC84 (Fig. 3). No genes were differentially expressed after 120 min treatment with BP2. The stress response of TC19, TC84 and BP2 was different from that of known antimicrobials that target cell wall synthesis (D-cycloserine, oxacillin, ristocetin, bacitracin, vancomycin and amoxicillin), the cell membrane (gramicidin A and polymyxin B) [23] (Fig. 4). The data show that the stress response of the AMPs was most similar to that of the detergent, Triton X-114. We chose in our analysis to focus on specific regulons to obtain an overview of the response of B. subtilis to the AMPs. Only key genes that indicate a possible mode of action of the peptides are mentioned. Individual genes might not be differentially expressed by all three peptides.

B. subtilis responded to TC19, TC84 or BP2 by upregulating genes associated with the following two-component systems (TCs) and their cognate genes: the liaIH-liaGFSR operon, the bceRS-bceAB TCS-ABC transporters, the psdRS-psdAB TCS-ABC transporters, the yxcJKLMyxeA operon, ytrABCDEF and ywoBCD operons, and the yvrHb regulon (Fig. S2 and Table S2). B. subtilis induced the expression of genes involved in all of the TCs mentioned in response to a 5 min TC19 exposure. Only the genes associated with the BceRS TCS, the YtrA regulon, the PsdRS

<table>
<thead>
<tr>
<th>Treatment for 5 minutes</th>
<th>TC19</th>
<th>TC84</th>
<th>BP2</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 min</td>
<td>187</td>
<td>528</td>
<td>7</td>
</tr>
<tr>
<td>120 min</td>
<td>107</td>
<td>36</td>
<td>4</td>
</tr>
<tr>
<td>Upregulated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Downregulated</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Genes are considered to be differentially expressed when the expression ratio exceeds a factor of two and shows a significant difference in log expression ratio (p ≤ 0.05).

The majority of these genes were not regulated by SigM, W or X (Table S3).

For an overview of the genes regulated and differentially expressed by SigM, V, W and X in response to TC19, TC84 or BP2 refer to Table S4. Results on genes relevant for the mode of action are summarized as follows. Genes involved in cell wall stress were upregulated. These were ydaH (also amj), bcrC, the penicillin-binding protein genes pbpX and pbpE, and ywaC, the biomarker gene for screening cell-wall active compounds [45]. Similarly, Triton X-114 induced the expression of pbpE, amoxicillin the ywaC, vancomycin the ydaH, and ristocetin the bcrC and ywaC [23]. The ydaH gene encodes a lipid II flippase involved in the transport of lipid II across the membrane [46] and bcrC encodes

![Fig. 3. Venn diagrams depicting the numbers of shared differentially expressed genes in response to TC19, TC84 and BP2.](image)
undecaprenyl pyrophosphate phosphatase important for cell wall synthesis and is involved in resistance against bacitracin and paraquat [31, 47, 48]. Genes involved in cell envelope biogenesis (divIB, mreC, mreD, murB and rodA), and lipoteichoic acid synthesis (yfnl) were also upregulated [49–54]. These responses indicate that the peptides impose cell wall stress on the B. subtilis cells.

B. subtilis also responded to TC19 and TC84 by upregulating genes involved in modifying the cell surface such as the dlt operon, psd, and oat. DltA, DltB, DltC, DltD and DltE are all involved in the D-alanylation of teichoic acids and lipoteichoic acids [55]. Psd is a phosphatidylinerine decarboxylase and is involved in the synthesis of phosphatidylethanolamine (PE), a zwitterionic phospholipid of the cell membrane [56]. Oat is involved in O-acetylation of peptidoglycan, a modification that has shown to be involved in resistance of Gram-positive bacteria against lysozyme [57].

Fatty acid metabolism was increased in response to exposure of B. subtilis cells to TC19 by the upregulation of yrhJ, a cytochrome P450 monooxygenases (CYP) referred to as P450 CYP102A3 for B. subtilis [58–60] (Table S4). CYP102A3 hydroxylates branched chain fatty acids, and the degradation of iso and anteiso fatty acids by CYP102A3 has been proposed as a means of altering the fluidity of the cell membrane [60, 61]. B. subtilis also upregulated floT, floA, yuaF and psaA in response to TC19 and TC84. Genes floT, floA and yuaF and involved in membrane fluidity homeostasis and B. subtilis can alter its membrane fluidity by upregulating these genes. The phage shock holosome and biomarker for membrane distortion, PspA, is involved in stabilizing the membrane [46, 62, 63]. These responses all indicate a response of the bacteria to cell membrane distortion by the peptides. Interestingly, only treatment with Triton X-114 showed an upregulation of the expression of yuaF and pspA [23].

Bacterial cells may experience oxidative stress and DNA damage due to cell envelope distortion after treatment with the peptides. Indeed we found bcrC, ygIL, spx and yjhC upregulated, which are associated with oxidative stress or paraquat resistance [47, 64–69]. Similarly, ygIL was upregulated by Triton X-114, amoxicillin, vancomycin, ristocetin, and polymycin B, and yjhC by amoxicillin and ristocetin. Transcription of a DNA repair gene, recU [70], and DNA integrity scanning gene, disA, [71] was upregulated. The sigma factor Xpf was differentially upregulated after treatment with TC19 and TC84, but not after treatment with BP2. B. subtilis has a suicidal response to DNA-damage by lysing and by producing the phage-like bacteriocin PBSX bacteriophage particles that kill strains non-lysogenic for this phage by damaging the cell wall [72]. Xpf positively regulates the expression of genes associated with PBSX particles production [72]. However, genes regulated by the Xre regulon were also upregulated after treatment with TC19 and TC84. Xre is a transcriptional repressor of Xpf [72]. The combined effects of upregulation of Xpf and Xre are unclear.

Finally, the genes fosB, ybfO, ydbS, ydbT, yqeZ, yqfB, sunI, yfhL and yknWXYZ reported to be involved in resistance to antimicrobials were upregulated (Table S5). FosB is a metallothiol transferase shown to confer resistance to fosfomycin and to the antimicrobials produced by B. amyloliquefaciens [35, 36]. YbfO is similar to an erythromycin esterase known to be involved in erythromycin resistance [32]. Genes ydbS and ydbT are involved in the resistance against the antimicrobials produced by B. amyloliquefaciens [35]. Genes yqeZ and yqfB as part of the yqeZyqfAB operon [35] and sunI [73] are involved in sublancin resistance, and yfhL and the yknWXYZ operon in resistance to the B. subtilis toxic protein SdpC [35]. The gene encoding SdpC, yvaY, was not differentially expressed. However, mutants with deletions of genes (ones that are non-essential) mentioned above did not show reduced susceptibility to TC19, TC84 and BP2 (Table S6). Interestingly, Triton X-114 induced the expression of fosB, ybfO, ydbS, yqeZ, yqfB, yfhL, yknWXYZ, but none of the other antimicrobials [23].

In summary, the transcriptomic analysis suggested that B. subtilis responded to the TC19, TC84 and BP2 exposure by upregulating genes associated with cell membrane distortion and cell wall synthesis. The induction of other gene sets indicates that alteration to the cell envelope likely caused oxidative stress and possibly DNA damage. B. subtilis thus
respond to the changes to the cell envelope by gene expression aimed at changing the cell surface, altering membrane fluidity and upregulating genes associated with resistance against known antimicrobials.

3.5. TC19, TC84 and BP2 cause membrane damage

Since the transcriptomic analysis suggested that the cell envelope is targeted by the peptides, we employed TEM to investigate any structural changes that the treatment of TC19, TC84 and BP2 might create after 5 min and 120 min. Lethal concentrations were used, which were 14 μM TC19 and TC84, and 3.5 μM BP2. Cells treated for 5 min with TC19, TC84 and BP2 stained black with uranyl acetate whereas the untreated cells appeared grey with black uranyl acetate deposited on the surface of the cell (Fig. 5). TC19, TC84 and BP2 did not lyse the cells and no visible cell wall damage was observed at 5 min. In contrast, after 120 min of exposure, disrupted cells were observed (Fig. 5). Cross sections of the untreated cells treated for 5 min showed an irregularly distributed and abnormal nucleoid (Fig. 5, red arrows). Uranyl acetate staining of the cells entirely, implying that membrane perturbation had occurred since the membrane was permeable to the dye. Membrane permeabilisation, in a peptide concentration dependent manner, was confirmed using the fluorescent dye Sytox Green (Fig. 6). These findings suggest that the cell membrane is the primary target for the peptides. The cell wall stress response might be a result of cell membrane distortion and the irregular nucleoid could be a consequence of the loss of cell membrane integrity.

3.6. Delocalization of membrane bound proteins

To further address the molecular events involved in cell envelope homeostasis we analysed in more detail protein localization in the cell membrane starting from the notion that essential cellular processes, such as cell wall and cell membrane synthesis, occur at the plasma membrane [74]. To study the localization of various proteins involved and to aid in the elucidation of their function, we used a panel of mutant strains expressing proteins fused to green fluorescent protein (GFP), to investigate whether the membrane proteins delocalized after treatment with TC19, TC84 and BP2. The B. subtilis mutants were cultured in defined minimal medium (CMM), in which the growth of the bacteria is slow and protein localization might differ from previous reports where rich medium was used (Fig. S4). Defined minimal medium was selected as the exact concentration of each component is known, unlike rich medium.

MinD was initially evaluated, where MinD together with MinC forms a complex that inhibits the Z-ring formation [75]. MinD-GFP is known to localize at the septum and at the cell poles [76]. In non-treated cells (Fig. 7, image a) MinD-GFP indeed was localized at the septum, whereas once TC19, TC84 and BP2 were added MinD-GFP

![Fig. 6](image)

Fig. 6. Sytox Green staining of B. subtilis after peptide treatment. Sytox Green stained cells were visualized at the green emission wavelength with fluorescence microscopy and quantified with flow cytometry. At a high concentration of AMP, 14 μM of TC19 and TC84, and 3.5 μM BP2, membrane perturbation can be observed as Sytox Green staining of the nucleic acid is visible in image a1, b1 and c1. Membrane perturbation was also detected at a lower concentration of AMP, at 3.5 μM TC19 and 0.22 μM BP2 as shown in images a2, b2 and c2. Peptide TC84 at a low concentration of 3.5 μM (b2) also caused Sytox Green fluorescent dye to enter the cells, but the fluorescence was less clearly visible suggesting a lower degree of membrane perturbation. Quantification of the Sytox Green staining of the cells suggests an increase in membrane perturbation with an increase of concentration, as shown in the graph. Microscopy images are overlays of phase contrast and fluorescence images. Treatment was for 5 min and results represent three biological repeats. Scale bar of microscopy images represent 2 μm.
Delocalization or dissociation of the Min-D-GFP occurred rapidly (≤ 5 min) (Fig. 7). This was also observed for MreB (Fig. 8). MreB is a cell-shape determinant that forms an important part of the cell wall synthesis machinery and is pivotal in maintaining cell membrane homeostasis. The transcriptomic analysis revealed that B. subtilis is responding directly to the delocalization of MinD or its associated protein MinC, but we found no differential expression of MinD or MinC after 5 or 120 min of treatment with the peptides.

Delocalization or dissociation of the Min-D-GFP occurred rapidly (≤ 5 min) (Fig. 7). This was also observed for MreB (Fig. 8). MreB is a cell-shape determinant that forms an important part of the cell wall synthesis machinery and is pivotal in maintaining cell membrane homeostasis. The transcriptomic analysis revealed that B. subtilis is responding directly to the delocalization of MinD or its associated protein MinC, but we found no differential expression of MinD or MinC after 5 or 120 min of treatment with the peptides.
4. Discussion

TC19, TC84 and BP2 are predicted to share the common features of being cationic and amphipathic peptides and comply with the characteristics of their class by distorting the cell envelope of *B. subtilis* in a non-specific manner. TC19, TC84 and BP2 were rapidly bactericidal (≤ 5 min). Furthermore, as expected for this class of antimicrobial peptides, neither of these three peptides caused *B. subtilis* to develop resistance, as tested by 14 cycles of exposure to the peptides. TC19, TC84 and BP2 caused rapid membrane permeabilisation without causing overt cell lysis, as observed with the TEM and Sytox Green staining images. TC19, TC84 and BP2 at sub-lethal concentrations initiated a stress response distinctively different from known antimicrobials. We compared the response with responses observed upon treatments that target the cell envelope by inhibiting cell wall synthesis (L-cycloserine, oxacillin, rifampin, bacitracin, vancomycin and amoxicillin), distorting the cell membrane (i.e. the detergent Triton X-114), distorting the cell membrane without causing membrane permeabilisation (the ionophore monensin) and those that do permeabilise the membrane (gramicidin A and polymyxin B) [23]. An independent study using a proteomic approach also found that treating *Bacillus subtilis* with different membrane active compounds does not necessarily cause a similar stress response [97]. Our AMPs induced a stress response most similar to Triton X-114. Triton X-114 is a non-ionic detergent that causes a phase-separation and is often used to solubilize and separate proteins during extraction [98].

![Image showing delocalization of proteins involved in various cellular processes after peptide treatment. *B. subtilis* mutants producing proteins fused to green fluorescent protein (GFP) were treated with lethal concentrations of TC19 (14 μM), TC84 (14 μM) and BP2 (3.5 μM) for 5 min. The *B. subtilis* mutants expressed proteins involved in cell wall synthesis (MurG-GFP, MraY-GFP, Pbp2B-GFP, PonA-GFP, MreB-GFP and FtsW-GFP), cell membrane synthesis (PgsA-GFP and PdxGFP), cell division (FtsZ-GFP, DivIVA-GFP), ATP synthesis (AtpA-GFP), Krebs’ cycle and respiration (SdhA-GFP), transcription (RpoC-GFP), translation (RpsB-GFP) and DNA repair (DnaN-GFP and RecA-GFP). The comparison of images of treated and untreated cells showed that all proteins delocalized except proteins involved in transcription, translation, and DNA repair. Localization of proteins in untreated test conditions should not be over interpreted. Scale bar represent 2 μm.](image.png)
TC19, TC84 and BP2 induced a cell envelope stress response (CESR) by upregulating genes regulated by Sigma factors M, V, W and X and two component regulator systems (TCs). B. subtilis responded to TC19 and TC84 similarly as when exposed to the natural cationic alpha-helical AMP LL-37 [99], by upregulating genes controlled by the LiaRS, YxdJK, and BceRS TCs regulators [26]. The YxdJK TCS has only been associated with cell membrane perturbation [26], but the LiaRS TCs have been linked with both cell wall synthesis inhibition and membrane perturbation [24–29]. The BceRS TCS and its cognate ABC transporters, BceAB, are upregulated in response to bacitracin and vancomycin, and are associated with cell wall synthesis inhibition [24, 30, 31]. Additionally, B. subtilis differentially upregulated the YraR regulon in response to TC19 and TC84. The YraR regulon has been associated with exposure to cell wall synthesis inhibiting compounds [24, 25, 32]. These findings suggest that TC19 and TC84 target the cell wall architecture and/or synthesis in addition to the cell membrane. However, LL-37 has to our knowledge not been shown to be involved in cell wall synthesis inhibition, and the upregulation of the BceRS TCS suggest that LL-37 is targeting cell wall synthesis. In the case of BP2, few genes were differentially expressed in response to the peptide. We speculate that it is due to the very rapid activity of BP2 that prevents the initiation of a stress response similar to what was observed for TC19 and TC84. The few genes that were upregulated suggested that BP2 might have a similar cell envelope target as TC19 and TC84. However, the physiological analysis showed that no cell wall damage or cell lysis occurred after 5 min of treatment with lethal concentrations of TC19, TC84 and BP2. Instead, the membrane distortion caused by these peptides did cause delocalization of proteins essential for cell wall synthesis, MurG, MraY, MreB, PonA, PBP2b and FtsW, within 5 min of treatment. Exposure to LL-37 also caused delocalization of these membrane bound proteins involved in cell wall synthesis (Fig. 5), suggesting that this delocalization may be a general effect of exposure to cationic amphipathic antimicrobial peptides acting on the membrane, since delocalization of membrane bound cell wall synthesis proteins has also been reported for non-pore-forming linear hexapeptide MP196, lipopeptide daptomycin and non-pore-forming cyclic hexapeptide cFWF [34, 84]. The changes which TC19, TC84, BP2 and LL-37 cause to the membrane must be different to those caused by daptomycin, since daptomycin did not affect the localization of integral membrane proteins MraY and PBP2b [84]. The activity of TC19, TC84 and BP2 on the cell membrane also caused other proteins involved in cell membrane synthesis and metabolism to delocalize. Delocalization of such proteins prevents their normal functioning [76, 100] and will be deleterious for the survival of the cells. The delocalization of membrane proteins involved in cell wall synthesis by TC19, TC84, BP2 and LL-37 suggests that these amphipathic AMPs have common elements in their mode of action, some of which might be mediated through a shared secondary structure. LL-37 and BP2 are referred to as alpha-helical [9, 99] while we have preliminary indications that at least TC84 acquires some alpha-helical features upon interaction with membrane mimetics (unpublished observations).

5. Conclusion

TC19, TC84 and BP2 showed to be promising candidates as antimicrobial agents against Gram-positive bacterial cells as their membrane perturbation activity causes interference with various essential cellular processes leading to death. We observed no adaptation or resistance development against TC19, TC84 and BP2. No difference in mode of action between TC19 and TC84 was found, but BP2 was more rapidly active compared to TC19 and TC84 which we suspect is due to its higher cationic charge. We employed a transcriptomic approach to elucidate the mode of action and observed that the membrane perturbation caused by the cationic amphipathic peptides induced a membrane and cell wall stress response. With the aid of the green fluorescent protein fused to essential proteins bound to the membrane, we were able to establish that proteins involved in cell wall synthesis are delocalized. Delocalization will have a deleterious effect on the normal functioning of the proteins. Conclusively, our findings have elucidated crucial aspects of the mode of action of TC19, TC84 and BP2. The observed lack of readily emerging resistance implies significant potential for further preclinical studies aimed at clinical development.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.bbamem.2018.06.005.

References


[10] P.H.S. Kwakman, L. De Boer, C.P. Ruyter-Spira, T. Creemers-Molenaar, M. van der Donk, S. A. J. Zaat are supported by the FP7-HEALTH-2011 grant 278890, Biofilm-Targeted Antimicrobials, University of Amsterdam for their contribution to the transcriptomic analysis. S. Omardien acknowledges the Erasmus Mundus Action 2 program (EMAP2) and University of Amsterdam for funding. M. Riollo and S. A. J. Zaat are supported by the FP7-HEALTH-2011 grant 278890, BALI – Biofilm Alliance. The authors declare that they have no conflict of interest.


