Light in strongly scattering semiconductors - diffuse transport and Anderson localization
Gomez Rivas, J.

Citation for published version (APA):
Gomez Rivas, J. (2002). Light in strongly scattering semiconductors - diffuse transport and Anderson localization

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1 Introduction ... 9
 1.1 Single scattering ... 9
 1.2 Multiple scattering ... 10
 1.3 Weak localization .. 12
 1.4 Anderson localization 15
 1.5 The history of localization 19
 1.6 How to localize light 21
 1.7 This thesis .. 22

2 Propagation of light in disordered scattering media 25
 2.1 Coherent beam .. 25
 2.2 Diffusive propagation 27
 2.2.1 The radiative-transfer equation and the diffusion approxi-
 mation .. 27
 2.2.2 Boundary conditions: internal reflection 28
 2.2.3 Angular-resolved transmission 32
 2.2.4 Total transmission and reflection 33
 2.2.5 Dynamic transmission 37
 2.3 Enhanced backscattering 38
 2.4 Anderson localization 42

3 Near infrared transmission through powdered samples ... 47
 3.1 Introduction .. 47
 3.2 Sample preparation ... 49
 3.3 Experimental set-up .. 51
 3.4 Total transmission through Si samples 52
 3.5 Total transmission through Ge samples 55
 3.6 Discussion .. 59
4 Midinfrared transport of light in Ge powders close to the localization transition
4.1 Introduction ... 61
4.2 Sample preparation .. 63
4.3 Static measurements 65
 4.3.1 Coherent beam transmission 65
 4.3.2 Total transmission and reflection 67
 4.3.3 Discussion ... 72
4.4 Time-resolved speckle interferometry 73
4.5 Photoacoustic spectroscopy 77

5 Porous GaP: formation and optical properties 81
5.1 Introduction ... 81
5.2 Optical experimental techniques 83
5.3 Pore formation by anodic etching 84
 5.3.1 Current-potential characteristics 85
 5.3.2 Formation of porous layers 87
5.4 Optical absorption in anodically-etched GaP 90
5.5 Removal of the top layer by photochemical etching 91
5.6 Scattering strength versus doping concentration and etching potential 94
5.7 Increase of the scattering strength by chemical etching 98
5.8 Discussion ... 101

Appendix A: energy density coherent potential approximation. 105
Appendix B: extrapolation length with an absorbing layer. 107
List of symbols ... 109
List of abbreviations .. 113
References .. 115
Summary .. 125
Samenvatting ... 129
Resumen ... 133
Dankwoord .. 137