Light in strongly scattering semiconductors - diffuse transport and Anderson localization
Gomez Rivas, J.

Citation for published version (APA):
Gomez Rivas, J. (2002). Light in strongly scattering semiconductors - diffuse transport and Anderson localization

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Extrapolation length with an absorbing layer

The top of the Ge samples in chapter 4 is a thin absorbing layer. As it is demonstrated in this appendix, the absorption in the top layer affects the extrapolation factor (here called τ_e) of the interface.

The calculation of the reflection coefficient of a double interface can be found in Ref. [135]. This calculation is here generalized for the case of an absorbing layer. With the reflection coefficient, τ_e can be evaluated as explained in section 2.2.2.

We assume a weakly or non-absorbing multiple scattering sample with an homogeneous and absorbing layer of thickness δ at one interface. The effective refractive index of the sample is given by n_e, while the absorbing layer has a complex refractive index $n_\delta^2 = n_\delta + i\kappa_\delta$. If $\kappa_\delta \ll n_\delta$ the absorption coefficient of this layer is given by $\alpha_\delta = 2\pi\kappa_\delta/\lambda$. The transmitted fraction $T_{ab}(\theta_1)$ of the diffuse light incident at the interface sample-layer at angle θ_1 (see inset of Fig. B.1) is refracted according to Snell’s law and undergoes a ballistic propagation along the absorbing layer at angle θ_2. Due to the absorption, the intensity of the transmitted fraction in attenuated by the factor $e^{-\alpha_\delta/\cos\theta_2}$. The light reaching the layer-air interface may be reflected with a probability given by the Fresnel’s reflection coefficient, $R_{bc}(\theta_2)$. The reflected fraction reaches the interface layer-sample, after being attenuated, where it may be reflected etc. Considering these multiple reflections at both interfaces the reflection coefficient of the absorbing layer is

$$R(\theta) = R_{ab}(\theta_1) + \frac{T_{ab}(\theta_1)R_{bc}(\theta_2)R_{ba}(\theta_2)e^{-2\alpha_\delta/\cos\theta_2}}{1 - R_{ba}(\theta_2)R_{bc}(\theta_2)e^{-2\alpha_\delta/\cos\theta_2}}. \quad (B.1)$$

In Eq. (B.1) the indexes a, b, c stand for medium a = sample, b = absorbing layer
and $c = \text{outside medium}$, as it is illustrated in the inset of Fig. B.1, and, for instance, R_{ab} is the Fresnel’s reflection coefficient of the interface between medium a and b.

With the reflection coefficient, given by Eq. (B.1), the extrapolation factor can be calculated following the procedure described in section 2.2.2.

In Fig. B.1 the extrapolation factor τ_e is plotted as a function of $(\delta \alpha_\delta)^{-1}$. In this example $n_c = n_\delta = 1.6$ and, for simplicity, the Fresnel’s reflection coefficients are calculated for dielectric media. As the absorption in the layer gets stronger, τ_e becomes smaller. The reason for the decrease of τ_e is the lower light intensity that leaves the sample due to absorption in the top layer.

Figure B.1: Extrapolation factor of a double interface or layer as a function of $(\delta \alpha_\delta)^{-1}$, where δ is the thickness of the layer and α_δ its absorption coefficient. Inset: The light leaving the sample (medium a) at an angle θ_1 is refracted according to Snell’s law. It propagates through the layer (medium b), where it is attenuated by absorption. At the interface between medium b and c the light may be reflected with a probability given by the Fresnel’s reflection coefficient. The reflection coefficient of the layer is given by the multiple reflections at both interfaces.