Information Integration among Heterogeneous and Autonomous Applications
Benabdelkader, A.

Citation for published version (APA):
Benabdelkader, A. (2002). Information integration among Heterogeneous and Autonomous Applications
Enschede: Febo Druk

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

Acknowledgments

1 Introduction
1.1 Major Requirements in terms of Information Management
1.2 Application Cases: an Overview
1.3 Thesis Contribution
1.4 Organization of the thesis

2 Information Integration Approaches, Mechanisms, and Tools
2.1 Introduction
2.2 A Taxonomy for Information Integration
2.2.1 Distributed Systems
2.2.2 Integrated Systems
2.3 Further Classifications and Categorizations
2.4 Discussion

3 WATERNET: Intelligent Supervision and Control in Heterogeneous and Distributed Application
3.1 Introduction
3.2 Water Environment and General application requirements
3.2.1 Water Network Structure and Management
3.3 Information Management Approach
3.3.1 The WaterNet Architecture
3.3.2 Simple Scenario for Subsystems interaction
3.4 Distributed Information Management System (DIMS)
3.4.1 The PEER Federated Layer
3.4.2 Schemas Management in WATERNET Using PEER
3.5 Extended Integration Approach
3.5.1 Data Adapters Supporting Openness
3.5.2 The WATERNET System Implementation
3.6 Conclusion and Discussion
3.6.1 Major Characteristics and Benefits of Federated Approach in Waternet
3.6.2 Contribution to GFL2S
4 MegaStore: Advanced Web Databases for Music Industry 51

4.1 Introduction .. 51
4.1.1 E-Commerce Applications: Attempts and Aims 52

4.2 Problem Analysis and Required High Level Architecture .. 52
4.2.1 Database Design .. 53
4.2.2 ODL Schema definition 55

4.3 The MegaStore System Architecture .. 57
4.3.1 The Internet-Shop Interface 58
4.3.2 The Shop-in-a-Shop Interface 58
4.3.3 Server Architecture Extension 59

4.4 Music Audio and Video content 60
4.4.1 Bandwidth and Encoding Algorithm 60
4.4.2 Data Volume Estimation 61

4.5 Music Data Manipulation ... 62
4.5.1 Objects Loading Strategies 62
4.5.2 Extensions .. 65
4.5.3 Database Administration 66

4.6 MegaStore Interfaces - Advanced Features .. 67
4.6.1 Dynamic Browsing .. 69
4.6.2 Ordering System .. 70
4.6.3 System Security ... 71
4.6.4 Current Implementation Status 72

4.7 Derived Applications ... 73
4.7.1 LuisterPaa Interface ... 73
4.7.2 Music Sheet Application 75

4.8 Conclusion and Discussion .. 78
4.8.1 Major Characteristics and Benefits provided to MegaStore Application 79
4.8.2 Contribution of the MegaStore’s Information Management Approach to GFI2S 80

5 Information Management for Scientific Applications 81

5.1 Introduction .. 81
5.2 Virtual Laboratory Architecture Design .. 82
5.2.1 The VL Information Management for COoperation - VINCO Module 85

5.3 Multi-Media Scientific Data Sets Manipulation .. 85
5.3.1 Storage of Large Scientific and Engineering Data Sets 87
5.3.2 Scientific Data Archiving and Cataloguing Using Dublin Core Standard 93

5.4 Universal Database Access - Based on Standards .. 99
5.4.1 Database Connection Module 102
5.4.2 Query Execution Module 102
5.4.3 Results Presentation Module 102
5.4.4 Object Creation Module 103
5.4.5 Further Benefits ... 103

5.5 Data Access Security and Information Visibility (Safe/Reliable Data Export) 105
5.5.1 Role-based Access Control Definition 106
5.5.2 Flexible Role-based Access Interface 108

5.6 Physical Database Performance Analysis .. 109
5.6.1 Specific Functions to Access Binary Large Objects (Blobs) 110
5.6.2 Benchmarking Tests For Matisse Database System 110
5.6.3 Observations 112
5.6.4 Lessons Learned 112
5.7 Conclusion and Discussion 112
5.7.1 Contribution to GFI2S 113

6 GFI2S - Generic and Flexible Information Integration System 115
6.1 Introduction 115
6.1.1 Focus of GFI2S 117
6.2 GFI2S Information Integration Approach 119
6.2.1 Local Adaptation Layer (LAL) 122
6.2.2 Node Federation Layer (NFL) 125
6.2.3 Application of Database Standards and Middleware Solutions in GFI2S 144
6.2.4 GFI2S in Action 145
6.3 Conclusion 147

7 Conclusions and Future Work 149
7.1 Overview 149
7.2 GFI2S Compared to Other Approaches 152
7.3 Lessons Learned 153
7.4 Future Work 154

A Application of Database and Middleware Standards in FGI2S 157
A.1 Object-Oriented Standards and Extensions Adaptation for GFI2S 157
A.1.1 Object Definition Language - ODL 158
A.1.2 Query Languages - SQL, SQL3, and OQL 160
A.1.3 Object Interchange Format - OIF 161
A.2 Web Standard and Middleware Adaptation for GFI2S 162
A.2.1 Object Database Connectivity - ODBC 163
A.2.2 Use of JAVA for Application Programming 164
A.2.3 Use of XML for Information Exchange 165

Samenvatting 180
Abstract 182
Résumé 184