Electron Microscopy Imaging of Zinc Soaps Nucleation in Oil Paint

DOI 10.1017/s1431927618000387

Publication date 2018

Document Version Final published version

Published in Microscopy and Microanalysis

License Article 25fa Dutch Copyright Act (https://www.openaccess.nl/en/in-the-netherlands/you-share-we-take-care)

Link to publication

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
Electron Microscopy Imaging of Zinc Soaps Nucleation in Oil Paint

Joen Hermans¹, Gillian Osmond², Anelies van Loon¹, Piet Iedema¹, Robyn Chapman³, John Drennan³, Kevin Jack³, Ronald Rasch³, Garry Morgan⁴, Zhi Zhang³, Michael Monteiro⁵ and Katrien Keune⁶

¹Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands, ²Queensland Art Gallery, Gallery of Modern Art of Modern Art, Brisbane, QLD 4101, Australia, ³Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, QLD 4072, Australia, ⁴Department of MCD Biology, University of Colorado, Boulder, CO 80309, USA, ⁵Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD 4072, Australia and ⁶Conservation and Restoration Department, Rijksmuseum, Museumstraat 1, 1071 XX Amsterdam, The Netherlands

Abstract

Using the recently developed techniques of electron tomography, we have explored the first stages of disfiguring formation of zinc soaps in modern oil paintings. The formation of complexes of zinc ions with fatty acids in paint layers is a major threat to the stability and appearance of many late 19th and early 20th century oil paintings. Moreover, the occurrence of zinc soaps in oil paintings leading to defects is disturbingly common, but the chemical reactions and migration mechanisms leading to large zinc soap aggregates or zones remain poorly understood. State-of-the-art scanning (SEM) and transmission (TEM) electron microscopy techniques, primarily developed for biological specimens, have enabled us to visualize the earliest stages of crystalline zinc soap growth in a reconstructed zinc white (ZnO) oil paint sample. In situ sectioning techniques and sequential imaging within the SEM allowed three-dimensional tomographic reconstruction of sample morphology. Improvements in the detection and discrimination of backscattered electrons enabled us to identify local precipitation processes with small atomic number contrast. The SEM images were correlated to low-dose and high-sensitivity TEM images, with high-resolution tomography providing unprecedented insight into the structure of nucleating zinc soaps at the molecular level. The correlative approach applied here to study phase separation, and crystallization processes specific to a problem in art conservation creates possibilities for visualization of phase formation in a wide range of soft materials.

Key words: electron microscopy, electron tomography, in situ microtome, zinc soaps

Introduction

Incidences of zinc soap formation in oil paintings are being reported in escalating numbers (van der Weerd et al. 2003; Osmond et al., 2005; Rogola et al., 2010; Kaszowska et al., 2013; Helwig et al., 2014; Keune & Boeve-Jones, 2014), since being first characterized in destructive protrusions affecting Van Gogh’s “Les Alyscamps” (van der Weerd et al., 2003). Shown to be a consequence of reactions between zinc white pigment and the drying oil binder, typically linseed, poppy seed or safflower oil, the responsible soaps were characterized as zinc carboxylates of predominantly stearic and palmitic acid. The same fatty acids are associated with lead soaps found in some paintings produced using lead white, red lead or lead tin yellow (Noble et al., 2002; Helwig et al., 2014; Keune & Boeve-Jones, 2014), known to be a less toxic alternative to lead white and came to be widely used in modern paint formulations (Harley, 1970; Kuhn, 1986; Osmond, 2012). Zinc soaps display a strong tendency to accumulate within paint layers or at interfaces, contributing to disfigurement and structural instability of important artworks. The phenomenon is a major concern for art conservation. At this stage, there is no known remedial process, so improved understanding of the processes involved is urgently required.

Figure 1 shows a surface detail from an oil-based painting by Sir Frederic Leighton (1830–1896); soap formation has imparted a granular texture to the painting surface, changing it utterly from the porcelain smooth finish intended by the artist (Osmond et al., 2013). Microscopy of a small embedded paint sample showing the layer structure of the painting reveals a large accumulation of predominantly zinc palmitate and zinc stearate within a lower layer. The growth of the soap mass has deformed the paint layers above, and lumps are visible to the naked eye. In other instances, growths may erupt and blister through the image surface, demonstrating the destructive forces involved and the potential risk zinc soaps pose for the long-term stability of oil paintings. Other changes associated with zinc soap formation in paintings include increases in transparency (Shimadzu & van den Berg, 2006) and adhesion failure between layers causing flaking and loss (Rogola et al., 2010).

Until recently, studies of zinc soap related degradation phenomena have been limited to the later stages of degradation, when zinc soap rich domains become detectable with visible or Fourier Transform infrared microscopy techniques. If we want to develop strategies to halt or slow zinc soap accumulation, it is necessary to focus attention on the initial stages in the nanometer
region: the nucleation of zinc soap in the polymerized oil matrix and the subsequent transport of zinc and fatty acids that facilitates zinc soap growth.

Materials and Methods
As a model system, ZnO was mixed with linseed oil and water, allowed to react, and finally cured as a film over a few weeks at room temperature in air. A relatively low concentration of pigment was chosen in this system to enable easy distinction between ZnO particles or zinc soap phases and the surrounding polymer, as well as to promote rapid formation of zinc soaps through the presence of a large excess of fatty acids.

Paint reconstructions were prepared by stirring ZnO (0.5 g; Sigma Aldrich, St Louis, MO, USA) with cold-pressed untreated linseed oil (3.0 g; Kremer Pigmente, New York, NY, USA) and demineralized water (1 mL) in a sealed vial at room temperature for 3 days. After allowing the mixture to settle, it was left to dry in air at room temperature for up to 7 weeks.

Scanning electron microscopy was undertaken on samples of the paint reconstructions which were removed from glass slides and simply mounted on metallic stubs using conductive epoxy. No other mounting system was necessary in the 3-View system. The 3-View system is supplied by Gatan and consists of a microtome blade within the chamber of a scanning electron microscope. The scanning electron microscope in the case was a Zeiss Sigma 3-View (Cambridge, UK), low vacuum, with a field emission gun. The backscattered detector in the system is tuned and designed specifically for recording images at low accelerating voltages. The images were recorded after each 50 nm cut, in backscattered mode at an accelerating voltage of 1.2 keV.

Analytical transmission electron microscopy (TEM) was undertaken on micromted cut sections transferred to a copper grid coated with a thin layer of carbon. The microscope was JEOL 2100 (JEOL Ltd., Tokyo, Japan), operating at 200 keV. For electron tomography, 300 nm thick sections were cut from the samples using Leica EM UC6 ultramicrotome (Leica Microsystems, Wetzlar, Germany). Dual-axis tilt-series data were collected on an FEI Tecnai F30 FEG-TEM (FEI Company, Hillsboro, OR, USA) operating at 300 kV, over a tilt range of +/-70° at 1.5° increments, using SerialEM software (The Boulder Lab for 3D Electron Microscopy, USA). Tilt-series were reconstructed with the R-weighted back projection algorithm using IMOD/Etomo software (The Boulder Lab for 3D Electron Microscopy, Boulder, CO, USA), and segmented using IMOD’s automated isosurface rendering function.

Fourier transform infrared spectra (FTIR) were averaged over 16 scans and recorded at 4 cm⁻¹ resolution using a Varian 660-IR FT-IR spectrometer (Palo Alto, CA, USA) combined with a Pike Technologies diamond GladiATR unit (Fitchburg, WI, USA). Small angle X-ray scattering (SAXS) was performed using an Anton Paar SAXSess instrument (Anton Paar GmbH, Graz, Austria). The instrument is a compact Kratky design and uses a copper anode source (operating at 40 kV and 40 mA) and a Princeton CCD detector (Princeton Instruments, Hudson, NH, USA). Scattered data were collected at room temperature, and the data were reduced to remove background scattering and also desmeared.

Results
Figure 2 shows a backscatter electron micrograph recorded on a scanning electron microscope equipped with the GATAN 3-view system. This instrument allows in situ serial cutting of thin sections and uses a detector that it is extremely sensitive to backscattered electron contrast even at very low accelerating voltages. The image presented in Figure 2 reveals several contrast features. Here the contrast is reversed from the usual convention, with atomically heavier features appearing as black. This is designed to enable comparison of scanning electron backscattered images with transmission images of the same features. There is an overall gray dense background, small (200 nm) black remnant ZnO particles and mid-gray flower-like regions scattered throughout the sample. The striations running vertically over the length of the images are the result of the soft surface of the sample buckling and stretching under the influence of the diamond cutting blade. The direction of cut is from the left to the right of the image.

Following observation and identification of these microstructural features in the scanning electron microscopy (SEM), microtome sections suitable for examination by analytical TEM were prepared. The SEM images were crucial for guiding subsequent investigation to support the interpretation of the intermediate gray structures as zinc soaps. Correlated microscopy and backscattered micrographs taken at lower magnification enabled location of key features for further examination at higher magnification. Figure 3a shows a TEM image of one of the intermediate gray features with a corresponding Zn energy dispersive X-ray map. It is clear that the flower-like features are strongly enriched in Zn compared to the

Figure 1. Frederic Leighton, Windng the skin, c. 1878. Art Gallery of New South Wales. Purchased 1974, photographed in raking light showing part of one of the figures affected by zinc soap aggregates which impart a pimpled texture to the paint. Inset: paint cross section taken from brown paint (a) optical and (b) backscatter electron image showing the distinct morphology of the zinc soap which has deformed overlying paint layers. Image reproduced with permission, Art Gallery of New South Wales.

Figure 2. Backscattered scanning electron microscope image recorded at 1.2 keV. The sample surface was prepared by cutting with a microtome blade inside the chamber of the microscope. Light gray “flowers” are marked on the image, and these are zinc stearate precipitates. Small dark particles are remnant ZnO particles.
The presence of zinc soaps in the model system is further corroborated by the SAXS results in Figure 3c. The two peaks at 1.35 and 2.65 nm$^{-1}$ are indicative of a lamellar metal soap structure. Moreover, the corresponding d-spacing obtained from the two observed peaks (with $d = 2\pi/q$) of ~46.5 Å is close to the reported value for pure zinc stearate of 42.8 Å (Hermans et al., 2015). The difference is most likely due to the significantly lesser degree of long-range ordering of the parallel plates in these samples compared with pure zinc stearate which leads to greater peak broadening and consequent uncertainty.

A bulk ATR-FTIR spectrum of this system (Fig. 3d) shows a broad carboxylate band centered at 1587 cm$^{-1}$. We have previously demonstrated that such a carboxylate band can be attributed to amorphous zinc soaps or ionomer-like zinc carboxylate (Hermans et al., 2015, 2016a). Though the SEM and TEM images suggest that the system contains a mixture of (semi-)crystalline zinc soaps and ionomer-like polymer medium, the IR spectrum only contains a broad zinc carboxylate band associated with amorphous zinc carboxylates. The lack of any crystalline metal soap features could mean that the zinc soap accumulations are still too disordered to exhibit sharp IR bands and are actually contributing to the broad-band in Figure 3d. This interpretation is supported by the work of MacDonald et al. (2016), who found very similar domains of (semi-)crystalline metal carboxylate in ethyl linoleate reacted with lead or zinc acetate. In that system, XRD of an isolated metal carboxylate accumulation showed some weak crystalline features, while an FTIR spectrum of the same sample exhibited only a broad amorphous metal carboxylate band. Alternatively, it could be the case that, despite the apparent abundance of zinc soaps in Figure 2, the zinc soaps only constitute a very small fraction of the total population of zinc carboxylate species, meaning that the FTIR spectrum is still dominated by ionomeric zinc carboxylates.

We believe the evidence that has been presented so far suggests that these flowers are the initial precipitation of zinc soap phases. The high number of the smaller zinc soap flowers and their homogeneous distribution throughout the film indicates that nucleation of zinc soap phases is not a rare phenomenon under these conditions. Even on this relatively short timescale and in this region of the sample, there has been extensive degradation of the pigment, and very little intact ZnO remains. Interestingly, there seems to be no correlation between the location of remaining ZnO particles and the zinc soaps, so crystallization obviously does not happen near the surface of pigment particles. A more detailed three-dimensional reconstruction of this data is shown in Figure 1 of the Supplementary Material.

Figure 4 provides the detailed image of the precipitation processes taking place. Recorded using a highly sensitive electron detection camera and low dose technology, these high-resolution
For oil paintings containing zinc white, the question remains as to whether it is possible to prevent disfiguring soap formation. Our current observations and previous work suggest that once ZnO has been mixed with an oil medium, eventual metal soap formation is inevitable. Particle properties, fatty acid composition, and environmental variables will influence the rate of formation, but reversing the process of zinc soap phase separation seems an immense challenge (Hermans et al., 2016b). For the present, we will continue to study factors that govern mobility of metal ions and fatty acids in the polymerized oil system, while optimizing storage conditions and conservation treatments to minimize growth of aggregates in susceptible paintings.

Through attempts to address a challenge in art conservation, the electron microscopy techniques explored here have application across a wide range of soft materials characterization challenges. The quality of electron detectors combined with specially optimized sample preparative methods lessons opens up correlated characterization regimes for a wide range of (heterogeneous) materials. Microstructural analysis becomes possible for materials that were too difficult to image in the past.

Supplementary material. To view supplementary material for this article, please visit https://doi.org/10.1017/S1431927618000387

Acknowledgments. A major part of the work was undertaken during a sabbatical visit by Professor Drennan that was hosted by the Van’t Hoff Institute for Molecular Sciences, University of Amsterdam. The authors also acknowledge the facilities, and the scientific and technical assistance, of the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy and Microanalysis, The University of Queensland.

References

