Information integration among Heterogeneous and Autonomous Applications
Benabdelkader, A.

Citation for published version (APA):
Contents

Acknowledgments xi

1 Introduction 1
 1.1 Major Requirements in terms of Information Management 3
 1.2 Application Cases: an Overview 4
 1.3 Thesis Contribution 7
 1.4 Organization of the thesis 8

2 Information Integration Approaches, Mechanisms, and Tools 11
 2.1 Introduction 11
 2.2 A Taxonomy for Information Integration 12
 2.2.1 Distributed Systems 14
 2.2.2 Integrated Systems 17
 2.3 Further Classifications and Categorizations 28
 2.4 Discussion 29

3 WATERNET: Intelligent Supervision and Control in Heterogeneous and Distributed Application 31
 3.1 Introduction 32
 3.2 Water Environment and General application requirements 33
 3.2.1 Water Network Structure and Management 35
 3.3 Information Management Approach 38
 3.3.1 The Waternet Architecture 38
 3.3.2 Simple Scenario for Subsystems interaction 39
 3.4 Distributed Information Management System (DIMS) 40
 3.4.1 The PEER Federated Layer 41
 3.4.2 Schemas Management in WATERNET Using PEER 42
 3.5 Extended Integration Approach 45
 3.5.1 Data Adapters Supporting Openness 47
 3.5.2 The WATERNET System Implementation 48
 3.6 Conclusion and Discussion 48
 3.6.1 Major Characteristics and Benefits of Federated Approach in Waternet 49
 3.6.2 Contribution to GFL2S 49
4 MegaStore: Advanced Web Databases for Music Industry

4.1 Introduction

4.1.1 E-Commerce Applications: Attempts and Aims

4.2 Problem Analysis and Required High Level Architecture

4.2.1 Database Design

4.2.2 ODL Schema definition

4.3 The MegaStore System Architecture

4.3.1 The Internet-Shop Interface

4.3.2 The Shop-in-a-Shop Interface

4.3.3 Server Architecture Extension

4.4 Music Audio and Video content

4.4.1 Bandwidth and Encoding Algorithm

4.4.2 Data Volume Estimation

4.5 Music Data Manipulation

4.5.1 Objects Loading Strategies

4.5.2 Extensions

4.5.3 Database Administration

4.6 MegaStore Interfaces - Advanced Features

4.6.1 Dynamic Browsing

4.6.2 Ordering System

4.6.3 System Security

4.6.4 Current Implementation Status

4.7 Derived Applications

4.7.1 LuisterPaaal Interface

4.7.2 Music Sheet Application

4.8 Conclusion and Discussion

4.8.1 Major Characteristics and Benefits provided to MegaStore Application

4.8.2 Contribution of the MegaStore's Information Management Approach to GFlS

5 Information Management for Scientific Applications

5.1 Introduction

5.2 Virtual Laboratory Architecture Design

5.2.1 The VL Information Management for COoperation - VINCO Module

5.3 Multi-Media Scientific Data Sets Manipulation

5.3.1 Storage of Large Scientific and Engineering Data Sets

5.3.2 Scientific Data Archiving and Cataloguing Using Dublin Core Standard

5.4 Universal Database Access - Based on Standards

5.4.1 Database Connection Module

5.4.2 Query Execution Module

5.4.3 Results Presentation Module

5.4.4 Object Creation Module

5.4.5 Further Benefits

5.5 Data Access Security and Information Visibility (Safe/Reliable Data Export)

5.5.1 Role-based Access Control Definition

5.5.2 Flexible Role-based Access Interface

5.6 Physical Database Performance Analysis