Information integration among Heterogeneous and Autonomous Applications

Benabdelkader, A.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

Acknowledgments xii

1 Introduction 1
 1.1 Major Requirements in terms of Information Management 3
 1.2 Application Cases: an Overview 4
 1.3 Thesis Contribution 7
 1.4 Organization of the thesis 8

2 Information Integration Approaches, Mechanisms, and Tools 11
 2.1 Introduction 11
 2.2 A Taxonomy for Information Integration 12
 2.2.1 Distributed Systems 14
 2.2.2 Integrated Systems 17
 2.3 Further Classifications and Categorizations 28
 2.4 Discussion 29

3 WATERNET: Intelligent Supervision and Control in Heterogeneous and Distributed Application 31
 3.1 Introduction 32
 3.2 Water Environment and General application requirements 33
 3.2.1 Water Network Structure and Management 35
 3.3 Information Management Approach 38
 3.3.1 The Waternet Architecture 38
 3.3.2 Simple Scenario for Subsystems interaction 39
 3.4 Distributed Information Management System (DIMS) 40
 3.4.1 The PEER Federated Layer 41
 3.4.2 Schemas Management in WATERNET Using PEER 42
 3.5 Extended Integration Approach 45
 3.5.1 Data Adapters Supporting Openness 47
 3.5.2 The WATERNET System Implementation 48
 3.6 Conclusion and Discussion 48
 3.6.1 Major Characteristics and Benefits of Federated Approach in Waternet 49
 3.6.2 Contribution to GFL2S 49
5.6.1 Specific Functions to Access Binary Large Objects (Blobs) 110
5.6.2 Benchmarking Tests For Matisse Database System 110
5.6.3 Observations 112
5.6.4 Lessons Learned 112

5.7 Conclusion and Discussion 112
5.7.1 Contribution to GFI2S 113

6 GFI2S - Generic and Flexible Information Integration System 115
6.1 Introduction 115
6.1.1 Focus of GFI2S 117
6.2 GFI2S Information Integration Approach 119
6.2.1 Local Adaptation Layer (LAL) 122
6.2.2 Node Federation Layer (NFL) 125
6.2.3 Application of Database Standards and Middleware Solutions in GFI2S 144
6.2.4 GFI2S in Action 145
6.3 Conclusion 147

7 Conclusions and Future Work 149
7.1 Overview 149
7.2 GFI2S Compared to Other Approaches 152
7.3 Lessons Learned 153
7.4 Future Work 154

A Application of Database and Middleware Standards in FGI2S 157
A.1 Object-Oriented Standards and Extensions Adaptation for GFI2S 157
A.1.1 Object Definition Language - ODL 158
A.1.2 Query Languages – SQL, SQL3, and OQL 160
A.1.3 Object Interchange Format - OIF 161
A.2 Web Standard and Middleware Adaptation for GFI2S 162
A.2.1 Object Database Connectivity - ODBC 163
A.2.2 Use of JAVA for Application Programming 164
A.2.3 Use of XML for Information Exchange 165

Samenvatting 180

Abstract 182

Résumé 184